Dense Matrix Algorithms

Ananth Grama, Anshul Gupta,
George Karypis, and Vipin Kumar

To accompany the text “Introduction to Parallel Computing”,
Topic Overview

- Matrix-Vector Multiplication
- Matrix-Matrix Multiplication
- Solving a System of Linear Equations
Due to their regular structure, parallel computations involving matrices and vectors readily lend themselves to data-decomposition.

Typical algorithms rely on input, output, or intermediate data decomposition.

Most algorithms use one- and two-dimensional block, cyclic, and block-cyclic partitionings.
Matrix-Vector Multiplication

- We aim to multiply a dense $n \times n$ matrix A with an $n \times 1$ vector x to yield the $n \times 1$ result vector y.
- The **serial algorithm requires** n^2 multiplications and additions.

\[W = n^2. \]
Matrix-Vector Multiplication: Rowwise 1-D Partitioning

- The $n \times n$ matrix is partitioned among n processors, with each processor storing complete row of the matrix.
- The $n \times 1$ vector x is distributed such that each process owns one of its elements.
Matrix-Vector Multiplication: Rowwise 1-D Partitioning

Multiplication of an $n \times n$ matrix with an $n \times 1$ vector using rowwise block 1-D partitioning. For the one-row-per-process case, $p = n$.
Matrix-Vector Multiplication: Rowwise 1-D Partitioning

Multiplication of an $n \times n$ matrix with an $n \times 1$ vector using rowwise block 1-D partitioning. For the one-row-per-process case, $p = n$.

(c) Entire vector distributed to each process after the broadcast

(d) Final distribution of the matrix and the result vector y
Matrix-Vector Multiplication: Rowwise 1-D Partitioning

• Since each process starts with only one element of x, an all-to-all broadcast is required to distribute all the elements to all the processes.

• Process P_i now computes $y[i] = \sum_{j=0}^{n-1} (A[i, j] \times x[j])$.

• The all-to-all broadcast and the computation of $y[i]$ both take time $\Theta(n)$. Therefore, the parallel time is $\Theta(n)$.
Matrix-Vector Multiplication: Rowwise 1-D Partitioning

Consider now the case when \(p < n \) and we use block 1D partitioning.

Each process initially stores \(n/p \) complete rows of the matrix and a portion of the vector of size \(n/p \).

The all-to-all broadcast takes place among \(p \) processes and involves messages of size \(n/p \).

This is followed by \(n/p \) local dot products.

Thus, the parallel run time of this procedure is

\[
T_P = \frac{n^2}{p} + t_s \log p + t_w n.
\]

This is cost-optimal.
Matrix-Vector Multiplication: Rowwise 1-D Partitioning

Scalability Analysis:

• We know that $T_0 = pT_p - W$, therefore, we have,
 $$T_o = t_s p \log p + t_w np.$$

• For isoefficiency, we have $W = KT_0$, where $K = E/(1 - E)$ for desired efficiency E.

• From this, we have $W = O(p^2)$ (from the t_w term).

• There is also a bound on isoefficiency because of concurrency. In this case, $p < n$, therefore, $W = n^2 = \Omega(p^2)$.

• Overall isoefficiency is $W = O(p^2)$.
Matrix-Vector Multiplication: 2-D Partitioning

• The $n \times n$ matrix is partitioned among n^2 processors such that each processor owns a single element.

• The $n \times 1$ vector x is distributed only in the last column of n processors.
Matrix-Vector Multiplication: 2-D Partitioning

• We must first align the vector with the matrix appropriately.
• The first communication step for the 2-D partitioning aligns the vector x along the principal diagonal of the matrix.
• The second step copies the vector elements from each diagonal process to all the processes in the corresponding column using n simultaneous broadcasts among all processors in the column.
• Finally, the result vector is computed by performing an all-to-one reduction along the columns.
Matrix-vector multiplication with block 2-D partitioning. For the one-element-per-process case, \(p = n^2 \) if the matrix size is \(n \times n \).
Matrix-vector multiplication with block 2-D partitioning. For the one-element-per-process case, \(p = n^2 \) if the matrix size is \(n \times n \).
Matrix-Vector Multiplication: 2-D Partitioning

• Three **basic communication operations** are used in this algorithm: **one-to-one communication to align the vector** along the main diagonal, **one-to-all broadcast** of each vector element among the n processes of each column, and **all-to-one reduction** in each row.

