Dense Matrix Algorithms

Ananth Grama, Anshul Gupta,
George Karypis, and Vipin Kumar

To accompany the text “Introduction to Parallel Computing”,
Topic Overview

• Matrix-Vector Multiplication
• Matrix-Matrix Multiplication
• Solving a System of Linear Equations
Matix Algorithms: Introduction

- Due to their regular structure, parallel computations involving matrices and vectors readily lend themselves to data-decomposition.
- Typical algorithms rely on input, output, or intermediate data decomposition.
- Most algorithms use one- and two-dimensional block, cyclic, and block-cyclic partitionings.
Matrix-Vector Multiplication

- We aim to multiply a dense $n \times n$ matrix A with an $n \times 1$ vector x to yield the $n \times 1$ result vector y.
- The **serial algorithm** requires n^2 multiplications and additions.

\[W = n^2. \]
Matrix-Vector Multiplication: Rowwise 1-D Partitioning

- The $n \times n$ matrix is **partitioned among n processors**, with each processor **storing complete row of the matrix**.
- The $n \times 1$ vector x is **distributed such that each process owns one of its elements**.
Matrix-Vector Multiplication: Rowwise 1-D Partitioning

(a) Initial partitioning of the matrix and the starting vector x

(b) Distribution of the full vector among all the processes by all-to-all broadcast

Multiplication of an $n \times n$ matrix with an $n \times 1$ vector using rowwise block 1-D partitioning. For the one-row-per-process case, $p = n$.
Matrix-Vector Multiplication: Rowwise 1-D Partitioning

Multiplication of an $n \times n$ matrix with an $n \times 1$ vector using rowwise block 1-D partitioning. For the one-row-per-process case, $p = n$.

(c) Entire vector distributed to each process after the broadcast

(d) Final distribution of the matrix and the result vector y
Matrix-Vector Multiplication: Rowwise 1-D Partitioning

- Since each process starts with only one element of x, an all-to-all broadcast is required to distribute all the elements to all the processes.
- Process P_i now computes $y[i] = \sum_{j=0}^{n-1}(A[i, j] \times x[j])$.
- The all-to-all broadcast and the computation of $y[i]$ both take time $\Theta(n)$. Therefore, the parallel time is $\Theta(n)$.
Matrix-Vector Multiplication: Rowwise 1-D Partitioning

- Consider now the case when $p < n$ and we use block 1D partitioning.
- Each process initially stores n/p complete rows of the matrix and a portion of the vector of size n/p.
- The all-to-all broadcast takes place among p processes and involves messages of size n/p.
- This is followed by n/p local dot products.
- Thus, the parallel run time of this procedure is
 \[
 T_P = \frac{n^2}{p} + t_s \log p + t_w n.
 \]
 This is cost-optimal.
Matrix-Vector Multiplication: Rowwise 1-D Partitioning

Scalability Analysis:

- We know that $T_0 = pT_P - W$, therefore, we have,
 $$T_o = t_s p \log p + t_w np.$$
- For isoefficiency, we have $W = KT_0$, where $K = E/(1 - E)$ for desired efficiency E.
- From this, we have $W = O(p^2)$ (from the t_w term).
- There is also a **bound on isoefficiency because of concurrency**. In this case, $p < n$, therefore, $W = n^2 = \Omega(p^2)$.
- Overall isoefficiency is $W = O(p^2)$.

Matrix-Vector Multiplication: 2-D Partitioning

- The $n \times n$ matrix is partitioned among n^2 processors such that each processor owns a single element.
- The $n \times 1$ vector x is distributed only in the last column of n processors.
Matrix-Vector Multiplication: 2-D Partitioning

• We must first align the vector with the matrix appropriately.

• The first communication step for the 2-D partitioning aligns the vector x along the principal diagonal of the matrix.

• The second step copies the vector elements from each diagonal process to all the processes in the corresponding column using n simultaneous broadcasts among all processors in the column.

• Finally, the result vector is computed by performing an all-to-one reduction along the columns.
Matrix-vector multiplication with block 2-D partitioning. For the one-element-per-process case, $p = n^2$ if the matrix size is $n \times n$.

Matrix-Vector Multiplication: 2-D Partitioning
Matrix-vector multiplication with block 2-D partitioning. For the one-element-per-process case, $p = n^2$ if the matrix size is $n \times n$.

