Topic Overview

- Definitions and Representation
- Minimum Spanning Tree: Prim's Algorithm
- Single-Source Shortest Paths: Dijkstra's Algorithm
- All-Pairs Shortest Paths
- Connected Components
- Algorithms for Sparse Graphs
Definitions and Representation

- An **undirected graph** G is a pair (V,E), where V is a finite set of points called *vertices* and E is a finite set of *edges*.
- An edge $e \in E$ is an unordered pair (u,v), where $u,v \in V$.
- In a **directed graph**, the edge e is an ordered pair (u,v). An edge (u,v) is *incident from* vertex u and is *incident to* vertex v.
- A **path** from a vertex v to a vertex u is a sequence $<v_0,v_1,v_2,\ldots,v_k>$ of vertices where $v_0 = v$, $v_k = u$, and $(v_i, v_{i+1}) \in E$ for $i = 0, 1, \ldots, k-1$.
- The **length of a path** is defined as the number of edges in the path.
Definitions and Representation

(a) An undirected graph and (b) a directed graph.
Definitions and Representation

• An undirected graph is **connected** if every pair of vertices is connected by a path.

• A **forest** is an acyclic graph, and a **tree** is a connected acyclic graph.

• A graph that has weights associated with each edge is called a **weighted graph**.
Definitions and Representation

- Graphs can be represented by their adjacency matrix or an edge (or vertex) list.
- Adjacency matrices have a value $a_{i,j} = 1$ if nodes i and j share an edge; 0 otherwise. In case of a weighted graph, $a_{i,j} = w_{i,j}$, the weight of the edge.
- The adjacency list representation of a graph $G = (V,E)$ consists of an array $Adj[1..|V|]$ of lists. Each list $Adj[v]$ is a list of all vertices adjacent to v.
- For a graph with n nodes, adjacency matrices take $\Theta(n^2)$ space and adjacency list takes $\Theta(|E|)$ space.
Definitions and Representation

An undirected graph and its adjacency matrix representation.

$$A = \begin{bmatrix}
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 1 & 1 & 1 & 0
\end{bmatrix}$$

An undirected graph and its adjacency list representation.

An undirected graph and its adjacency list representation.
Minimum Spanning Tree

- A *spanning tree* of an undirected graph G is a subgraph of G that is a tree containing all the vertices of G.
- In a weighted graph, the weight of a subgraph is the sum of the weights of the edges in the subgraph.
- A *minimum spanning tree* (MST) for a weighted undirected graph is a spanning tree with minimum weight.
Minimum Spanning Tree

An undirected graph and its minimum spanning tree.
Minimum Spanning Tree: Prim's Algorithm

• **Prim's algorithm** for finding an MST is a **greedy algorithm**.

• **Start by selecting an arbitrary vertex**, include it into the current MST.

• **Grow the current MST** by inserting into it the vertex **closest** to one of the vertices already in current MST.
Minimum Spanning Tree: Prim's Algorithm

Prim's minimum spanning tree algorithm.
Minimum Spanning Tree: Prim's Algorithm

1. \textbf{procedure} PRIM_MST(V, E, w, r)
2. \hspace{1em} \textbf{begin}
3. \hspace{2em} V_T := \{r\};
4. \hspace{2em} d[r] := 0;
5. \hspace{2em} \textbf{for all} v \in (V - V_T) \textbf{ do}
6. \hspace{3em} \textbf{if} edge (r, v) \exists \textbf{ set} d[v] := w(r, v);
7. \hspace{3em} \textbf{else} set d[v] := \infty;
8. \hspace{2em} \textbf{while} V_T \neq V \textbf{ do}
9. \hspace{3em} \textbf{begin}
10. \hspace{4em} \textbf{find a vertex} u \textbf{ such that} d[u] := \min\{d[v] | v \in (V - V_T)\};
11. \hspace{4em} V_T := V_T \cup \{u\};
12. \hspace{4em} \textbf{for all} v \in (V - V_T) \textbf{ do}
13. \hspace{5em} d[v] := \min\{d[v], w(u, v)\};
14. \hspace{3em} \textbf{endwhile}
15. \hspace{2em} \textbf{end} PRIM_MST

Prim's sequential minimum spanning tree algorithm.
Prim's Algorithm: Parallel Formulation