• Each of these operations takes $\Theta(\log n)$ time and the parallel time is $\Theta(\log n)$.

• The cost (process-time product) is $\Theta(n^2 \log n)$; hence, the algorithm is not cost-optimal.
Matrix-Vector Multiplication: 2-D Partitioning

- When using **fewer than** \(n^2 \) **processors**, each process owns an \((n/\sqrt{p}) \times (n/\sqrt{p}) \) block of the matrix.
- The vector is distributed in portions of \(n/\sqrt{p} \) elements in the last process-column only.
- In this case, the **message sizes for the alignment**, broadcast, and reduction are all \(n/\sqrt{p} \).
- The computation is a product of an \((n/\sqrt{p}) \times (n/\sqrt{p}) \) submatrix with a vector of length \(n/\sqrt{p} \).
Matrix-Vector Multiplication: 2-D Partitioning

- The first **alignment step** takes time
 \[t_s + t_w n / \sqrt{p} \]
- The **broadcast and reductions** take time
 \[(t_s + t_w n / \sqrt{p}) \log(\sqrt{p}) \]
- Local **matrix-vector products** take time
 \[t_c n^2 / p \]
- **Total** time is
 \[T_P \approx \frac{n^2}{p} + t_s \log p + t_w \frac{n}{\sqrt{p}} \log p \]
Matrix-Vector Multiplication: 2-D Partitioning

• Scalability Analysis:

\[T_o = pT_p - W = t_s p \log p + t_w n \sqrt{p} \log p \]

• Equating \(T_0 \) with \(W \), term by term, for isoefficiency, we have, \(W = K^2 t_w p \log^2 p \) as the dominant term.

• The isoefficiency due to concurrency is \(O(p) \).

• The overall isoefficiency is \(O(p \log^2 p) \) (due to the network bandwidth).

• For cost optimality, we have, \(W = n^2 = p \log^2 p \). For this, we have, \(p = O \left(\frac{n^2}{\log^2 n} \right) \)
1-D vs. 2-D Partitioning

<table>
<thead>
<tr>
<th></th>
<th>1-D</th>
<th>2-D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max num. of processors</td>
<td>$p \leq n$</td>
<td>$p \leq n^2$</td>
</tr>
<tr>
<td>T_p</td>
<td>$T_P = \frac{n^2}{p} + t_s \log p + t_w n.$</td>
<td>$T_P \approx \frac{n^2}{p} + t_s \log p + t_w \frac{n}{\sqrt{p}} \log p$</td>
</tr>
<tr>
<td>Isoefficiency</td>
<td>$O(p^2)$</td>
<td>$O(p \log^2 p)$</td>
</tr>
<tr>
<td>Max num. of processors (cost-optimally)</td>
<td>$p = O(n)$</td>
<td>$p = O\left(\frac{n^2}{\log^2 n}\right)$</td>
</tr>
</tbody>
</table>
Matrix-Matrix Multiplication

- Consider the problem of multiplying two $n \times n$ dense, square matrices A and B to yield the product matrix $C = A \times B$.
- The serial complexity is $O(n^3)$.
- We do not consider better serial algorithms (Strassen's method), although, these can be used as serial kernels in the parallel algorithms.
- A useful concept in this case is called block operations. In this view, an $n \times n$ matrix A can be regarded as a $q \times q$ array of blocks $A_{i,j}$ $(0 \leq i, j < q)$ such that each block is an $(n/q) \times (n/q)$ submatrix.
- In this view, we perform q^3 matrix multiplications, each involving $(n/q) \times (n/q)$ matrices.
Matrix-Matrix Multiplication

