% FAKULTA ELEKTROTECHNICKA
Ceské vysoké uéeni technické v Praze
B4M36DS2 — Database Systems 2

Practical Class 3

NoSQl: Basic Principles
Sharding, Replication, CAP theorem

Yuliia Prokop
prokoyul@fel.cvut.cz, Telegram @Yulia_Prokop

@ AVEICRWTA https://cw.fel.cvut.cz/b241/courses/b4m36ds2/start

mailto:prokoyul@fel.cvut.cz
https://cw.fel.cvut.cz/b241/courses/b4m36ds2/start

Exercise 1 - Data Sharding

Split data across multiple computers for improved performance.

Use the cz users.csv file with online store user data.

1. Count users per city, total users, and identify the most popular cities.

2. Divide users into three groups using two methods:
Method A (Geographic): Group the 12 cities into 3 shards by geographic proximity
(nearby cities together). Goal: roughly equal number of users in each shard.
Method B (Range-based): Group by user_id ranges (1-8, 9-16, 17-24)

3. Create a table showing user counts per group and compare distribution evenness and

qguery efficiency.

B4M36DS2 - Database Systems2 | Lecture 1 - Introduction | 22.9.2025

https://drive.google.com/file/d/1Ua1XtFTA7L-XlHxHCccVwhA43wWyihtY/view?usp=drive_link

Exercise 1 - Data Sharding - Solution

1) Explore the data

* Total users: 24

* Users per city (city_code = count):
PRG5,BRN4,0ST3,PLZ3,LIB2,0LO1,CBU1,HKR1,PAR]1,ZLN 1, UST1,KVA1

* Most popular cities: PRG (5), BRN (4), then OST/PLZ (3 each)

2) Make two 3-way splits

Method A — Geographic (nearby cities together)
Choose three regional shards (West / Central-North / Moravia—East):

* Shard A (West/NW): PRG, PLZ, KVA, UST, ZLN = 11 users (5+3+1+1+1)
* Shard B (Central/North): LIB, HKR, CBU, PAR = 5 users (2+1+1+1)
* Shard C (Moravia/East): BRN, OLO, OST - 8 users (4+1+3)

Method B — Range-based (by user_id)

Use equal ranges: 1-8, 9-16, 17-24.

Because user_id runs 1...24 without gaps, each shard has 8 users.

B4M36DS2 - Database Systems2 | Lecture 1 - Introduction | 22.9.2025

Exercise 1 - Data Sharding — Solution - 2

3) Compare results

Method Shard / Rule Users
Geographic A: PRG, PLZ, KVA, UST, ZLN 11
Geographic B: LIB, HKR, CBU, PAR 5
Geographic C: BRN, OLO, OST 8
Range-based 1: user_id 1-8 8
Range-based 2: user_id 9-16 8
Range-based 3:user_id 17-24 8

Evenness

* Geographic: imbalanced (11 / 5 / 8) because PRG is heavy and grouped with
nearby cities.

* Range-based: perfectly even (8 / 8 / 8) by construction (equal ID ranges).

B4M36DS2 - Database Systems2 | Lecture 1 - Introduction | 22.9.2025

Exercise 1 - Data Sharding — Methods Comparison

Method A: Geographic Sharding

Shard 1 Shard 2 Shard 3
(West/NW) (Central/North) (Moravia/East)
PRG (5), PLZ (3) jLB (2), HKR (1), CBU (1), BRN (4), OLO (1),
KVA (1), UST (1), ZLN (1) PAR (1) OST (3)
11 users S users 8 users

Method B: Range-based Sharding

Shard 1
User IDs: 1-8

8 users (33%)

Shard 2
User IDs: 9-16

8 users (33%)

Shard 3
User IDs: 17-24

8 users (33%)

Analysis & Trade-offs

Geographic Sharding:

v Great for city-based queries

v Data locality (related data together)

% Can be balanced with load-aware regional grouping

* Requires menitoring & rebalancing as populations shift

Range-based Sharding:

v Even buckets (with equal ranges)
v Easy user lookups by ID

x City queries need all shards

* No geo locality (higher cross-shard latency)

Load Distribution Visualization

Geographic

B4M36DS2 - Database Systems2 | Lecture 1 - Introduction | 22.9.2025

Range-based

Recommendation: Range-based as a default;
choose Geographic for latency-sensitive, city-
scoped workloads.

