
B4M36DS2 – Database Systems 2

Yuliia Prokop
prokoyul@fel.cvut.cz, Telegram @Yulia_Prokop

https://cw.fel.cvut.cz/b241/courses/b4m36ds2/start

Practical Class 1

Introduction: Organization

Multi-Model Data & JSONB in PostgreSQL

mailto:prokoyul@fel.cvut.cz
https://cw.fel.cvut.cz/b241/courses/b4m36ds2/start

2

Basic course information

2B4M36DS2 - Database Systems 2 | Lecture 1 - Introduction | 22. 9. 2025 2

Lectures: Monday, 9:15 – 10:45

Practical classes: Monday, 12:45 – 14:15, 14:30 – 16:00, 16:15 – 17:45

CourseWare Wiki – course materials

BRUTE – upload reports on the homework

NoSQL Server – submit and execute homework

Consultation – email me

https://cw.fel.cvut.cz/b241/courses/b4m36ds2/start

3

Basic course information: assessment

3B4M36DS2 - Database Systems 2 | Lecture 1 - Introduction | 22. 9. 2025 3

Maximum Minimum
required

Homework 42 25
Optional HW 18 0

Tests 10 5
Exam* 30 20
Total 100 50

* Written exam (mandatory) + oral exam (optional)

Lab KN:E-307 user accounts
• Set your new password

https://www.felk.cvut.cz/labpass/

4

Lab accounts

4

Lab accounts

4B4M36DS2 - Database Systems 2 | Lecture 1 - Introduction | 22. 9. 2025 4

https://www.felk.cvut.cz/labpass/

NoSQL server
• SSH and SFTP access
• nosql.felk.cvut.cz

§ PostgreSQL, Redis, Cassandra, MongoDB, Neo4j, MapReduce
§ Java, Python

• Login and password: sent by e-mail

• To access the server outside the university, you need FEL or CTU VPN.
5

5

NoSQL Server

5B4M36DS2 - Database Systems 2 | Lecture 1 - Introduction | 22. 9. 2025 5

Vscode and JetBrains connections that do not work via sftp are prohibited
due to extensive server disk space usage.
Here is an example of VSCode extension that uses SFTP and does not
require a binary running on the server
https://marketplace.visualstudio.com/items?itemName=Kelvin.vscode-sshfs

https://marketplace.visualstudio.com/items?itemName=Kelvin.vscode-sshfs
https://marketplace.visualstudio.com/items?itemName=Kelvin.vscode-sshfs
https://marketplace.visualstudio.com/items?itemName=Kelvin.vscode-sshfs

Linux
• ssh login@host – login to remote server

ssh login@nosql.felk.cvut.cz
exit

• sftp -P port login@host
§ cd directory – change remote directory
§ lcd directory – change local directory
§ ls – list remote directory contents
§ lls – list local directory contents
§ put local remote – copy a local file to the remote directory

(sftp access)
§ get remote local –copy a remote to the local directory (sftp access)
§ bye or exit – disconnect

6

6

Useful Tools

6B4M36DS2 - Database Systems 2 | Lecture 1 - Introduction | 22. 9. 2025 6

Windows

• PuTTY – http://www.chiark.greenend.org.uk/~sgtatham/putty/

• WinSCP – http://winscp.net/

7

77B4M36DS2 - Database Systems 2 | Lecture 1 - Introduction | 22. 9. 2025 7

Useful Tools

http://www.chiark.greenend.org.uk/~sgtatham/putty/
http://winscp.net/

Change your initial password
• password

§ enter the current password
§ enter the new password

Browse important directories
• /home/login/ – personal directory with your data
• /home/DS2/ – shared directory with course data

8

8

Firsts Steps

8B4M36DS2 - Database Systems 2 | Lecture 1 - Introduction | 22. 9. 2025 8

Submit your home assignments

• Upload your submission files to the NoSQL server.

• Put these files into a sub-directory ~/assignments/name/, where

name is the name of a given homework.

• This name parameter must also correspond to one of the predefined

assignment names: hw2, hw3, hw4, hw5, hw6, hw7, hw8 (case

sensitive).

• Use ssh or PuTTY to open a remote shell connection to the NoSQL

server.