Matrix-Vector Multiplication: 2-D Partitioning

(c) All-to-one reduction of partial results

(d) Final distribution of the result vector
Matrix-Vector Multiplication: 2-D Partitioning

• Three **basic communication operations** are used in this algorithm: **one-to-one communication** to align the **vector** along the main diagonal, **one-to-all broadcast** of each vector element among the n processes of each column, and **all-to-one reduction** in each row.

• Each of these operations takes $\Theta(\log n)$ time and the parallel time is $\Theta(\log n)$.

• The cost (process-time product) is $\Theta(n^2 \log n)$; hence, the **algorithm is not cost-optimal**.
Matrix-Vector Multiplication: 2-D Partitioning

• When using **fewer than** n^2 **processors**, each process owns an $(n/\sqrt{p}) \times (n/\sqrt{p})$ **block** of the matrix.

• The vector is distributed in portions of n/\sqrt{p} elements in the last process-column only.

• In this case, the **message sizes for the alignment**, broadcast, and reduction are all n/\sqrt{p}.

• The computation is a product of an $(n/\sqrt{p}) \times (n/\sqrt{p})$ submatrix with a vector of length n/\sqrt{p}.
Matrix-Vector Multiplication: 2-D Partitioning

- The first **alignment step** takes time
 \[t_s + t_w n / \sqrt{p} \]
- The **broadcast and reductions** take time
 \[(t_s + t_w n / \sqrt{p}) \log(\sqrt{p}) \]
- Local **matrix-vector products** take time
 \[t_c n^2 / p \]
- **Total** time is
 \[T_P \approx \frac{n^2}{p} + t_s \log p + t_w \frac{n}{\sqrt{p}} \log p \]
Matrix-Vector Multiplication: 2-D Partitioning

• Scalability Analysis:

\[T_0 = pT_p - W = t_s p \log p + t_w n \sqrt{p} \log p \]

• Equating \(T_0 \) with \(W \), term by term, for isoefficiency, we have, \(W = K^2 t_w^2 p \log^2 p \) as the dominant term.

• The isoefficiency due to concurrency is \(O(p) \).

• The overall isoefficiency is \(O(p \log^2 p) \) (due to the network bandwidth).

• For cost optimality, we have, \(W = n^2 = p \log^2 p \). For this, we have, \(p = O \left(\frac{n^2}{\log^2 n} \right) \)
1-D vs. 2-D Partitioning

<table>
<thead>
<tr>
<th></th>
<th>1-D</th>
<th>2-D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max num. of processors</td>
<td>$p \leq n$</td>
<td>$p \leq n^2$</td>
</tr>
<tr>
<td>T_p</td>
<td>$T_P = \frac{n^2}{p} + t_s \log p + t_w n.$</td>
<td>$T_P \approx \frac{n^2}{p} + t_s \log p + t_w \frac{n}{\sqrt{p}} \log p$</td>
</tr>
<tr>
<td>Isoefficiency</td>
<td>$O(p^2)$</td>
<td>$O(p \log^2 p)$</td>
</tr>
</tbody>
</table>
| Max num. of processors | $p = O(n)$ | $p = O\left(\frac{n^2}{\log^2 n}\right)$ | (cost-optimally)
Matrix-Matrix Multiplication

• Consider the problem of multiplying two $n \times n$ dense, square matrices A and B to yield the product matrix $C = A \times B$.
• The serial complexity is $O(n^3)$.
• We do not consider better serial algorithms (Strassen's method), although, these can be used as serial kernels in the parallel algorithms.
• A useful concept in this case is called block operations. In this view, an $n \times n$ matrix A can be regarded as a $q \times q$ array of blocks $A_{i,j}$ ($0 \leq i, j < q$) such that each block is an $(n/q) \times (n/q)$ submatrix.
• In this view, we perform q^3 matrix multiplications, each involving $(n/q) \times (n/q)$ matrices.
Matrix-Matrix Multiplication

• Consider two $n \times n$ matrices A and B partitioned into p blocks $A_{i,j}$ and $B_{i,j}$ ($0 \leq i, j < \sqrt{p}$) of size $(n/\sqrt{p}) \times (n/\sqrt{p})$ each.

