
B4M36DS2 – Database Systems 2

Yuliia Prokop
prokoyul@fel.cvut.cz, Telegram @Yulia_Prokop

https://cw.fel.cvut.cz/b241/courses/b4m36ds2/start

Practical Class 3

NoSQl: Basic Principles

Sharding, Replication, CAP theorem

mailto:prokoyul@fel.cvut.cz
https://cw.fel.cvut.cz/b241/courses/b4m36ds2/start

2

Exercise 1 - Data Sharding

2B4M36DS2 - Database Systems 2 | Lecture 1 - Introduction | 22. 9. 2025 2

Split data across multiple computers for improved performance.
Use the cz_users.csv file with online store user data.

1. Count users per city, total users, and identify the most popular cities.

2. Divide users into three groups using two methods:

Method A (Geographic): Group the 12 cities into 3 shards by geographic proximity

(nearby cities together). Goal: roughly equal number of users in each shard.

Method B (Range-based): Group by user_id ranges (1-8, 9-16, 17-24)

3. Create a table showing user counts per group and compare distribution evenness and

query efficiency.

https://drive.google.com/file/d/1Ua1XtFTA7L-XlHxHCccVwhA43wWyihtY/view?usp=drive_link

3

Exercise 1 - Data Sharding - Solution

3B4M36DS2 - Database Systems 2 | Lecture 1 - Introduction | 22. 9. 2025 3

1) Explore the data
• Total users: 24
• Users per city (city_code → count):

PRG 5, BRN 4, OST 3, PLZ 3, LIB 2, OLO 1, CBU 1, HKR 1, PAR 1, ZLN 1, UST 1, KVA 1
• Most popular cities: PRG (5), BRN (4), then OST/PLZ (3 each)

2) Make two 3-way splits

Method A — Geographic (nearby cities together)
Choose three regional shards (West / Central–North / Moravia–East):

• Shard A (West/NW): PRG, PLZ, KVA, UST, ZLN → 11 users (5+3+1+1+1)

• Shard B (Central/North): LIB, HKR, CBU, PAR → 5 users (2+1+1+1)

• Shard C (Moravia/East): BRN, OLO, OST → 8 users (4+1+3)

Method B — Range-based (by user_id)

Use equal ranges: 1–8, 9–16, 17–24.

Because user_id runs 1…24 without gaps, each shard has 8 users.

4

Exercise 1 - Data Sharding – Solution - 2

4B4M36DS2 - Database Systems 2 | Lecture 1 - Introduction | 22. 9. 2025 4

3) Compare results

Method Shard / Rule Users

Geographic A: PRG, PLZ, KVA, UST, ZLN 11

Geographic B: LIB, HKR, CBU, PAR 5

Geographic C: BRN, OLO, OST 8

Range-based 1: user_id 1–8 8

Range-based 2: user_id 9–16 8

Range-based 3: user_id 17–24 8

Evenness

• Geographic: imbalanced (11 / 5 / 8) because PRG is heavy and grouped with

nearby cities.

• Range-based: perfectly even (8 / 8 / 8) by construction (equal ID ranges).

5

Exercise 1 - Data Sharding – Methods Comparison

5B4M36DS2 - Database Systems 2 | Lecture 1 - Introduction | 22. 9. 2025 5

6

Exercise 1 - Data Sharding – Solution - 3

6B4M36DS2 - Database Systems 2 | Lecture 1 - Introduction | 22. 9. 2025 6

Query efficiency (who is better for which queries?)

• City-based queries (e.g., “all users in PRG”):

Geographic wins – PRG lives entirely in Shard A, so the query hits one shard.

Range-based loses – a city’s users are spread across ranges, so the query fans

out to several shards.

• Key lookups by user_id:

Range-based is trivial – each ID range maps to one shard.

Geographic also hits one shard if you know the user’s city; otherwise, you need

a tiny directory (city → shard).

7

Exercise 1 - Data Sharding – Solution - 4

7B4M36DS2 - Database Systems 2 | Lecture 1 - Introduction | 22. 9. 2025 7

Two common ways to place new users

A) Geographic sharding (by city)
• The app keeps a tiny map: city → shard.
• New user from PRG? Put them in the shard for PRG.
• If one city grows too fast, we either:

• Move a nearby city to a neighboring shard (to even things out), or
• Split the big city across two shards using a simple rule like

“hash(user_id) % 2”.

B) Range / ID-based sharding
• We split user_id into ranges (or small blocks called “chunks”).
• New user with id = 1034 goes to the shard that holds that range/block.
• If the “last range” keeps getting all new users, we:

• Split the range into two smaller ones and move one to a lighter shard, or
• Use many small blocks from the start and spread them evenly.

8

Exercise 1 - Data Sharding – Solution - 5

8B4M36DS2 - Database Systems 2 | Lecture 1 - Introduction | 22. 9. 2025 8

Advise:

• Sharding = buckets. Keep buckets from getting too full.

• Geographic sharding is great for city questions, but you may need to

rebalance cities.