9

9

Homework Assignments: submission

9B4M36DS2 - Database Systems 2 | Lecture 1 - Introduction | 22. 9. 2025 9

• Verify that everything is working as expected based on the instructions

provided for a given homework assignment.

• Go to the ~/assignments/ directory and execute:

sudo submit_execute name

where name is the name of the homework

• Wait for the confirmation of success; otherwise, your homework will not be

considered for submission.

• If any complications appear, write to me or send your solution by e-mail

to prokoyul@fel.cvut.cz.

• Just for your convenience, you can check the submitted files in

the ~/submissions/directory

10

1010B4M36DS2 - Database Systems 2 | Lecture 1 - Introduction | 22. 9. 2025 10

Homework Assignments: submission

mailto:prokoyul@fel.cvut.cz
mailto:prokoyul@fel.cvut.cz
mailto:prokoyul@fel.cvut.cz
mailto:prokoyul@fel.cvut.cz
mailto:prokoyul@fel.cvut.cz

11

Example of submission

If one of the required files is absent:

1111B4M36DS2 - Database Systems 2 | Lecture 1 - Introduction | 22. 9. 2025 11

Homework Assignments: submission

Requirements:

• Respect the prescribed names of individual files to be submitted

 (case sensitive)

• Place all the files in the root directory of your submission

• Do not include shared libraries or files that are not requested

• I.e. do not submit files that were not explicitly requested

• Do not redirect or suppress both standard and error outputs in your
shell scripts

• All your files must be syntactically correct and executable without
errors

1212B4M36DS2 - Database Systems 2 | Lecture 1 - Introduction | 22. 9. 2025 12

Homework Assignments: submission

13

1313B4M36DS2 - Database Systems 2 | Lecture 1 - Introduction | 22. 9. 2025 13

2. Upload files of your homework assignment to BRUTE

• Use the filename: username_number.*, where the number is the

homework number.

• The report must fulfill the requirements and have the following

structure:

ü A verbal description of the task

ü Code (copy from the file uploaded to the server)

ü Screenshot of code execution on the server

• If there are several problems, repeat the same for each of them

Homework Assignments: upload to BRUTE

14

1414B4M36DS2 - Database Systems 2 | Lecture 1 - Introduction | 22. 9. 2025 14

We will use TMDB movie and Oscar Nominees and Winners datasets (from Kaggle)

Based on these datasets, synthetic datasets were generated.

.csv and .json files with data are available in the DS2 folder on the NoSQL server
Also, they are available on the course page

Dataset for examples – TMDB movie

https://www.kaggle.com/datasets/tmdb/tmdb-movie-metadata/data

https://www.kaggle.com/datasets/viniciusno/oscar-nominees-and-winners-with-tmdb-metadata/data

https://www.kaggle.com/
https://www.kaggle.com/datasets/tmdb/tmdb-movie-metadata/data
https://www.kaggle.com/datasets/tmdb/tmdb-movie-metadata/data
https://www.kaggle.com/datasets/tmdb/tmdb-movie-metadata/data
https://www.kaggle.com/datasets/tmdb/tmdb-movie-metadata/data
https://www.kaggle.com/datasets/tmdb/tmdb-movie-metadata/data
https://www.kaggle.com/datasets/viniciusno/oscar-nominees-and-winners-with-tmdb-metadata/data
https://www.kaggle.com/datasets/viniciusno/oscar-nominees-and-winners-with-tmdb-metadata/data
https://www.kaggle.com/datasets/viniciusno/oscar-nominees-and-winners-with-tmdb-metadata/data
https://www.kaggle.com/datasets/viniciusno/oscar-nominees-and-winners-with-tmdb-metadata/data
https://www.kaggle.com/datasets/viniciusno/oscar-nominees-and-winners-with-tmdb-metadata/data
https://www.kaggle.com/datasets/viniciusno/oscar-nominees-and-winners-with-tmdb-metadata/data
https://www.kaggle.com/datasets/viniciusno/oscar-nominees-and-winners-with-tmdb-metadata/data
https://www.kaggle.com/datasets/viniciusno/oscar-nominees-and-winners-with-tmdb-metadata/data
https://www.kaggle.com/datasets/viniciusno/oscar-nominees-and-winners-with-tmdb-metadata/data
https://www.kaggle.com/datasets/viniciusno/oscar-nominees-and-winners-with-tmdb-metadata/data
https://www.kaggle.com/datasets/viniciusno/oscar-nominees-and-winners-with-tmdb-metadata/data
https://www.kaggle.com/datasets/viniciusno/oscar-nominees-and-winners-with-tmdb-metadata/data
https://www.kaggle.com/datasets/viniciusno/oscar-nominees-and-winners-with-tmdb-metadata/data