- Consider two $n \times n$ matrices A and B partitioned into p blocks $A_{i,j}$ and $B_{i,j}$ $(0 \leq i, j < \sqrt{p})$ of size $(n/\sqrt{p}) \times (n/\sqrt{p})$ each.
- Process $P_{i,j}$ initially stores $A_{i,j}$ and $B_{i,j}$ and computes block $C_{i,j}$ of the result matrix.
- Computing submatrix $C_{i,j}$ requires all submatrices $A_{i,k}$ and $B_{k,j}$ for $0 \leq k < \sqrt{p}$.
- **All-to-all broadcast** blocks of A along rows and B along columns.
- Perform local submatrix multiplication.
Matrix-Matrix Multiplication

\[(n / \sqrt{p}) \times (n / \sqrt{p})\]

\[\sqrt{p}\]

\[A_{i,j}\]

\[x\]

\[B_{i,j}\]

\[=\]

\[C_{i,j}\]
Matrix-Matrix Multiplication

- The two broadcasts take time
 \[2(t_s \log(\sqrt{p}) + t_w (n^2 / p)(\sqrt{p} - 1))\]

- The computation requires \(\sqrt{p}\) multiplications of \((n / \sqrt{p}) \times (n / \sqrt{p})\) sized submatrices.

- The parallel run time is approximately
 \[T_P = \frac{n^3}{p} + t_s \log p + 2t_w \frac{n^2}{\sqrt{p}}.\]

- The algorithm is cost optimal and the isoefficiency is \(O(p^{1.5})\) due to bandwidth term \(t_w\) and concurrency.

- Major drawback of the algorithm is that it is not memory optimal.
Matrix-Matrix Multiplication: Cannon's Algorithm

• In this algorithm, we schedule the computations of the \sqrt{p} processes of the ith row such that, at any given time, each process is using a different block $A_{i,k}$.

• These blocks can be systematically rotated among the processes after every submatrix multiplication so that every process gets a fresh $A_{i,k}$ after each rotation.
Matrix-Matrix Multiplication: Cannon's Algorithm

<table>
<thead>
<tr>
<th>A_{0,0}</th>
<th>A_{0,1}</th>
<th>A_{0,2}</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_{1,0}</td>
<td>A_{1,1}</td>
<td>A_{1,2}</td>
</tr>
<tr>
<td>A_{2,0}</td>
<td>A_{2,1}</td>
<td>A_{2,2}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B_{0,0}</th>
<th>B_{0,1}</th>
<th>B_{0,2}</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_{1,0}</td>
<td>B_{1,1}</td>
<td>B_{1,2}</td>
</tr>
<tr>
<td>B_{2,0}</td>
<td>B_{2,1}</td>
<td>B_{2,2}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A_{0,0}</th>
<th>A_{0,1}</th>
<th>A_{0,2}</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_{1,0}</td>
<td>A_{1,1}</td>
<td>A_{1,2}</td>
</tr>
<tr>
<td>A_{2,0}</td>
<td>A_{2,1}</td>
<td>A_{2,2}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B_{0,0}</th>
<th>B_{0,1}</th>
<th>B_{0,2}</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_{1,0}</td>
<td>B_{1,1}</td>
<td>B_{1,2}</td>
</tr>
<tr>
<td>B_{2,0}</td>
<td>B_{2,1}</td>
<td>B_{2,2}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C_{0,0}</th>
<th>C_{0,1}</th>
<th>C_{0,2}</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{1,0}</td>
<td>C_{1,1}</td>
<td>C_{1,2}</td>
</tr>
<tr>
<td>C_{2,0}</td>
<td>C_{2,1}</td>
<td>C_{2,2}</td>
</tr>
</tbody>
</table>

Communication steps in Cannon's algorithm on 9 processes.
Matrix-Matrix Multiplication: Cannon's Algorithm

- Align the blocks of A and B in such a way that each process multiplies its local submatrices. This is done by shifting all submatrices $A_{i,j}$ to the left (with wraparound) by i steps and all submatrices $B_{i,j}$ up (with wraparound) by j steps.