• Process $P_{i,j}$ initially stores $A_{i,j}$ and $B_{i,j}$ and computes block $C_{i,j}$ of the result matrix.

• Computing submatrix $C_{i,j}$ requires all submatrices $A_{i,k}$ and $B_{k,j}$ for $0 \leq k < \sqrt{p}$.

• All-to-all broadcast blocks of A along rows and B along columns.

• Perform local submatrix multiplication.
Matrix-Matrix Multiplication

\((n/\sqrt{p}) \times (n/\sqrt{p})\)

\[
\begin{array}{c}
\sqrt{p} \\
A_{i,j} \\
\sqrt{p}
\end{array} \times \begin{array}{c}
\sqrt{p} \\
B_{i,j} \\
\sqrt{p}
\end{array} = \begin{array}{c}
\sqrt{p} \\
C_{i,j} \\
\sqrt{p}
\end{array}
\]
Matrix-Matrix Multiplication

- The two broadcasts take time
 \[2(t_s \log(\sqrt{p}) + t_w (n^2/p)(\sqrt{p} - 1)) \]
- The computation requires \(\sqrt{p}\) multiplications of \((n/\sqrt{p}) \times (n/\sqrt{p})\) sized submatrices.
- The parallel run time is approximately
 \[T_P = \frac{n^3}{p} + t_s \log p + 2t_w \frac{n^2}{\sqrt{p}}. \]
- The algorithm is cost optimal and the isoefficiency is \(O(p^{1.5})\) due to bandwidth term \(t_w\) and concurrency.
- Major drawback of the algorithm is that it is not memory optimal.
Matrix-Matrix Multiplication: Cannon's Algorithm

• In this algorithm, we **schedule the computations** of the \(\sqrt{p} \) processes of the \(i \)th row such that, at any given time, each process is using a different block \(A_{i,k} \).

• These **blocks can be systematically rotated** among the processes after every submatrix multiplication so that **every process gets a fresh** \(A_{i,k} \) after each rotation.
Matrix-Matrix Multiplication: Cannon's Algorithm

Communication steps in Cannon's algorithm on 9 processes.
Matrix-Matrix Multiplication: Cannon's Algorithm

- Align the blocks of A and B in such a way that each process multiplies its local submatrices. This is done by shifting all submatrices $A_{i,j}$ to the left (with wraparound) by i steps and all submatrices $B_{i,j}$ up (with wraparound) by j steps.
- Perform local block multiplication.
- Each block of A moves one step left and each block of B moves one step up (again with wraparound).
- Perform next block multiplication, add to partial result, repeat until all \sqrt{p} blocks have been multiplied.
Matrix-Matrix Multiplication: Cannon's Algorithm

• In the alignment step, since the maximum distance over which a block shifts is \(\sqrt{p} - 1\), the **two shift operations** require a total of \(2(t_s + t_w n^2 / p)\) time.

• Each of the \(\sqrt{p}\) single-step shifts in the **compute-and-shift phase** of the algorithm takes \(t_s + t_w n^2 / p\) time.

• The computation time for multiplying \(\sqrt{p}\) matrices of size \((n/\sqrt{p}) \times (n/\sqrt{p})\) is \(n^3 / p\).

• The parallel time is approximately:

\[
T_P = \frac{n^3}{p} + 2\sqrt{p} t_s + 2t_w \frac{n^2}{\sqrt{p}}.
\]

• The **cost-efficiency and isoefficiency** of the algorithm are identical to the first algorithm, except, this is memory optimal.
Matrix-Matrix Multiplication: DNS Algorithm

- Uses a 3-D partitioning.
- Visualize the matrix multiplication algorithm as a cube. Matrices A and B come in two orthogonal faces and result C comes out the other orthogonal face.
- Each internal node in the cube represents a single add-multiply operation (and thus the complexity).
- DNS algorithm partitions this cube using a 3-D block scheme.
Matrix-Matrix Multiplication: DNS Algorithm

The communication steps in the DNS algorithm while multiplying 4 x 4 matrices A and B on 64 processes.
Matrix-Matrix Multiplication: DNS Algorithm

The communication steps in the DNS algorithm while multiplying 4 x 4 matrices A and B on 64 processes.
Matrix-Matrix Multiplication: DNS Algorithm

- Assume an $n \times n \times n$ mesh of processors.
- Move the columns of A and rows of B and perform broadcast.
- Each processor computes a single add-multiply.
- This is followed by an accumulation along the C dimension.
- Since each add-multiply takes constant time and accumulation and broadcast takes $\log n$ time, the total runtime is $\log n$.
- This is not cost optimal. It can be made cost optimal by using $n / \log n$ processors along the direction of accumulation.
Matrix-Matrix Multiplication: DNS Algorithm

Using fewer than n^3 processors.