Multi-Model Data &
JSONB in PostgreSQL

16

Motivation

16B4M36DS2 - Database Systems 2 | Lecture 1 - Introduction | 22. 9. 2025 16

§ Modern data often cannot be effectively modeled by only relational

structures.

§ PostgreSQL allows using both relational (tabular) and semi-structured (JSONB)

data.

§ Flexible models are powerful, but bring complexity and trade-offs.

§ Goal: Learn to model, query, and critically compare relational and JSONB

approaches in PostgreSQL for typical data science scenarios.

17

Multimodel Databases – Theoretical Background

17B4M36DS2 - Database Systems 2 | Lecture 1 - Introduction | 22. 9. 2025 17

Definition: Multimodel DBMSs support more than one data model

§ e.g., relational + document

Advantages:

§ Flexibility to mix schemas

§ Ability to address diverse requirements within a single system

Challenges:

§ Complexity of schema evolution

§ Possible performance and integrity trade-offs

PostgreSQL:

§ Primarily relational

§ Powerful support for JSON/JSONB since v9.4

§ Enables hybrid ("NoSQL in SQL") patterns

18

Multimodel Databases – Examples

18B4M36DS2 - Database Systems 2 | Lecture 1 - Introduction | 22. 9. 2025 18

Relational
DBMS

Key-
value
store

Document
store

Wide
column

Graph
DBMS

RDF
store

Spatial
DBMS

Search
engine

Time
Series
DBMS

Vector
DBMS

Oracle + + + + + +
MySQL + + +
Microsoft SQL
Server + + + +

PostgreSQL + + + + +
MongoDB + + + + +
Redis + + + + + + +
IBM Db2 + + + +
Elasticsearch + + + +
Apache
Cassandra + +

Databricks + +
MariaDB + + + +
Amazon
DynamoDB + +

19

JSONB in PostgreSQL – Theory & Features

19B4M36DS2 - Database Systems 2 | Lecture 1 - Introduction | 22. 9. 2025 19

JSONB: Binary storage for JSON documents, allows indexing and efficient querying.

Use cases:
§ Semi-structured or dynamic data
§ Storing arrays, objects, nested fields
§ Use when schema flexibility is needed

Key features:
§ Supports GIN indexes for fast search
§ JSONPath, operators (->, ->>, ?, etc.)
§ Good for cases where attributes or structure vary between rows

Drawbacks:
§ No foreign keys or referential integrity
§ Complex queries are harder to optimize
§ Performance drops with very large or deeply nested documents

JSONB documentation: https://www.postgresql.org/docs/current/datatype-json.html
https://www.postgresql.org/docs/9.5/functions-json.html

https://www.postgresql.org/docs/current/datatype-json.html
https://www.postgresql.org/docs/current/datatype-json.html
https://www.postgresql.org/docs/current/datatype-json.html
https://www.postgresql.org/docs/9.5/functions-json.html
https://www.postgresql.org/docs/9.5/functions-json.html
https://www.postgresql.org/docs/9.5/functions-json.html

20

Assignment 1 – Model Transformation (Relational & JSONB)

20B4M36DS2 - Database Systems 2 | Lecture 1 - Introduction | 22. 9. 2025 20

Task

Transform a flat table of films and actors into two models:

- Relational

 Separate tables with many-to-many links between movies and awards

- Hybrid (Relational with JSONB)

 Awards is not a table, but a document with nested fields in the

 movies table

21

Assignment 1 – Solution

21B4M36DS2 - Database Systems 2 | Lecture 1 - Introduction | 22. 9. 2025 21

Relational

Hybrid

22

Assignment 1 – Solution

22B4M36DS2 - Database Systems 2 | Lecture 1 - Introduction | 22. 9. 2025 22

Schema Definition: Relational
CREATE TABLE movies_rel (
 movie_id BIGINT PRIMARY KEY,
 title TEXT NOT NULL,
 release_year INT,
 genre TEXT
);