Exercise 1 - Data Sharding — Solution - 3

Query efficiency (who is better for which queries?)
 City-based queries (e.g., “all users in PRG”):
Geographic wins — PRG lives entirely in Shard A, so the query hits one shard.

Range-based loses — a city’s users are spread across ranges, so the query fans

out to several shards.

* Key lookups by user id:
Range-based is trivial — each ID range maps to one shard.
Geographic also hits one shard if you know the user’s city; otherwise, you need

a tiny directory (city - shard).

B4M36DS2 - Database Systems2 | Lecture 1 - Introduction | 22.9.2025

Exercise 1 - Data Sharding — Solution - 4

Two common ways to place new users

A) Geographic sharding (by city)
* The app keeps atinymap: city — shard.
* New user from PRG? Put them in the shard for PRG.
* If one city grows too fast, we either:
* Move a nearby city to a neighboring shard (to even things out), or

« Split the big city across two shards using a simple rule like
“hash (user id) % 27

B) Range / ID-based sharding

* We split user_id into ranges (or small blocks called “chunks”).

* New user with id = 1034 goes to the shard that holds that range/block.
* If the “last range” keeps getting all new users, we:

« Split the range into two smaller ones and move one to a lighter shard, or
* Use many small blocks from the start and spread them evenly.

B4M36DS2 - Database Systems2 | Lecture 1 - Introduction | 22.9.2025

Exercise 1 - Data Sharding — Solution - 5

Advise:

- Sharding = buckets. Keep buckets from getting too full.

« Geographic sharding is great for city questions, but you may need to
rebalance cities.

* Range/ID sharding is great for evenly sized buckets, but watch out for the
“new IDs all go here” problem.

- Small, frequent moves are better than big, rare ones.

* You can rebalance without downtime: copy — double-write — switch.

cvut
@ B4M36DS2 - Database Systems2 | Lecture 1 - Introduction | 22.9.2025

Exercise 2 - Replication & Synchronization Issues

Identify issues that arise when storing identical data on multiple
computers.

Scenario: Main database + read replica with synchronization delays.
1. Model Sync Problem: User #5 changes city from LIB to PRG at 12:00, and another
user reads at 12:01.

* Fill the table showing what the user sees with different sync delays.

2. Assess Data Staleness Impact: Rate criticality (High/Medium/Low) for scenarios:
* User viewing own profile
» City statistics calculation
* Product recommendations
* Bank balance checking

3. When is stale data acceptable vs. requiring fresh data?

B4M36DS2 - Database Systems2 | Lecture 1 - Introduction | 22.9.2025

Exercise 2 - Solution

Model the synchronization problem (main DB + read replica)

Scenario: User #5 changes city LIB - PRG at 12:00. Another user reads User #5 at 12:01.

Time to copy | What will the reader Is there a Why?
changes see at 12:01? problem? ¥:
Instantly (O s) city = PRG No Replica is updated immediately
Update reached replica by
After 30 s city = PRG No 12:00:30; the 12:01 read sees the
new value
After 2 min city = LIB (stale) Yes Replica lags until 12:02; the 12:01

read still returns the old value

cvut
f@ FEL

B4M36DS2 - Database Systems2 | Lecture 1 - Introduction | 22.9.2025

Exercise 2 — Solution - 2

Assess the impact of staleness

Situation Criticality Rationale
Users expect read-your-writes: after they
User views their own profile High update something, the next page should reflect
it. Otherwise, the product feels broken
. . Aggregates change slowly; a single late update
Calculating general statistics geres . g Y : & P
by cities Low has a negligible effect. Batch jobs tolerate short
lags
A stale city might reduce relevance (wrong
System recommends . .)
Medium | geo-targeting), but it’s usually tolerable for a
products .
short time
Checking bank account High Financial data must be accurate and current;

balance

stale reads risk overdrafts and user trust

Rule of thumb: if staleness can confuse a user or cost money/compliance, treat it as High.

cvut
f% FEL

B4M36DS2 - Database Systems2 | Lecture 1 - Introduction | 22.9.2025

Exercise 2 — Solution - 3

When stale data is OK vs. when fresh data is required

Stale data is acceptable (short delays are fine):
* Analytics and reporting

* Content/product recommendations

e Search results and ranking

* General statistics and dashboards

Fresh data is required (must reflect the latest state):

* Financial transactions and balances

* Authentication, session, and security decisions

* User’s own profile changes (read-your-writes experience)

* Real-time inventory/seat/room availability

cvut
@Q B4M36DS2 - Database Systems2 | Lecture 1 - Introduction | 22.9.2025

Exercise 3 - Consistency vs. Availability Trade-offs

Make decisions when perfect accuracy and constant availability
conflict

Scenario: Two offices, same data copies, connection lost for 1 hour.