• Range/ID sharding is great for evenly sized buckets, but watch out for the

“new IDs all go here” problem.

• Small, frequent moves are better than big, rare ones.

• You can rebalance without downtime: copy → double-write → switch.

9

Exercise 2 - Replication & Synchronization Issues

9B4M36DS2 - Database Systems 2 | Lecture 1 - Introduction | 22. 9. 2025 9

Identify issues that arise when storing identical data on multiple
computers.

Scenario: Main database + read replica with synchronization delays.

1. Model Sync Problem: User #5 changes city from LIB to PRG at 12:00, and another

user reads at 12:01.

• Fill the table showing what the user sees with different sync delays.
2. Assess Data Staleness Impact: Rate criticality (High/Medium/Low) for scenarios:

• User viewing own profile
• City statistics calculation
• Product recommendations
• Bank balance checking

3. When is stale data acceptable vs. requiring fresh data?

10

Exercise 2 - Solution

10B4M36DS2 - Database Systems 2 | Lecture 1 - Introduction | 22. 9. 2025 10

Model the synchronization problem (main DB + read replica)

Scenario: User #5 changes city LIB → PRG at 12:00. Another user reads User #5 at 12:01.

Time to copy
changes

What will the reader
see at 12:01?

Is there a
problem? Why?

Instantly (0 s) city = PRG No Replica is updated immediately

After 30 s city = PRG No
Update reached replica by
12:00:30; the 12:01 read sees the
new value

After 2 min city = LIB (stale) Yes Replica lags until 12:02; the 12:01
read still returns the old value

11

Exercise 2 – Solution - 2

11B4M36DS2 - Database Systems 2 | Lecture 1 - Introduction | 22. 9. 2025 11

Assess the impact of staleness

Situation Criticality Rationale

User views their own profile High
Users expect read-your-writes: after they
update something, the next page should reflect
it. Otherwise, the product feels broken

Calculating general statistics
by cities Low

Aggregates change slowly; a single late update
has a negligible effect. Batch jobs tolerate short
lags

System recommends
products Medium

A stale city might reduce relevance (wrong
geo-targeting), but it’s usually tolerable for a
short time

Checking bank account
balance High Financial data must be accurate and current;

stale reads risk overdrafts and user trust

Rule of thumb: if staleness can confuse a user or cost money/compliance, treat it as High.

12

Exercise 2 – Solution - 3

12B4M36DS2 - Database Systems 2 | Lecture 1 - Introduction | 22. 9. 2025 12

When stale data is OK vs. when fresh data is required

Stale data is acceptable (short delays are fine):
• Analytics and reporting
• Content/product recommendations
• Search results and ranking
• General statistics and dashboards

Fresh data is required (must reflect the latest state):
• Financial transactions and balances
• Authentication, session, and security decisions
• User’s own profile changes (read-your-writes experience)
• Real-time inventory/seat/room availability

13

Exercise 3 - Consistency vs. Availability Trade-offs

13B4M36DS2 - Database Systems 2 | Lecture 1 - Introduction | 22. 9. 2025 13

Make decisions when perfect accuracy and constant availability
conflict

Scenario: Two offices, same data copies, connection lost for 1 hour.

1. Identify read vs. write challenges during network partition.

2. Approach Comparison: Evaluate for different use cases:

• Approach A: Block all writes until the connection is restored

• Approach B: Allow writes, resolve conflicts later

• Use cases: E-commerce peak hours, bank transfers, social media

3. Develop criteria for approach selection

14

Exercise 3 - Solution

14B4M36DS2 - Database Systems 2 | Lecture 1 - Introduction | 22. 9. 2025 14

Problem Understanding (partition lasts)

• Read operations:

ü Possible (data exists locally) but may be stale or divergent between

offices.

• Write operations:

ü Risky – concurrent writes can conflict.

• Core dilemma:

ü Block writes to keep data consistent (CP) vs. allow writes to stay online

(AP) and fix conflicts later.

15

Exercise 3 – Solution - 2

15B4M36DS2 - Database Systems 2 | Lecture 1 - Introduction | 22. 9. 2025 15

Approach Comparison

Approach A — “Safe” (Block writes until link is back)

ü Pros: Single source of truth; no divergent updates.

ü Cons: Users can’t change data; lost revenue / poor UX.

Approach B - “ Available” (Allow writes; reconcile later)

ü Pros: Keep business running; capture user intent and orders.

ü Cons: Conflicts to resolve; temporary inaccuracies.

16

Exercise 3 – Solution - 3

16B4M36DS2 - Database Systems 2 | Lecture 1 - Introduction | 22. 9. 2025 16

Situation Approach A “Safe” Approach B “Available” Recommended & Why

E-commerce
during peak hours

Pros: No inventory
mismatch
Cons: Users can’t
checkout → lost sales

Pros: Stay open, accept
orders
Cons: Oversell risk;
stock divergence

B, with guardrails.
Why: revenue/UX wins short-
term; add reservations,
idempotent order IDs, post-
partition reconciliation
(cancel/refund backorders)

Bank transfers

Pros: No double-
spend/incorrect
balances
Cons: Service
unavailable

Pros: Service looks up
Cons: Risk of
overdrafts, regulatory
issues

A. Why: financial correctness >
availability; legal/compliance risk

Social media
(posts/comments)

Pros: No dupes/out-
of-order. Cons: Users
can’t post.