- The algorithm works in \textit{n outer iterations} - it is hard to execute these iterations concurrently.
- The inner loop is relatively easy to parallelize. Let \(p \) be the number of processes, and let \(n \) be the number of vertices.
- The adjacency matrix is partitioned in a 1-D block fashion, with distance vector \(d \) partitioned accordingly.
- In each step, a processor selects the locally closest node, followed by a global reduction to select globally closest node.
- This node is inserted into MST, and the choice broadcast to all processors.
- Each processor updates its part of the \(d \) vector locally.
Prim's Algorithm: Parallel Formulation

The partitioning of the distance array d and the adjacency matrix A among p processes.
Prim's Algorithm: Parallel Formulation

- The cost to select the minimum entry is $O(n/p + \log p)$.
- The cost of a broadcast is $O(\log p)$.
- The cost of local updation of the d vector is $O(n/p)$.

- The parallel time per iteration is $O(n/p + \log p)$.
- The total parallel time is given by $O(n^2/p + n \log p)$.

- The corresponding isoefficiency is $O(p^2\log^2 p)$.
Single-Source Shortest Paths

• For a weighted graph $G = (V,E,w)$, the *single-source shortest paths* problem is to find the shortest paths from a vertex $v \in V$ to all other vertices in V.

• Dijkstra's algorithm is similar to Prim's algorithm. It maintains a set of nodes for which the shortest paths are known.

• It **grows this set** based on the node closest to **source** using one of the nodes in the current shortest path set.
Single-Source Shortest Paths: Dijkstra's Algorithm

1. procedure DIJKSTRA SINGLE SOURCE SP(V, E, w, s)
2. begin
3. \(V_T := \{s\} \);
4. for all \(v \in (V - V_T) \) do
5.
6. if \((s, v)\) exists set \(l[v] := w(s, v) \);
7. else set \(l[v] := \infty \);
8. while \(V_T \neq V \) do
9. begin
10. find a vertex \(u \) such that \(l[u] := \min\{l[v] | v \in (V - V_T)\} \);
11. \(V_T := V_T \cup \{u\} \);
12. for all \(v \in (V - V_T) \) do
13.
14. \(l[v] := \min\{l[v], l[u] + w(u, v)\} \);
15. endwhile
16. end DIJKSTRA SINGLE SOURCE SP

Dijkstra's sequential single-source shortest paths algorithm.
Dijkstra's Algorithm: Parallel Formulation

• Very similar to the parallel formulation of Prim's algorithm for minimum spanning trees.
• The weighted adjacency matrix is partitioned using the 1-D block mapping.
• Each process selects, locally, the node closest to the source, followed by a global reduction to select next node.
• The node is broadcast to all processors and the l-vector updated.
• The parallel performance of Dijkstra's algorithm is identical to that of Prim's algorithm.
All-Pairs Shortest Paths

• Given a weighted graph $G(V,E,w)$, the all-pairs shortest paths problem is to find the shortest paths between all pairs of vertices $v_i, v_j \in V$.

• A number of algorithms are known for solving this problem.
All-Pairs Shortest Paths: Matrix-Multiplication Based Algorithm

• Consider the multiplication of the weighted adjacency matrix with itself - except, in this case, we replace the multiplication operation in matrix multiplication by addition, and the addition operation by minimization.

• Notice that the product of weighted adjacency matrix with itself returns a matrix that contains shortest paths of length 2 between any pair of nodes.

• It follows from this argument that A^n contains all shortest paths.
Matrix-Multiplication Based Algorithm

\[A^1 = \begin{pmatrix}
0 & 2 & 3 & \infty & \infty & \infty & \infty & \infty & \infty \\
\infty & 0 & \infty & \infty & \infty & 1 & \infty & \infty & \infty \\
\infty & \infty & 0 & 1 & 2 & \infty & \infty & \infty & \infty \\
\infty & \infty & \infty & 0 & \infty & 2 & \infty & \infty & \infty \\
\infty & \infty & \infty & \infty & 0 & \infty & \infty & \infty & \infty \\
\infty & \infty & \infty & \infty & \infty & 0 & 2 & 3 & 2 \\
\infty & \infty & \infty & \infty & \infty & 1 & 0 & \infty & \infty \\
\infty & 0 & \infty \\
\infty & 1 \\
\end{pmatrix} \]