- Assume that the number of processes p is equal to q^3 for some $q < n$.
- The two matrices are partitioned into blocks of size $(n/q) \times (n/q)$.
- Each matrix can thus be regarded as a $q \times q$ two-dimensional square array of blocks.
- The algorithm follows from the previous one, except, in this case, we operate on blocks rather than on individual elements.
Matrix-Matrix Multiplication: DNS Algorithm

Using fewer than n^3 processors.

- The first one-to-one communication step is performed for both A and B, and takes $t_s + t_w(n/q)^2$ time for each matrix.
- The two one-to-all broadcasts take $2(t_s \log q + t_w(n/q)^2 \log q)$ time for each matrix.
- The reduction takes time $t_s \log q + t_w(n/q)^2 \log q$.
- Multiplication of $(n/q) \times (n/q)$ submatrices takes $(n/q)^3$ time.
- The parallel time is approximated by:
 \[T_P = \frac{n^3}{p} + t_s \log p + t_w \frac{n^2}{p^{2/3}} \log p. \]
- The isoefficiency function is $\Theta(p(\log p)^3)$.
Cannon's vs. DNS Algorithm

<table>
<thead>
<tr>
<th></th>
<th>Cannon's</th>
<th>DNS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max num. of processors</td>
<td>$p \leq n^2$</td>
<td>$p \leq n^3$</td>
</tr>
<tr>
<td>T_p</td>
<td>$T_p = \frac{n^3}{p} + 2\sqrt{p}t_s + 2t_wn^2\sqrt{p}$</td>
<td>$T_P = \frac{n^3}{p} + t_s \log p + t_w \frac{n^2}{p^{2/3}} \log p$</td>
</tr>
<tr>
<td>W</td>
<td>$O(p^{1.5})$</td>
<td>$\Theta(p(\log p)^3)$</td>
</tr>
<tr>
<td>Max num. of processors (cost-optimally)</td>
<td>$p = O(n^2)$</td>
<td>$p = O(n^3 / \log^3 p)$</td>
</tr>
</tbody>
</table>
Solving a System of Linear Equations

Consider the problem of solving linear equations of the kind:

\[
\begin{align*}
a_{0,0}x_0 + a_{0,1}x_1 + \cdots + a_{0,n-1}x_{n-1} &= b_0, \\
a_{1,0}x_0 + a_{1,1}x_1 + \cdots + a_{1,n-1}x_{n-1} &= b_1, \\
\vdots & \quad \vdots & \quad \vdots & \quad \vdots \\
a_{n-1,0}x_0 + a_{n-1,1}x_1 + \cdots + a_{n-1,n-1}x_{n-1} &= b_{n-1}.
\end{align*}
\]

This is written as \(Ax = b \), where \(A \) is an \(n \times n \) matrix with \(A[i, j] = a_{i,j} \), \(b \) is an \(n \times 1 \) vector \([b_0, b_1, \ldots, b_{n-1}]^T\), and \(x \) is the solution.
Solving a System of Linear Equations

Two steps in solution are: **reduction to triangular form**, and **back-substitution**. The triangular form is as:

\[
\begin{align*}
 x_0 + u_{0,1}x_1 + u_{0,2}x_2 + \cdots + u_{0,n-1}x_{n-1} &= y_0, \\
 x_1 + u_{1,2}x_2 + \cdots + u_{1,n-1}x_{n-1} &= y_1, \\
 \vdots & \vdots \ \vdots \\
 x_{n-1} &= y_{n-1}.
\end{align*}
\]

We write this as: \(Ux = y \).