CREATE TABLE actors_rel (
 actor_id SERIAL PRIMARY KEY,
 name TEXT UNIQUE NOT NULL
);

CREATE TABLE movie_actors_rel (
 movie_id BIGINT REFERENCES movies_rel(movie_id),
 actor_id INT REFERENCES actors_rel(actor_id),
 PRIMARY KEY(movie_id,actor_id)
);

CREATE TABLE awards_def (
 award_id SERIAL PRIMARY KEY,
 name TEXT NOT NULL,
 category TEXT,
 year INT,
 UNIQUE(name,category,year)
);
CREATE TABLE movie_awards_rel (
 movie_id BIGINT REFERENCES movies_rel(movie_id),
 award_id INT REFERENCES awards_def(award_id),
 result TEXT,
 PRIMARY KEY(movie_id,award_id)
);

23

Assignment 1 – Solution

23B4M36DS2 - Database Systems 2 | Lecture 1 - Introduction | 22. 9. 2025 23

Schema Definition: Hybrid

CREATE TABLE movies_hyb (
 movie_id BIGINT PRIMARY KEY,
 title TEXT NOT NULL,
 release_year INT,
 genre TEXT,
 awards JSONB NOT NULL DEFAULT '[]'
);
CREATE TABLE actors_hyb (
 actor_id SERIAL PRIMARY KEY,
 name TEXT UNIQUE NOT NULL
);
CREATE TABLE movie_actors_hyb (
 movie_id BIGINT REFERENCES movies_hyb(movie_id),
 actor_id INT REFERENCES actors_hyb(actor_id),
 PRIMARY KEY(movie_id,actor_id)
);

Each movie has:
- standard relational attributes

(title, year, genre, actors, etc.)
and

- an optional awards field stored
as JSONB.

This hybrid design showcases
Postgres as a flexible multi-model
system, blending SQL and NoSQL
features in one schema.

24

Assignment 1 – Solution

24B4M36DS2 - Database Systems 2 | Lecture 1 - Introduction | 22. 9. 2025 24

Schema Definition: Hybrid (alternative version)

CREATE TABLE movies (
 movie_id SERIAL PRIMARY KEY,
 title TEXT,
 release_year INT,
 genre TEXT,
 language TEXT,
 actors TEXT[], -- e.g. an array of actor names or separate M:N table
 awards JSONB -- JSONB field for awards info (optional)
);

25

Data Characteristics — Semi-Structured Awards

25B4M36DS2 - Database Systems 2 | Lecture 1 - Introduction | 22. 9. 2025 25

§ Awards entries are optional and varied: some records may be missing a year,

category, or result.

§ Enforcing a strict relational UNIQUE (name, category, year) may fail due to

missing or duplicate fields.

§ JSONB handles missing keys gracefully and preserves partial data without

schema migration.

26

Examples of data insertion – Relational Model

26B4M36DS2 - Database Systems 2 | Lecture 1 - Introduction | 22. 9. 2025 26

-- Insert sample movie
INSERT INTO movies_rel VALUES (1, 'Inception', 2010, 'Sci-Fi');
-- Insert sample actor
INSERT INTO actors_rel (name) VALUES ('Leonardo DiCaprio');
-- Link actor to movie
INSERT INTO movie_actors_rel VALUES (
 1,
 (SELECT actor_id FROM actors_rel WHERE name='Leonardo DiCaprio')
);
-- Define awards
INSERT INTO awards_def (name, category, year) VALUES ('Oscar', 'Best Picture', 2011);
-- Associate award with movie
INSERT INTO movie_awards_rel (movie_id, award_id, result)
VALUES (
 1,
 (SELECT award_id FROM awards_def WHERE name='Oscar' AND category='Best Picture'
AND year=2011),
 'won'
);

27

Examples of data insertion – Hybrid Model

27B4M36DS2 - Database Systems 2 | Lecture 1 - Introduction | 22. 9. 2025 27

-- Insert sample movie with embedded awards
INSERT INTO movies_hyb (movie_id, title, release_year, genre, awards)
VALUES (
 1, 'Inception', 2010, 'Sci-Fi',
 '[
 {"award":"Oscar","category":"Best Picture","year":2011,"result":"won"}
]'
);

-- Insert actor
INSERT INTO actors_hyb (name) VALUES ('Leonardo DiCaprio’);

-- Link actor to movie
INSERT INTO movie_actors_hyb VALUES (
 1,
 (SELECT actor_id FROM actors_hyb WHERE name='Leonardo DiCaprio')
);

28

Assignment 2 – Querying Nested JSONB vs Relational Data

28B4M36DS2 - Database Systems 2 | Lecture 1 - Introduction | 22. 9. 2025 28

Task

List movie titles that have won an "Oscar” award in 2002.