- Perform local block multiplication.

- Each block of A moves one step left and each block of B moves one step up (again with wraparound).

- Perform next block multiplication, add to partial result, repeat until all \sqrt{p} blocks have been multiplied.
Matrix-Matrix Multiplication: Cannon's Algorithm

• In the alignment step, since the maximum distance over which a block shifts is $\sqrt{p} - 1$, the two shift operations require a total of $2(t_s + t_wn^2/p)$ time.

• Each of the \sqrt{p} single-step shifts in the compute-and-shift phase of the algorithm takes $t_s + t_wn^2/p$ time.

• The computation time for multiplying \sqrt{p} matrices of size $(n/\sqrt{p}) \times (n/\sqrt{p})$ is n^3/p.

• The parallel time is approximately:

$$T_P = \frac{n^3}{p} + 2\sqrt{p}t_s + 2t_w \frac{n^2}{\sqrt{p}}.$$

• The cost-efficiency and isoefficiency of the algorithm are identical to the first algorithm, except, this is memory optimal.
Matrix-Matrix Multiplication: DNS Algorithm

• Uses a 3-D partitioning.
• Visualize the matrix multiplication algorithm as a cube. Matrices \(A \) and \(B \) come in two orthogonal faces and result \(C \) comes out the other orthogonal face.
• Each internal node in the cube represents a single add-multiply operation (and thus the complexity).
• DNS algorithm partitions this cube using a 3-D block scheme.
Matrix-Matrix Multiplication: DNS Algorithm

The communication steps in the DNS algorithm while multiplying 4 x 4 matrices A and B on 64 processes.
Matrix-Matrix Multiplication: DNS Algorithm

The communication steps in the DNS algorithm while multiplying 4 x 4 matrices A and B on 64 processes.
Matrix-Matrix Multiplication: DNS Algorithm

- Assume an $n \times n \times n$ mesh of processors.
- Move the columns of A and rows of B and perform broadcast.
- Each processor computes a single add-multiply.
- This is followed by an accumulation along the C dimension.
- Since each add-multiply takes constant time and accumulation and broadcast takes $\log n$ time, the total runtime is $\log n$.
- This is not cost optimal. It can be made cost optimal by using $n / \log n$ processors along the direction of accumulation.
Matrix-Matrix Multiplication: DNS Algorithm

Using **fewer than** n^3 processors.

- Assume that the number of processes p is equal to q^3 for some $q < n$.
- The two matrices are partitioned into **blocks of size** $(n/q) \times (n/q)$.
- Each matrix can thus be regarded as a $q \times q$ **two-dimensional square array of blocks**.
- The algorithm follows from the previous one, except, in this case, we **operate on blocks rather than on individual elements**.
Matrix-Matrix Multiplication: DNS Algorithm

Using fewer than n^3 processors.

- The first one-to-one **communication** step is performed for both A and B, and takes $t_s + t_w(n/q)^2$ time for each matrix.
- The two **one-to-all broadcasts** take $2(t_s \log q + t_w(n/q)^2 \log q)$ time for each matrix.
- The **reduction** takes time $t_s \log q + t_w(n/q)^2 \log q$.
- Multiplication of $(n/q) \times (n/q)$ submatrices takes $(n/q)^3$ time.
- The parallel time is approximated by:
 \[T_P = \frac{n^3}{p} + t_s \log p + t_w \frac{n^2}{p^{2/3}} \log p. \]
- The **isoefficiency function** is $\Theta(p(\log p)^3)$.
Cannon's vs. DNS Algorithm