1. Identify read vs. write challenges during network partition.

2. Approach Comparison: Evaluate for different use cases:

e Approach A: Block all writes until the connection is restored
e Approach B: Allow writes, resolve conflicts later

* Use cases: E-commerce peak hours, bank transfers, social media

3. Develop criteria for approach selection

B4M36DS2 - Database Systems2 | Lecture 1 - Introduction | 22.9.2025

Exercise 3 - Solution

Problem Understanding (partition lasts)
* Read operations:
v" Possible (data exists locally) but may be stale or divergent between
offices.
* Write operations:
v" Risky — concurrent writes can conflict.
* Core dilemma:
v" Block writes to keep data consistent (CP) vs. allow writes to stay online

(AP) and fix conflicts later.

B4M36DS2 - Database Systems2 | Lecture 1 - Introduction | 22.9.2025

Exercise 3 — Solution - 2

Approach Comparison

Approach A — “Safe” (Block writes until link is back)

v" Pros: Single source of truth; no divergent updates.

v Cons: Users can’t change data; lost revenue / poor UX.
Approach B - “ Available” (Allow writes; reconcile later)

v" Pros: Keep business running; capture user intent and orders.

v" Cons: Conflicts to resolve; temporary inaccuracies.

cvut
@Q B4M36DS2 - Database Systems2 | Lecture 1 - Introduction | 22.9.2025

Exercise 3 — Solution - 3

Situation

Approach A “Safe”

Approach B “Available”

Recommended & Why

E-commerce
during peak hours

Pros: No inventory
mismatch

Cons: Users can’t
checkout - lost sales

Pros: Stay open, accept
orders

Cons: Oversell risk;
stock divergence

B, with guardrails.

Why: revenue/UX wins short-
term; add reservations,
idempotent order IDs, post-
partition reconciliation
(cancel/refund backorders)

Bank transfers

Pros: No double-
spend/incorrect
balances

Cons: Service
unavailable

Pros: Service looks up
Cons: Risk of
overdrafts, regulatory
issues

A. Why: financial correctness >
availability; legal/compliance risk

Social media
(posts/comments)

Pros: No dupes/out-
of-order. Cons: Users
can’t post.

Pros: Users stay
engaged

Cons: Duplicates/order
issues

B, plus client-generated IDs,
timestamps, simple merge rules
(e.g., last-writer-wins for likes;
merge lists for comments)

R

B4M36DS2 - Database Systems2 | Lecture 1 - Introduction | 22.9.2025

Exercise 3 — Solution - 4

Selection Principles (no universal right answer)

Decide per feature using these criteria (top->down):
1. Risk & impact of inconsistency vs. downtime (money/compliance/safety > social > analytics)
2. User expectation (does the user expect changes to appear immediately — read-your-writes?)
3. Regulatory / legal constraints (finance/healthcare generally requires CP during partitions)
4. Business model sensitivity to outages (checkout/ordering often favors AP with guardrails)
5. Conflict resolution feasibility (can you merge safely? if not, favor CP)

6. Operational reality (how often/long are partitions? do you have monitoring & reconciliation
tools?)

7. Cost of rollback / correction (cheap to fix = AP; expensive/irreversible = CP)

One-line rule of thumb:
* If inconsistency can lose money, break law, or break trust, choose A (CP).