§ For relational:

join movies_rel → movie_awards_rel → awards_def

§ For hybrid:

search awards JSONB array in movies_hyb.

29

Assignment 2 – Solution

29B4M36DS2 - Database Systems 2 | Lecture 1 - Introduction | 22. 9. 2025 29

Relational
SELECT title
 FROM movies_rel m
 JOIN movie_awards_rel mar USING(movie_id)
 JOIN awards_def ad USING(award_id)
WHERE name = 'Oscar' AND result = 'winner';

Hybrid

SELECT title
 FROM movies_hyb
 WHERE EXISTS (
 SELECT 1 FROM jsonb_array_elements(awards) a
 WHERE a->>'award' = 'Oscar' AND a->>'result' = 'winner'
);

30

Assignment 2a – Querying Nested JSONB vs Relational Data

30B4M36DS2 - Database Systems 2 | Lecture 1 - Introduction | 22. 9. 2025 30

Task

Find all movies that won an Oscar for Best Actress in 1993.

31

Assignment 2 – Solution

31B4M36DS2 - Database Systems 2 | Lecture 1 - Introduction | 22. 9. 2025 31

Relational

SELECT title, release_year, name, year, category, result
FROM movies_rel
 JOIN movie_awards_rel USING (movie_id)
 JOIN awards_def USING (award_id)
WHERE name = 'Oscar'
 AND category = 'Best Actress'
 AND year = 1993
 AND result = 'winner'
ORDER BY year;

Hybrid

SELECT title, release_year
FROM movies_hyb
WHERE awards @> '[{"name": "Oscar",
 "category": "Best Actress",
 "year": 1993,
 "result": "winner"}]';

SELECT title
FROM movies_hyb
WHERE EXISTS (
 SELECT 1
 FROM jsonb_array_elements(movies_hyb.awards) AS award
 WHERE award->>'name' = 'Oscar'
 AND award->>'category' = 'Best Actress'
 AND award->>'year' = '1993'
 AND award->>'result' = 'winner'
);

32

Assignment 3 – Count Awards per Movie

32B4M36DS2 - Database Systems 2 | Lecture 1 - Introduction | 22. 9. 2025 32

Task

Count the number of awards each movie has received.

§ For relational:

aggregate rows in movie_awards_rel

§ For hybrid:

use jsonb_array_length(awards).

33

Assignment 3 – Solution

33B4M36DS2 - Database Systems 2 | Lecture 1 - Introduction | 22. 9. 2025 33

Relational

SELECT title, COUNT(*) AS award_count
FROM movies_rel
 JOIN movie_awards_rel mar USING(movie_id)
 JOIN awards_def USING (award_id)
WHERE result = 'winner'
GROUP BY title
ORDER BY award_count DESC
LIMIT 15;

Hybrid

SELECT title, COUNT(*) AS awards_count
FROM movies_hyb,
 jsonb_array_elements(awards) AS award
WHERE award->>'result' = 'winner'
GROUP BY title
ORDER BY awards_count DESC
LIMIT 15;

34

Assignment 4 – Find Movies Missing Award Year

34B4M36DS2 - Database Systems 2 | Lecture 1 - Introduction | 22. 9. 2025 34

Task

Count the number of awards each movie has received.

§ For relational:

aggregate rows in movie_awards_rel

§ For hybrid:

use jsonb_array_length(awards).