\[A^2 = \begin{pmatrix}
0 & 2 & 3 & 4 & 5 & 3 & \infty & \infty & \infty \\
\infty & 0 & \infty & \infty & \infty & 1 & 3 & 4 & 3 \\
\infty & \infty & 0 & 1 & 2 & \infty & 3 & \infty & \infty \\
\infty & \infty & \infty & 0 & 3 & \infty & 2 & 3 & \infty \\
\infty & \infty & \infty & \infty & 0 & \infty & \infty & \infty & \infty \\
\infty & \infty & \infty & 3 & 0 & 2 & 3 & 2 & \infty \\
\infty & \infty & \infty & 1 & \infty & 0 & \infty & \infty & \infty \\
\infty & \infty & \infty & \infty & \infty & 0 & \infty & \infty & \infty \\
\infty & 0 & 1 \\
\end{pmatrix} \]

\[A^4 = \begin{pmatrix}
0 & 2 & 3 & 4 & 5 & 3 & 5 & 6 & 5 \\
\infty & 0 & \infty & \infty & 4 & 1 & 3 & 4 & 3 \\
\infty & \infty & 0 & 1 & 2 & \infty & 3 & 4 & \infty \\
\infty & \infty & \infty & 0 & 3 & \infty & 2 & 3 & \infty \\
\infty & \infty & \infty & \infty & 0 & \infty & \infty & \infty & \infty \\
\infty & \infty & \infty & 3 & 0 & 2 & 3 & 2 & \infty \\
\infty & \infty & \infty & 1 & \infty & 0 & \infty & \infty & \infty \\
\infty & \infty & \infty & \infty & \infty & 0 & \infty & \infty & \infty \\
\infty & 1 & 0 \\
\end{pmatrix} \]

\[A^8 = \begin{pmatrix}
0 & 2 & 3 & 4 & 5 & 3 & 5 & 6 & 5 \\
\infty & 0 & \infty & \infty & 4 & 1 & 3 & 4 & 3 \\
\infty & \infty & 0 & 1 & 2 & \infty & 3 & 4 & \infty \\
\infty & \infty & \infty & 0 & 3 & \infty & 2 & 3 & \infty \\
\infty & \infty & \infty & \infty & 0 & \infty & \infty & \infty & \infty \\
\infty & \infty & \infty & 3 & 0 & 2 & 3 & 2 & \infty \\
\infty & \infty & \infty & 1 & \infty & 0 & \infty & \infty & \infty \\
\infty & \infty & \infty & \infty & \infty & 0 & \infty & \infty & \infty \\
\infty & \infty & \infty & \infty & \infty & \infty & 1 & 0 & \infty \\
\end{pmatrix} \]
Matrix-Multiplication Based Algorithm

• A^n is computed by **doubling powers** - i.e., as A, A^2, A^4, A^8, and so on.
• We need **$\log n$ matrix multiplications**, each taking time $O(n^3)$.
• The **serial complexity** of this procedure is $O(n^3 \log n)$.
• This algorithm is **not optimal**, since the best known algorithms have complexity $O(n^3)$.
Matrix-Multiplication Based Algorithm: Parallel Formulation

- Each of the \(\log n \) matrix multiplications can be performed in parallel.
- We can use \(n^3/\log n \) processors to compute each matrix-matrix product in time \(\log n \).
- The entire process takes \(O(\log^2 n) \) time.
Dijkstra's Algorithm

- Execute *n instances* of the *single-source shortest path* problem, one for each of the *n* source vertices.
- Complexity is $O(n^3)$.
Dijkstra's Algorithm: Parallel Formulation

- **Two parallelization strategies** - execute each of the n shortest path problems on a different processor (**source partitioned**), or use a parallel formulation of the shortest path problem to increase concurrency (**source parallel**).
Dijkstra's Algorithm: Source Partitioned Formulation

• Use *n processors*, each processor P_i finds the shortest paths from vertex v_i to all other vertices by executing Dijkstra's sequential single-source shortest paths algorithm.

• It requires *no interprocess communication* (provided that the adjacency matrix is replicated at all processes).

• The *parallel run time* of this formulation is: $\Theta(n^2)$.