A commonly used method for transforming a given matrix into an upper-triangular matrix is **Gaussian Elimination**.
Gaussian Elimination

1. procedure GAUSSIAN_ELMINATION (A, b, y)
2. begin
3. for k := 0 to n - 1 do /* Outer loop */
4. begin
5. for j := k + 1 to n - 1 do
7. y[k] := b[k]/A[k, k];
8. A[k, k] := 1;
9. for i := k + 1 to n - 1 do
10. begin
11. for j := k + 1 to n - 1 do
13. b[i] := b[i] - A[i, k] × y[k];
15. endfor; /* Line 9 */
16. endfor; /* Line 3 */
17. end GAUSSIAN_ELMINATION
Gaussian Elimination

- The computation has **three nested loops** - in the kth iteration of the outer loop, the algorithm **performs** $(n-k)^2$ **computations**. Summing from $k = 1..n$, we have roughly $(n^3/3)$ multiplications-subtractions.

A typical computation in Gaussian elimination.
Parallel Gaussian Elimination

- Assume $p = n$ with each row assigned to a processor.
- The first step of the algorithm normalizes the row. This is a serial operation and takes time $(n-k)$ in the k^{th} iteration.
- In the second step, the normalized row is broadcast to all the processors. This takes time $(t_s + t_w(n - k - 1)) \log n$.
- Each processor can independently eliminate this row from its own. This requires $(n-k-1)$ multiplications and subtractions.
- The total parallel time can be computed by summing from $k = 1$... $n-1$ as
 \[
 T_P = \frac{3}{2}n(n-1) + t_s n \log n + \frac{1}{2} t_w n(n-1) \log n.
 \]
- The formulation is not cost optimal because of the t_w term.
Parallel Gaussian Elimination

1) Gaussian elimination steps during the iteration corresponding \(k = 3 \)

\[
\begin{array}{c|cccccccc}
| P_0 & 1 & 0.1 & 0.2 & 0.3 & 0.4 & 0.5 & 0.6 & 0.7 \\
| P_1 & 0 & 1 & 1.2 & 1.3 & 1.4 & 1.5 & 1.6 & 1.7 \\
| P_2 & 0 & 0 & 1 & 2.3 & 2.4 & 2.5 & 2.6 & 2.7 \\
| P_3 & 0 & 0 & 0 & 3.3 & 3.4 & 3.5 & 3.6 & 3.7 \\
| P_4 & 0 & 0 & 0 & 4.3 & 4.4 & 4.5 & 4.6 & 4.7 \\
| P_5 & 0 & 0 & 0 & 5.3 & 5.4 & 5.5 & 5.6 & 5.7 \\
| P_6 & 0 & 0 & 0 & 6.3 & 6.4 & 6.5 & 6.6 & 6.7 \\
| P_7 & 0 & 0 & 0 & 7.3 & 7.4 & 7.5 & 7.6 & 7.7 \\
\end{array}
\]

(a) Computation:

(i) \(A[k,j] := A[k,j]/A[k,k] \) for \(k < j < \)

(ii) \(A[k,k] := 1 \)

2) One-to-all broadcast of row \(A[k,*] \)

\[
\begin{array}{c|cccccccc}
| P_0 & 1 & 0.1 & 0.2 & 0.3 & 0.4 & 0.5 & 0.6 & 0.7 \\
| P_1 & 0 & 1 & 1.2 & 1.3 & 1.4 & 1.5 & 1.6 & 1.7 \\
| P_2 & 0 & 0 & 1 & 2.3 & 2.4 & 2.5 & 2.6 & 2.7 \\
| P_3 & 0 & 0 & 0 & 3.3 & 3.4 & 3.5 & 3.6 & 3.7 \\
| P_4 & 0 & 0 & 0 & 4.3 & 4.4 & 4.5 & 4.6 & 4.7 \\
| P_5 & 0 & 0 & 0 & 5.3 & 5.4 & 5.5 & 5.6 & 5.7 \\
| P_6 & 0 & 0 & 0 & 6.3 & 6.4 & 6.5 & 6.6 & 6.7 \\
| P_7 & 0 & 0 & 0 & 7.3 & 7.4 & 7.5 & 7.6 & 7.7 \\
\end{array}
\]

(c) Computation:

for \(k < i < n \) and \(k < j < n \)

(ii) \(A[i,k] := 0 \) for \(k < i < n \)

Gaussian elimination steps during the iteration corresponding \(k = 3 \)
Parallel Gaussian Elimination: Pipelined Execution

• In the previous formulation, the \((k+1) \)st iteration starts only after all the computation and communication for the \(k \)th iteration is complete.

