++11 threads
Part 2

FAKULTA .
ELEKTROTECHNICKA
CVUT V PRAZE

Lab topics

* Future, promise — synchronized access to values
- e.g., returning values from threads

e EXxecuting tasks by async object.
 Atomic types in C++11

Promise and future

* promise Is used to store a value that Is
subsequently obtained by using the associated
future object (synchronization point) in another
thread.

get()

Future (receiver)

Promise and future

» | Create promise prom

v

Create thread 2

Pass prom to thread 2

'

Get future fut associated with prom

'

Get value from fut

Thread blocked

v

Do some stuff with value

#

&
Pass prom
% Thread init
\J
Set value on prom 58
P &

v

Promise and future API

« #include <future>
- Include the header with promise+future objects

e promise<T> prom;
- Creates promise prom.

- The promise is usually passed as reference to the callee thread (or moved).

« future<T> fut = prom.get_future();

- Get future fut associated with promise prom.

« prom.set_value(T());
- Sets value on promise prom.

T value = fut.get();
- Gets value from future fut.
- Blocks the calling thread until the value is set in the associated promise.

- Use wait_for() and wait_until() if you want to wait for the value only for some time

https://en.cppreference.com/w/cpp/thread/promise
https://en.cppreference.com/w/cpp/thread/future

https://en.cppreference.com/w/cpp/thread/promise
https://en.cppreference.com/w/cpp/thread/future

Promise and future task

* Create a worker thread that gets two integers from the main thread
and pass their multiplication to the main thread

* Use promise and future for passing/returning values to/from the
worker thread

* Try pass the input values to the worker thread
- Before creating the worker thread
- After creating the worker thread
- Not at all :-)

Promise and future example

lab codes/src/PromiseAndFuture.cpp

* Using thread() is considered low-level, async is little bit more programmer
friendly

- Especially for returning values

— Async functions look like ordinary C++ functions with return value and
input arguments

#include <future>
- Include the header with async function
future<T> async(launch policy, Fn &&function, Args &&.. args)
- Creates function that runs asynchronously. Apart from policy, the rest of the arguments are the same as for thread()

- Returns future object containing the value returned by function
e async policy:
- launch::async — creates a new thread for function (eager evaluation)

- launch::deferred — function is started after its return value is requested
from the future object (/lazy evaluation). It is possible that new thread is not

created, function may be run in the main thread.

* |f the value of future is not requested, function won't start
— If not specified, the policy is left to the runtime implementation

- Async task

 Example

- Task:

* Create a worker thread that gets two integers from the main thread
and pass their multiplication to the main thread

* Implement using async

Atomicity in C++11

* Atomic operations are indivisible, i.e. they
pehave like one instruction.

* Useful for a non-blocking synchronization
netween threads.

* Often lock-free for integer types.
* Atomic operation:

B Ioad Value +=Is required to be indivisible
- modify value puo m—])
- write value

Atomicity in C++11

* https://en.cppreference.com/w/cpp/atomic/atomic

« #include <atomic>

- Include the header with atomic class

* Basic operations with atomic class:

- load, store
- Operator++, ++operator, --operator, operator--
- fetch_add, fetch_sub, fetch_and, fetch_or, fetch_xor...

- bool compare_exchange strong (T& expected, T desired)

e Sets the contained value to be desired if the contained value
equals the expected value

* Returns true if expected is the same as the contained value
* Weak version: may fail, useful for performance when used in loop

https://en.cppreference.com/w/cpp/atomic/atomic

Counting with threads

* Example — Counter

- Task:

« Create global integer variable counter

e Create 4 threads and each thread:
- 10000000-times increment the counter

* Print the resulting value of the counter after all the
threads are done!

* Use atomic for synchronization among threads

»2i Atomic example

lab codes/src/AtomicCounter.cpp

@<0<

|~

= Main exercise — barrier

* API

- Barrier(int numThreads);
- Barrier.wait();

* synchronization of n threads

e threads wait on barrier until the last thread calls
wait, which releases the barrier

* The barrier must be reusable, i.e., it can be
released multiple times

Main exercise — barrier

wait() wait()

.

=

Q

l_l.
-----r—fl-----

—

N

---r—f--------

() wait()

last thread to
enter barrier

T [Acive | waitng

£
QD
[

—
~—"

wait()

) last thread to
Barrier release enter barrier Barrler release

>

time

Main exercise — barrier

e Hints:
- Use two atomic variables and busy waiting
— One atomic variable counts the number of waiting
threads

— Second atomic variable counts the barrier releases

(phase counter)

e Last thread use this variable to signal the release of
barrier to other threads

* Advanced: replace busy waliting with waiting

on a conditional variable

Additional exercise - sorting

* Write a parallel program for odd-even sort
— Split the input array into numThreads * 2 buckets

6,3,9,1,9,7,2,6,2,1,6,5,7,6,4,4,2,3,9,6,7,9,2,6

6,3,9,1

9,7,2,6

2,1,6,5

7,6,4,4

- Initially, each thread sorts two buckets

1,3,6,9

2,6,7,9

T

1

T

1

1,2,5,6

4,4,6,7

T

2

T

2

2131916 7,9,2,6
2,3,6,9 2,6,7,9
T T

3

3

- lteratively and in parallel merge adjacent buckets

1,3,6,9 2,6,7,9 1,2,5,6 4,4,6,7 2,3,6,9 2,6,7,9 Odd phase

merge merge merge
1121316 6171919 T 1121414 5161617 T 2121316 6171919 Even phase
‘_1/4 ‘_2/4
merge merge
1121316 1121414 6171919 2121315 6161617 6171919 Odd phase
merge merge merge

* Use barrier to synchronize threads between

phases
-

	Snímek 1
	Snímek 2
	Snímek 3
	Snímek 4
	Snímek 5
	Snímek 6
	Snímek 7
	Snímek 8
	Snímek 9
	Snímek 10
	Snímek 11
	Snímek 12
	Snímek 13
	Snímek 14
	Snímek 15
	Snímek 16
	Snímek 17
	Snímek 18