Pros: Users stay
engaged
Cons: Duplicates/order
issues

B, plus client-generated IDs,
timestamps, simple merge rules
(e.g., last-writer-wins for likes;
merge lists for comments)

17

Exercise 3 – Solution - 4

17B4M36DS2 - Database Systems 2 | Lecture 1 - Introduction | 22. 9. 2025 17

Selection Principles (no universal right answer)

Decide per feature using these criteria (top→down):
1. Risk & impact of inconsistency vs. downtime (money/compliance/safety > social > analytics)

2. User expectation (does the user expect changes to appear immediately – read-your-writes?)

3. Regulatory / legal constraints (finance/healthcare generally requires CP during partitions)

4. Business model sensitivity to outages (checkout/ordering often favors AP with guardrails)

5. Conflict resolution feasibility (can you merge safely? if not, favor CP)

6. Operational reality (how often/long are partitions? do you have monitoring & reconciliation
tools?)

7. Cost of rollback / correction (cheap to fix → AP; expensive/irreversible → CP)

One-line rule of thumb:
• If inconsistency can lose money, break law, or break trust, choose A (CP).
• If downtime is worse and conflicts are cheap to fix, choose B (AP) with guardrails.

18

Exercise 3 – Solution - 5

18B4M36DS2 - Database Systems 2 | Lecture 1 - Introduction | 22. 9. 2025 18

19

Exercise 4 - Distributed System Design

19B4M36DS2 - Database Systems 2 | Lecture 1 - Introduction | 22. 9. 2025 19

Design a fault-tolerant system applying all learned principles
Scenario: Online store system handling 1000 users, 10K orders/day, growing to 10K
users/month. Must survive a single computer failure.

1. Architecture Decisions:
• Choose computer count (1, 3, or 10) – evaluate pros/cons
• Select data partitioning strategy (functional, geographic, range-based, or

custom)
2. Fault Tolerance:

• Identify single-point-of-failure risks
• Design replication strategy (number of copies needed)

3. Verification: Test system with queries:
• User viewing own orders
• Cross-city statistics
• Single computer failure scenario

20

Exercise 4 - Solution

20B4M36DS2 - Database Systems 2 | Lecture 1 - Introduction | 22. 9. 2025 20

Architecture Decisions
Computer Count Evaluation

Quantity Pros Cons Suitable?

1 computer Simple, cheap Single point of
failure No

3 computers
Fault tolerant (survive 1 failure),
manageable complexity, cost-
effective

Limited headroom
vs 10 nodes Yes

10 computers High scalability Over-engineered for
current needs No

Choice: 3 computers — exactly 3 machines total. Meets “survive one failure” while
keeping ops simple.

21

Exercise 4 – Solution - 2

21B4M36DS2 - Database Systems 2 | Lecture 1 - Introduction | 22. 9. 2025 21

Data Partitioning Strategy

Chosen Method: Range-based sharding

Thus, the user and their orders always live on the same shard.

• Shard 1: Users 1–333 (+ their orders)

• Shard 2: Users 334–666 (+ their orders)

• Shard 3: Users 667–1000 (+ their orders)

Routing rule: Load balancer routes by user_id range (not hash).

Rationale: Keeps user + orders together, one-hop lookups by user_id, easy to

explain.

22

Exercise 4 – Solution - 3

22B4M36DS2 - Database Systems 2 | Lecture 1 - Introduction | 22. 9. 2025 22

Ensuring Reliability: Any one computer can fail with no data loss and service stays up.

Replication Model (Leader–Follower with quorums)
• Replication factor N = 3 (each shard on all three machines).
• For each shard, one Leader (on a different machine per shard); the other two are

Followers.
• Write quorum W = 2, Read quorum R = 1 (or 2 for stronger reads) ⇒ R + W > N.

Writes are acknowledged after the majority persists; reads hit leader (R=1) or majority
(R=2) when needed.

This is “synchronous to the majority”, not “to all nodes”.

Failure Handling
• Automatic leader election (consensus) per shard if a leader dies.
• Target recovery time: SLO < 30s (not a hard guarantee).

Remove Single Points of Failure
• Load balancer: 2 instances (active/active or active/standby) + health checks.
• Shared config/metadata store (if used): run redundant.

23

Exercise 4 – Solution - 4

23B4M36DS2 - Database Systems 2 | Lecture 1 - Introduction | 22. 9. 2025 23

Solution Verification

Query Computers Queried Performance

User views their orders 1 shard (range → leader) Fast — single-shard lookup

Statistics for all cities 3 shards Fan-out + aggregation (slower,
but parallelizable)

One computer broke Still works (majority alive) Leader fails over; reads/writes
continue with W=2/R=1(2)