35

Assignment 4 – Solution

35B4M36DS2 - Database Systems 2 | Lecture 1 - Introduction | 22. 9. 2025 35

Relational

SELECT DISTINCT m.title
 FROM movies_rel m
 JOIN movie_awards_rel mar ON m.movie_id = mar.movie_id
 JOIN awards_def ad ON mar.award_id = ad.award_id
 WHERE ad.year IS NULL;

Hybrid

SELECT title
 FROM movies_hyb
 WHERE EXISTS (
 SELECT 1 FROM jsonb_array_elements(awards) a
 WHERE NOT (a ? 'year')
);

36

Assignment 5 – Add “Classic” Flag

36B4M36DS2 - Database Systems 2 | Lecture 1 - Introduction | 22. 9. 2025 36

Task

Mark movies as “classic” if release_year < 1980.

§ For relational:

alter table + bulk update

§ For hybrid:

embed flag via JSONB functions.

37

Assignment 5 – Solution

37B4M36DS2 - Database Systems 2 | Lecture 1 - Introduction | 22. 9. 2025 37

Relational

ALTER TABLE movies_rel ADD COLUMN classic BOOLEAN;
UPDATE movies_rel SET classic = (release_year < 1980);

Hybrid

-- This fails because awards is a JSON array
UPDATE movies_hyb
 SET awards = jsonb_set(awards, '{classic}', to_jsonb(release_year < 1980));
Error: path element at position 1 is not an integer: "classic"

-- Wrap array into an object to add a field
UPDATE movies_hyb
 SET awards = (
 jsonb_set(
 jsonb_build_object('awards', awards),
 '{classic}',
 to_jsonb(release_year < 1980)
) -> 'awards'
);

38

Assignment 6 – Indexing & Performance

38B4M36DS2 - Database Systems 2 | Lecture 1 - Introduction | 22. 9. 2025 38

How can we optimize queries on awards data in both models?

What do the execution plans look like?

Add indexes to speed up queries:

§ an index on the awards table’s columns VS a GIN index on the JSONB column

§ use EXPLAIN ANALYZE to compare query performance.

39

Assignment 6 – Solution

39B4M36DS2 - Database Systems 2 | Lecture 1 - Introduction | 22. 9. 2025 39

Hybrid

CREATE INDEX idx_awards_jsonb ON movies_hyb USING GIN (awards);

EXPLAIN ANALYZE
SELECT title
FROM movies_hyb
WHERE awards @> '[{"award": "Oscar", "category": "Best Actress", "year": 1993}]';

40

Assignment 6 – Solution

40B4M36DS2 - Database Systems 2 | Lecture 1 - Introduction | 22. 9. 2025 40

Relational

CREATE INDEX idx_awards
 ON awards_def(name, category, year);

CREATE INDEX idx_movie_awards_rel_award_result
 ON movie_awards_rel (award_id, result);

EXPLAIN ANALYZE
SELECT title
FROM movies_rel
 JOIN movie_awards_rel mar USING(movie_id)
 JOIN awards_def USING (award_id)
WHERE name='Oscar' AND category='Best Actress'
 AND year=1993 AND result='winner';

41

Assignment 6 – Solution

41B4M36DS2 - Database Systems 2 | Lecture 1 - Introduction | 22. 9. 2025 41

Relational

Hybrid

42

Assignment 6a – Indexing & Performance

42B4M36DS2 - Database Systems 2 | Lecture 1 - Introduction | 22. 9. 2025 42

Task

 Find distinct movie titles that won awards between 2019 and 2020.

43

Assignment 6a – Solution

43B4M36DS2 - Database Systems 2 | Lecture 1 - Introduction | 22. 9. 2025 43

Relational

CREATE INDEX idx_awards_year
 ON awards_def USING btree (year);

CREATE INDEX idx_mar_award
 ON movie_awards_rel USING btree (award_id);

CREATE INDEX idx_mar_movie
 ON movie_awards_rel USING btree (movie_id);

EXPLAIN (ANALYZE, BUFFERS)
SELECT DISTINCT title
FROM awards_def
 JOIN movie_awards_rel USING (award_id)
 JOIN movies_rel USING (movie_id)
WHERE year BETWEEN 2019 AND 2020;

Relational Model benefits from
B-tree indexes on scalar columns,
resulting in index scans and
minimal I/O.