<table>
<thead>
<tr>
<th></th>
<th>Cannon’s</th>
<th>DNS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max num. of processors</td>
<td>$p \leq n^2$</td>
<td>$p \leq n^3$</td>
</tr>
<tr>
<td>T_p</td>
<td>$T_P = \frac{n^3}{p} + 2\sqrt{pt_s} + 2t_w \frac{n^2}{\sqrt{p}}$</td>
<td>$T_P = \frac{n^3}{p} + t_s \log p + t_w \frac{n^2}{p^{2/3} \log p}$</td>
</tr>
<tr>
<td>W</td>
<td>$O(p^{1.5})$</td>
<td>$\Theta(p(\log p)^3)$</td>
</tr>
<tr>
<td>Max num. of processors (cost-optimally)</td>
<td>$p = O(n^2)$</td>
<td>$p = O(n^3/\log^3 p)$</td>
</tr>
</tbody>
</table>
Solving a System of Linear Equations

Consider the problem of solving linear equations of the kind:

\[a_{0,0}x_0 + a_{0,1}x_1 + \cdots + a_{0,n-1}x_{n-1} = b_0, \]
\[a_{1,0}x_0 + a_{1,1}x_1 + \cdots + a_{1,n-1}x_{n-1} = b_1, \]
\[\vdots \quad \vdots \quad \vdots \quad \vdots \]
\[a_{n-1,0}x_0 + a_{n-1,1}x_1 + \cdots + a_{n-1,n-1}x_{n-1} = b_{n-1}. \]

This is written as \(Ax = b \), where \(A \) is an \(n \times n \) matrix with \(A[i, j] = a_{i,j} \), \(b \) is an \(n \times 1 \) vector \([b_0, b_1, \ldots, b_{n-1}]^T\), and \(x \) is the solution.
Solving a System of Linear Equations

Two steps in solution are: reduction to triangular form, and back-substitution. The triangular form is as:

\[
\begin{align*}
 x_0 + u_{0,1}x_1 + u_{0,2}x_2 + & \cdots + u_{0,n-1}x_{n-1} &= y_0, \\
 x_1 + u_{1,2}x_2 + & \cdots + u_{1,n-1}x_{n-1} &= y_1, \\
 & \vdots & \vdots \\
 x_{n-1} &= y_{n-1}.
\end{align*}
\]

We write this as: \(Ux = y \).

A commonly used method for transforming a given matrix into an upper-triangular matrix is Gaussian Elimination.
Gaussian Elimination

1. procedure GAUSSIAN_ELIMINATION (A, b, y)
2. begin
3. for k := 0 to n - 1 do /* Outer loop */
4. begin
5. for j := k + 1 to n - 1 do
7. y[k] := b[k] / A[k, k];
8. A[k, k] := 1;
9. for i := k + 1 to n - 1 do
10. begin
11. for j := k + 1 to n - 1 do
13. b[i] := b[i] - A[i, k] × y[k];
15. endfor; /* Line 9 */
16. endfor; /* Line 3 */
17. end GAUSSIAN_ELIMINATION

Serial Gaussian Elimination
Gaussian Elimination

The computation has **three nested loops** - in the kth iteration of the outer loop, the algorithm performs $(n-k)^2$ computations. Summing from $k = 1..n$, we have roughly $(n^3/3)$ multiplications-subtractions.

A typical computation in Gaussian elimination.
Parallel Gaussian Elimination

- Assume $p = n$ with each row assigned to a processor.
- The first step of the algorithm normalizes the row. This is a serial operation and takes time $(n-k)$ in the k^{th} iteration.
- In the second step, the normalized row is broadcast to all the processors. This takes time $(t_s + t_w(n - k - 1)) \log n$.
- Each processor can independently eliminate this row from its own. This requires $(n-k-1)$ multiplications and subtractions.
- The total parallel time can be computed by summing from $k = 1$... $n-1$ as
 $$ T_P = \frac{3}{2} n(n - 1) + t_s n \log n + \frac{1}{2} t_w n(n - 1) \log n. $$
- The formulation is not cost optimal because of the t_w term.
Parallel Gaussian Elimination