• In the pipelined version, there are three steps - normalization of a row, communication, and elimination. These steps are performed in an asynchronous fashion.

• A processor \(P_k \) waits to receive and eliminate all rows prior to \(k \).

• Once it has done this, it forwards its own row to processor \(P_{k+1} \).
Parallel Gaussian Elimination: Pipelined Execution

Pipelined Gaussian elimination on a 5 x 5 matrix partitioned with one row per process.
Parallel Gaussian Elimination: Pipelined Execution

- The **total number of steps** in the entire pipelined procedure is $\Theta(n)$.
- In any step, either $O(n)$ elements are communicated between directly-connected processes, or a division step is performed on $O(n)$ elements of a row, or an elimination step is performed on $O(n)$ elements of a row.
- The parallel time is therefore $O(n^2)$.
- This is **cost optimal**.
Parallel Gaussian Elimination: Block 1D with $p < n$

- The above algorithm can be easily adapted to the case when $p < n$.
- In the kth iteration, a processor with all rows belonging to the active part of the matrix performs $(n - k - 1) / np$ multiplications and subtractions.
- In the pipelined version, for $n > p$, computation dominates communication.
- The parallel time is given by: $2(n/p)\sum_{k=0}^{n-1}(n - k - 1)$ or approximately, n^3/p.
- While the algorithm is cost optimal, the cost of the parallel algorithm is higher than the sequential run time by a factor of $3/2$.
Parallel Gaussian Elimination: Block 1D with $p < n$

(a) and (b) show one- and two-dimensional block-cyclic distributions among four processes.
Parallel Gaussian Elimination: Block 1D with $p < n$

- The load imbalance problem can be alleviated by using a cyclic mapping.
- In this case, other than processing of the last p rows, there is no load imbalance.
- This corresponds to a cumulative load imbalance overhead of $O(n^2p)$ (instead of $O(n^3)$ in the previous case).
Parallel Gaussian Elimination: 2-D Mapping

- Assume an \(n \times n \) matrix \(A \) mapped onto an \(n \times n \) mesh of processors.
- Each update of the partial matrix can be thought of as a scaled rank-one update (scaling by the pivot element).
- In the first step, the pivot is broadcast to the row of processors.
- In the second step, each processor locally updates its value. For this it needs the corresponding value from the pivot row, and the scaling value from its own row.
- This requires two broadcasts, each of which takes \(\log n \) time.
- This results in a non-cost-optimal algorithm.
Parallel Gaussian Elimination: 2-D Mapping

Various steps in the Gaussian elimination iteration corresponding to \(k = 3 \) for an 8 x 8 matrix on 64 processes arranged in a logical two-dimensional mesh.
Parallel Gaussian Elimination: 2-D Mapping

Various steps in the Gaussian elimination iteration corresponding to $k = 3$ for an 8 x 8 matrix on 64 processes arranged in a logical two-dimensional mesh.
Parallel Gaussian Elimination: 2-D Mapping with Pipelining

- We pipeline along two dimensions. **First, the pivot value is pipelined along the row. Then the scaled pivot row is pipelined down.**
- The **computation and communication** for each iteration moves through the mesh from top-left to bottom-right as a ``front.''
- After the front corresponding to a certain iteration passes through a process, the process is free to perform subsequent iterations.
- **Multiple fronts** that correspond to different iterations are active simultaneously.
2-D Mapping with Pipelining

Pipelined Gaussian elimination for a 5 x 5 matrix with 25 processors.
Pipelined Gaussian elimination for a 5×5 matrix with 25 processors.
Parallel Gaussian Elimination: 2-D Mapping with Pipelining

• If each step (division, elimination, or communication) is assumed to take constant time, the front moves a single step in this time. The front takes $\Theta(n)$ time to reach $P_{n-1,n-1}$.

• Once the front has progressed past a diagonal processor, the next front can be initiated. In this way, the last front passes the bottom-right corner of the matrix $\Theta(n)$ steps after the first one.

• The parallel time is therefore $O(n)$, which is cost-optimal.