
Parallel programming
C++11 threads

Part 2



2

Lab topics

● Future, promise – synchronized access to values

– e.g., returning values from threads

● Executing tasks by async object.

● Atomic types in C++11



3

Promise and future

● promise is used to store a value that is 
subsequently obtained by using the associated 
future object (synchronization point) in another 
thread.

Promise (sender) Channel
set()

Future (receiver)
get()



4

Promise and future

Create promise prom

Thread 1

Create thread 2
Pass prom to thread 2

Thread 2

Get future fut associated with prom

Get value from fut

Do some stuff with value 

Thread init
Pass prom

Thread blocked

Set value on prom



5

Promise and future API

● #include <future>
– Include the header with promise+future objects

● promise<T> prom;

– Creates promise prom.

– The promise is usually passed as reference to the callee thread (or moved).

● future<T> fut = prom.get_future();

– Get future fut associated with promise prom. 

● prom.set_value(T());
– Sets value on promise prom.

● T value = fut.get();

– Gets value from future fut.

– Blocks the calling thread until the value is set in the associated promise.

– Use wait_for() and wait_until() if you want to wait for the value only for some time

https://en.cppreference.com/w/cpp/thread/promise
https://en.cppreference.com/w/cpp/thread/future

https://en.cppreference.com/w/cpp/thread/promise
https://en.cppreference.com/w/cpp/thread/future


6

Promise and future task

● Example

– Task:
● Create a worker thread that gets two integers from the main thread 

and pass their multiplication to the main thread
● Use promise and future for passing/returning values to/from the 

worker thread
● Try pass the input values to the worker thread

– Before creating the worker thread
– After creating the worker thread
– Not at all :-)



7

Promise and future example

lab_codes/src/PromiseAndFuture.cpp



8

Async

● Using thread() is considered low-level, async is little bit more programmer 
friendly

– Especially for returning values

– Async functions look like ordinary C++ functions with return value and 
input arguments

● #include <future>

– Include the header with async function

● future<T> async(launch policy, Fn &&function, Args &&… args)

– Creates function that runs asynchronously. Apart from policy, the rest of the arguments are the same as for thread()

– Returns future object containing the value returned by function

● async policy:

– launch::async – creates a new thread for function (eager evaluation)

– launch::deferred – function is started after its return value is requested 
from the future object (lazy evaluation). It is possible that new thread is not 
created, function may be run in the main thread.

● If the value of future is not requested, function won’t start

– If not specified, the policy is left to the runtime implementation



9

Async task

● Example

– Task:
● Create a worker thread that gets two integers from the main thread 

and pass their multiplication to the main thread
● Implement using async



10

Atomicity in C++11

● Atomic operations are indivisible, i.e. they 
behave like one instruction.

● Useful for a non-blocking synchronization 
between threads.

● Often lock-free for integer types.
● Atomic operation:

– load value
– modify value
– write value

+= is required to be indivisible

int x = 0;
x += 5;

atomic<int> x(0);
x.fetch_add(5);



11

Atomicity in C++11

● https://en.cppreference.com/w/cpp/atomic/atomic
● #include <atomic>

– Include the header with atomic class

● Basic operations with atomic class:
– load, store
– Operator++, ++operator, --operator, operator--
– fetch_add, fetch_sub, fetch_and, fetch_or, fetch_xor...
– bool compare_exchange_strong (T& expected, T desired)

● Sets the contained value to be desired if the contained value 
equals the expected value

● Returns true if expected is the same as the contained value
● Weak version: may fail, useful for performance when used in loop 

https://en.cppreference.com/w/cpp/atomic/atomic


12

Counting with threads

● Example – Counter
– Task:

● Create global integer variable counter
● Create 4 threads and each thread:

– 10000000-times increment the counter

● Print the resulting value of the counter after all the 
threads are done!

● Use atomic for synchronization among threads



13

Atomic example

lab_codes/src/AtomicCounter.cpp



14

Main exercise – barrier

● API
– Barrier(int numThreads);
– Barrier.wait();

● synchronization of n threads
● threads wait on barrier until the last thread calls 
wait, which releases the barrier

● The barrier must be reusable, i.e., it can be 
released multiple times



15

Main exercise – barrier

Active

Active

Active

T
1

T
2

T
n

Waiting

Waiting

Barrier release

Active

Active

Active

time

wait()

wait()

wait()

Waiting

Waiting

wait()

wait()

Barrier release

wait()

last thread to
enter barrier

last thread to
enter barrier



16

Main exercise – barrier

● Hints:
– Use two atomic variables and busy waiting
– One atomic variable counts the number of waiting 

threads
– Second atomic variable counts the barrier releases 

(phase counter)
● Last thread use this variable to signal the release of 

barrier to other threads 

● Advanced: replace busy waiting with waiting 
on a conditional variable



17

Additional exercise - sorting

● Write a parallel program for odd-even sort
– Split the input array into numThreads * 2 buckets 

– Initially, each thread sorts two buckets 

6,3,9,1,9,7,2,6,2,1,6,5,7,6,4,4,2,3,9,6,7,9,2,6

6,3,9,1 9,7,2,6 7,6,4,42,1,6,5 2,3,9,6 7,9,2,6

– Iteratively and in parallel merge adjacent buckets 

1,3,6,9 2,6,7,9 4,4,6,71,2,5,6 2,3,6,9 2,6,7,9

T
1

T
1

T
2

T
2

T
3

T
3



18

Additional exercise - sorting

1,3,6,9 2,6,7,9 4,4,6,71,2,5,6 2,3,6,9 2,6,7,9

merge

merge merge

T
1

T
2

T
3

Odd phase

1,2,3,6 6,7,9,9 5,6,6,71,2,4,4 2,2,3,6 6,7,9,9 Even phase
T

1
T

2

merge

merge

1,2,3,6 1,2,4,4 2,2,3,56,7,9,9 6,6,6,7 6,7,9,9 Odd phase

merge merge merge

T
1

T
2 T

3

● Use barrier to synchronize threads between 
phases 


	Snímek 1
	Snímek 2
	Snímek 3
	Snímek 4
	Snímek 5
	Snímek 6
	Snímek 7
	Snímek 8
	Snímek 9
	Snímek 10
	Snímek 11
	Snímek 12
	Snímek 13
	Snímek 14
	Snímek 15
	Snímek 16
	Snímek 17
	Snímek 18