1) Gaussian elimination steps during the iteration corresponding to \(k = 3 \):

<table>
<thead>
<tr>
<th>(P_0)</th>
<th>1</th>
<th>(0,1)</th>
<th>(0,2)</th>
<th>(0,3)</th>
<th>(0,4)</th>
<th>(0,5)</th>
<th>(0,6)</th>
<th>(0,7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_1)</td>
<td>0</td>
<td>1</td>
<td>(1,2)</td>
<td>(1,3)</td>
<td>(1,4)</td>
<td>(1,5)</td>
<td>(1,6)</td>
<td>(1,7)</td>
</tr>
<tr>
<td>(P_2)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>(2,3)</td>
<td>(2,4)</td>
<td>(2,5)</td>
<td>(2,6)</td>
<td>(2,7)</td>
</tr>
<tr>
<td>(P_3)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(3,3)</td>
<td>(3,4)</td>
<td>(3,5)</td>
<td>(3,6)</td>
<td>(3,7)</td>
</tr>
<tr>
<td>(P_4)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(4,3)</td>
<td>(4,4)</td>
<td>(4,5)</td>
<td>(4,6)</td>
<td>(4,7)</td>
</tr>
<tr>
<td>(P_5)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(5,3)</td>
<td>(5,4)</td>
<td>(5,5)</td>
<td>(5,6)</td>
<td>(5,7)</td>
</tr>
<tr>
<td>(P_6)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(6,3)</td>
<td>(6,4)</td>
<td>(6,5)</td>
<td>(6,6)</td>
<td>(6,7)</td>
</tr>
<tr>
<td>(P_7)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(7,3)</td>
<td>(7,4)</td>
<td>(7,5)</td>
<td>(7,6)</td>
<td>(7,7)</td>
</tr>
</tbody>
</table>

(a) Computation:

(i) \(A[k,j] := A[k,j]/A[k,k] \) for \(k < j < n \)

(ii) \(A[k,k] := 1 \)

2) One-to-all broadcast of row \(A[k,*] \):

<table>
<thead>
<tr>
<th>(P_0)</th>
<th>1</th>
<th>(0,1)</th>
<th>(0,2)</th>
<th>(0,3)</th>
<th>(0,4)</th>
<th>(0,5)</th>
<th>(0,6)</th>
<th>(0,7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_1)</td>
<td>0</td>
<td>1</td>
<td>(1,2)</td>
<td>(1,3)</td>
<td>(1,4)</td>
<td>(1,5)</td>
<td>(1,6)</td>
<td>(1,7)</td>
</tr>
<tr>
<td>(P_2)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>(2,3)</td>
<td>(2,4)</td>
<td>(2,5)</td>
<td>(2,6)</td>
<td>(2,7)</td>
</tr>
<tr>
<td>(P_3)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>(3,3)</td>
<td>(3,4)</td>
<td>(3,5)</td>
<td>(3,6)</td>
</tr>
<tr>
<td>(P_4)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(4,3)</td>
<td>(4,4)</td>
<td>(4,5)</td>
<td>(4,6)</td>
<td>(4,7)</td>
</tr>
<tr>
<td>(P_5)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(5,3)</td>
<td>(5,4)</td>
<td>(5,5)</td>
<td>(5,6)</td>
<td>(5,7)</td>
</tr>
<tr>
<td>(P_6)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(6,3)</td>
<td>(6,4)</td>
<td>(6,5)</td>
<td>(6,6)</td>
<td>(6,7)</td>
</tr>
<tr>
<td>(P_7)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(7,3)</td>
<td>(7,4)</td>
<td>(7,5)</td>
<td>(7,6)</td>
<td>(7,7)</td>
</tr>
</tbody>
</table>

(b) Communication:

3) Gaussian elimination steps during the iteration corresponding to \(k = 3 \):