44

Assignment 6a – Solution

44B4M36DS2 - Database Systems 2 | Lecture 1 - Introduction | 22. 9. 2025 44

45

Assignment 6a – Solution

45B4M36DS2 - Database Systems 2 | Lecture 1 - Introduction | 22. 9. 2025 45

Hybrid

GIN index (general JSONB containment)

CREATE INDEX idx_movies_hyb_awards_gin
 ON movies_hyb USING gin (awards jsonb_path_ops);

EXPLAIN (ANALYZE, BUFFERS)
SELECT title
FROM movies_hyb
WHERE EXISTS (
 SELECT 1
 FROM jsonb_array_elements(awards) AS elem
 WHERE (elem->>'year')::int BETWEEN 2019 AND 2020
);

Hybrid Model with generic GIN index speeds up containment (@>) checks, but
not arbitrary JSONB operations (like jsonb_array_elements or length filters).

46

Assignment 6a – Solution

46B4M36DS2 - Database Systems 2 | Lecture 1 - Introduction | 22. 9. 2025 46

47

Assignment 6a – Solution

47B4M36DS2 - Database Systems 2 | Lecture 1 - Introduction | 22. 9. 2025 47

Hybrid

JSONPath predicate index (range on year)

CREATE INDEX idx_hyb_awards_year_path
 ON movies_hyb USING gin (awards jsonb_path_ops)
 WHERE jsonb_path_exists(
 awards,
 '$[*] ? (@.year >= 2019 && @.year <= 2020)'::jsonpath
);

EXPLAIN (ANALYZE, BUFFERS)
SELECT title
FROM movies_hyb
WHERE EXISTS (
 SELECT 1
 FROM jsonb_array_elements(awards) AS elem
 WHERE (elem->>'year')::int BETWEEN 2019 AND 2020
);

A JSONPath index can
target specific patterns
inside the JSONB,
narrowing Seq Scans to
Bitmap Index Scans for
path queries.

48

Assignment 6a – Solution

48B4M36DS2 - Database Systems 2 | Lecture 1 - Introduction | 22. 9. 2025 48

1.Specialized JSONPath Index perfectly matches the filter year BETWEEN 2019 AND 2020, so the planner only
reads the rows that match exactly.
2.Maintenance Overhead: Each INSERT/UPDATE/DELETE in movies_hyb must also update this conditional index,
which can slow write operations on large JSONB data.
3.Flexibility vs. Performance

1. A generic GIN index is versatile but slow for range queries inside JSONB.
2. A JSONPath predicate index is extremely fast but only for the specific JSON path. Other JSON queries

(e.g., filtering by category) would require additional indexes.
4.Version Dependency JSONPath indexes are supported only in PostgreSQL 12+; older versions cannot leverage
this optimization.

49

Reflection & Best Practices

49B4M36DS2 - Database Systems 2 | Lecture 1 - Introduction | 22. 9. 2025 49

Relational

strong integrity, optimized joins, clear schema

Hybrid JSONB

flexible, easy to evolve, embed optional fields

Strategy:

 keep core entities relational; embed only truly variable metadata

50

Comparison – Modeling Pros & Cons

50B4M36DS2 - Database Systems 2 | Lecture 1 - Introduction | 22. 9. 2025 50

Aspect Relational (Separate awards table) JSONB Hybrid (awards JSONB column)
Schema Explicit schema for awards (fixed

columns, data types)
Flexible schema, can vary per movie; no
upfront design for fields

Optional Data Movies without awards simply have no
related rows (natural)

Movies without awards can have
NULL/empty JSON (natural fit)

Complex
Structure

If awards have many attributes or types,
they require multiple columns or tables.
Can become complex

Can store complex, nested award data in
one JSON field. Simpler to represent
hierarchical data

Ease of Change Changing the award structure needs
ALTER TABLE (adding columns, etc.) and
possibly backfilling data

Changing structure is easy – just start
adding new JSON keys/values; no table
migration needed

Data Integrity Enforces each award entry has the
defined columns (though some could
be NULL). Foreign key ensures awards
link to a valid movie

Lacks inherent constraints inside JSON (no
FK or per-key type enforcement by default).
Requires application or CHECK constraints
to ensure the presence of keys if needed

Normalization No duplication of award info; can
reference an award type dictionary if
needed. Structured for queries (e.g.,
easily count all “Oscar” awards)

Denormalized in each movie document;
keys like "award" are repeated in each
entry. Slightly larger storage overhead due
to repeated field names