* |f downtime is worse and conflicts are cheap to fix, choose B (AP) with guardrails.

cvut
@ B4M36DS2 - Database Systems2 | Lecture 1 - Introduction | 22.9.2025

Exercise 3 — Solution - 5

R

Network Partition: Two Offices Disconnected for 1 Hour

A CONNECTION LOST

R
—

p——— [Office 2 (Brno) }

During partition: reads may be stale/divergent; the choice affects writes

Approach A: "Safe" (Choose Consistency)

{ Strategy: Block writes until link is restored (CP)

Use Cases Analysis:

Bank Transfers
v No risk of double spending or incorrect balances

E-commerce Peak

x Lost sales, customer frustration
x Lost checkout; consider temporary maintenance/
read-only page

Social Network
A Users can read but not post (read-only mode)

CAP During network partitions, you must choose

between Consistency and Availability

Approach B: "Available" (Choose Availability)

Strategy: Allow writes, reconcile later (AP)

Use Cases Analysis:

Bank Transfers

x Risk of overdrafts, accounting errors
x Regulatory risk - avoid this approach

E-commerce Peak

v Business continuity, no lost sales
. Use inventory reservation; cancel/refund backorders
after heal

Social Network
v Users stay engaged, minor duplicates OK
. Client-generated IDs; merge rules

v good « x risk » A requires caution
= recommended practice [implementation tip

B4M36DS2 - Database Systems2 | Lecture 1 - Introduction | 22.9.2025

Exercise 4 - Distributed System Design

Design a fault-tolerant system applying all learned principles

Scenario: Online store system handling 1000 users, 10K orders/day, growing to 10K
users/month. Must survive a single computer failure.

1. Architecture Decisions:
* Choose computer count (1, 3, or 10) — evaluate pros/cons
* Select data partitioning strategy (functional, geographic, range-based, or
custom)

2. Fault Tolerance:
* ldentify single-point-of-failure risks
* Design replication strategy (number of copies needed)

3. Verification: Test system with queries:
e User viewing own orders
* Cross-city statistics
* Single computer failure scenario

B4M36DS2 - Database Systems2 | Lecture 1 - Introduction | 22.9.2025

Exercise 4 - Solution

Architecture Decisions
Computer Count Evaluation

current needs

Quantity Pros Cons Suitable?
. Single point of
1 computer Simple, cheap tilure No
Fault tolerant (survive 1 failure), e
: Limited headroom
3 computers | manageable complexity, cost- Yes
, vs 10 nodes
effective
10 computers | High scalability Over-engineered for No

Choice: 3 computers — exactly 3 machines total. Meets “survive one failure” while
keeping ops simple.

cvut
f@ FEL

B4M36DS2 - Database Systems2 | Lecture 1 - Introduction | 22.9.2025

Exercise 4 — Solution - 2

Data Partitioning Strategy

Chosen Method: Range-based sharding
Thus, the user and their orders always live on the same shard.
e Shard 1: Users 1-333 (+ their orders)
* Shard 2: Users 334-666 (+ their orders)
* Shard 3: Users 667-1000 (+ their orders)
Routing rule: Load balancer routes by user_id range (not hash).
Rationale: Keeps user + orders together, one-hop lookups by user_id, easy to

explain.

B4M36DS2 - Database Systems2 | Lecture 1 - Introduction | 22.9.2025

Exercise 4 — Solution - 3

Ensuring Reliability: Any one computer can fail with no data loss and service stays up.

Replication Model (Leader—Follower with quorums)

* Replication factor N = 3 (each shard on all three machines).

* For each shard, one Leader (on a different machine per shard); the other two are
Followers.

* Write quorum W = 2, Read quorum R = 1 (or 2 for stronger reads) = R+ W > N.
Writes are acknowledged after the majority persists; reads hit leader (R=1) or majority
(R=2) when needed.

This is “synchronous to the majority”, not “to all nodes”.

Failure Handling
* Automatic leader election (consensus) per shard if a leader dies.
* Target recovery time: SLO < 30s (not a hard guarantee).

Remove Single Points of Failure
* Load balancer: 2 instances (active/active or active/standby) + health checks.
* Shared config/metadata store (if used): run redundant.

cvut
B4M36DS2 - Database Systems2 | Lecture 1 - Introduction | 22.9.2025

Exercise 4 — Solution - 4

Solution Verification

Query Computers Queried Performance

User views their orders | 1 shard (range - leader) | Fast — single-shard lookup

Fan-out + aggregation (slower,

istics for all citi har i
Statistics for all cities 3 shards but parallelizable)

Leader fails over; reads/writes

One computer broke Still works (majority alive) continue with W=2/R=1(2)

B4M36DS2 - Database Systems2 | Lecture 1 - Introduction | 22.9.2025