<table>
<thead>
<tr>
<th>(P_0)</th>
<th>1</th>
<th>(0,1)</th>
<th>(0,2)</th>
<th>(0,3)</th>
<th>(0,4)</th>
<th>(0,5)</th>
<th>(0,6)</th>
<th>(0,7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_1)</td>
<td>0</td>
<td>1</td>
<td>(1,2)</td>
<td>(1,3)</td>
<td>(1,4)</td>
<td>(1,5)</td>
<td>(1,6)</td>
<td>(1,7)</td>
</tr>
<tr>
<td>(P_2)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>(2,3)</td>
<td>(2,4)</td>
<td>(2,5)</td>
<td>(2,6)</td>
<td>(2,7)</td>
</tr>
<tr>
<td>(P_3)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>(3,3)</td>
<td>(3,4)</td>
<td>(3,5)</td>
<td>(3,6)</td>
</tr>
<tr>
<td>(P_4)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(4,3)</td>
<td>(4,4)</td>
<td>(4,5)</td>
<td>(4,6)</td>
<td>(4,7)</td>
</tr>
<tr>
<td>(P_5)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(5,3)</td>
<td>(5,4)</td>
<td>(5,5)</td>
<td>(5,6)</td>
<td>(5,7)</td>
</tr>
<tr>
<td>(P_6)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(6,3)</td>
<td>(6,4)</td>
<td>(6,5)</td>
<td>(6,6)</td>
<td>(6,7)</td>
</tr>
<tr>
<td>(P_7)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(7,3)</td>
<td>(7,4)</td>
<td>(7,5)</td>
<td>(7,6)</td>
<td>(7,7)</td>
</tr>
</tbody>
</table>

(c) Computation:

(i) \(A[i,j] := A[i,j] - A[i,k] \times A[k,j] \) for \(k < i < n \) and \(k < j < n \)

(ii) \(A[i,k] := 0 \) for \(k < i < n \)
Parallel Gaussian Elimination: Pipelined Execution

- In the previous formulation, the \((k+1)^{\text{st}}\) iteration starts only after all the computation and communication for the \(k^{\text{th}}\) iteration is complete.
- In the pipelined version, there are three steps - normalization of a row, communication, and elimination. These steps are performed in an asynchronous fashion.
- A processor \(P_k\) waits to receive and eliminate all rows prior to \(k\).
- Once it has done this, it forwards its own row to processor \(P_{k+1}\).
Parallel Gaussian Elimination: Pipelined Execution

Pipelined Gaussian elimination on a 5 x 5 matrix partitioned with one row per process.
Parallel Gaussian Elimination: Pipelined Execution

• The **total number of steps** in the entire pipelined procedure is $\Theta(n)$.

• In any step, either $O(n)$ elements are communicated between directly-connected processes, or a division step is performed on $O(n)$ elements of a row, or an elimination step is performed on $O(n)$ elements of a row.

• The parallel time is therefore $O(n^2)$.

• This is **cost optimal**.
Parallel Gaussian Elimination:
Block 1D with $p < n$

- The above algorithm can be easily adapted to the case when $p < n$.
- In the kth iteration, a processor with all rows belonging to the active part of the matrix performs $(n - k - 1) / np$ multiplications and subtractions.
- In the pipelined version, for $n > p$, computation dominates communication.
- The parallel time is given by: $2(n/p)\sum_{k=0}^{n-1}(n - k - 1)$ or approximately, n^3/p.
- While the algorithm is cost optimal, the cost of the parallel algorithm is higher than the sequential run time by a factor of $3/2$.
Parallel Gaussian Elimination: Block 1D with $p < n$

One- and two-dimensional block-cyclic distributions among four processes
Parallel Gaussian Elimination: Block 1D with \(p < n \)

- The load imbalance problem can be alleviated by using a **cyclic mapping**.
- In this case, other than processing of the last \(p \) rows, there is no load imbalance.
- This corresponds to a cumulative load imbalance overhead of \(O(n^2p) \) (instead of \(O(n^3) \) in the previous case).