• While the algorithm is cost optimal, it *can only use* *n processors*. Therefore, the *isoefficiency* due to concurrency is p^3.
Dijkstra's Algorithm: Source Parallel Formulation

• In this case, each of the shortest path problems is further executed in parallel. We can therefore use up to \(n^2 \) processors.

• Given \(p \) processors \((p > n)\), each single source shortest path problem is executed by \(p/n \) processors.

• Using previous results, this takes time:

\[
T_P = \Theta \left(\frac{n^3}{p} \right) + \Theta(n \log p).
\]

• For cost optimality, we have \(p = O(n^2 / \log n) \) and the isoefficiency is \(\Theta((p \log p)^{1.5}) \).
Floyd's Algorithm

• For any pair of vertices $v_i, v_j \in V$, consider all paths from v_i to v_j whose **intermediate vertices belong to the set** \(\{v_1, v_2, ..., v_k\} \). Let $p_{i,j}^{(k)}$ (of weight $d_{i,j}^{(k)}$) be the minimum-weight path among them.

• **If vertex** v_k **is not in** the shortest path from v_i to v_j, then $p_{i,j}^{(k)}$ is the same as $p_{i,j}^{(k-1)}$.

• **If** v_k **is in** $p_{i,j}^{(k)}$, **then we can break** $p_{i,j}^{(k)}$ **into two paths** - one from v_i to v_k and one from v_k to v_j. Each of these paths uses vertices from $\{v_1, v_2, ..., v_{k-1}\}$.

Floyd's Algorithm

From our observations, the following recurrence relation follows:

\[d_{i,j}^{(k)} = \begin{cases}
 w(v_i, v_j) & \text{if } k = 0 \\
 \min \left\{ d_{i,j}^{(k-1)}, d_{i,k}^{(k-1)} + d_{k,j}^{(k-1)} \right\} & \text{if } k \geq 1
\end{cases} \]

This equation must be computed for each pair of nodes and for \(k = [1, n] \). The serial complexity is \(O(n^3) \).
Floyd's Algorithm

1. procedure FLOYD_ALL_PAIRS_SP(A)
2. begin
3. \[D^{(0)} = A; \]
4. \[\text{for } k := 1 \text{ to } n \text{ do} \]
5. \[\quad \text{for } i := 1 \text{ to } n \text{ do} \]
6. \[\quad \quad \text{for } j := 1 \text{ to } n \text{ do} \]
7. \[d^{(k)}_{i,j} := \min \left(d^{(k-1)}_{i,j}, d^{(k-1)}_{i,k} + d^{(k-1)}_{k,j} \right); \]
8. end FLOYD_ALL_PAIRS_SP

Floyd's all-pairs shortest paths algorithm. This program computes the all-pairs shortest paths of the graph \(G = (V, E) \) with adjacency matrix \(A \).
Floyd's Algorithm: Parallel Formulation Using 2-D Block Mapping

- Matrix $D^{(k)}$ is divided into p blocks of size $(n / \sqrt{p}) \times (n / \sqrt{p})$.

- Each processor updates its part of the matrix during each iteration.

- To compute $d^{(k-1)}_{i,j}$ processor $P_{i,j}$ must get $d^{(k-1)}_{i,j}$ and $d^{(k-1)}_{k,r}$.

- In general, during the k^{th} iteration, each of the \sqrt{p} processes containing part of the k^{th} row send it to the $\sqrt{p} - 1$ processes in the same column.

- Similarly, each of the \sqrt{p} processes containing part of the k^{th} column sends it to the $\sqrt{p} - 1$ processes in the same row.
Floyd's Algorithm: Parallel Formulation Using 2-D Block Mapping

(a) Matrix $D^{(k)}$ distributed by 2-D block mapping into $\sqrt{p} \times \sqrt{p}$ subblocks, and (b) the subblock of $D^{(k)}$ assigned to process $P_{i,j}$.

\(\begin{array}{c|c}
\frac{n}{\sqrt{p}} & \left(\begin{array}{c}
\frac{n}{\sqrt{p}} \\
(1,1) \\
(1,2) \\
(2,1) \\
\end{array}\right) \\
\end{array} \)

\(\begin{array}{c|c}
(i - 1)\frac{n}{\sqrt{p}} + 1, (j - 1)\frac{n}{\sqrt{p}} + 1 \\
\end{array} \)

\(\begin{array}{c|c}
i \frac{n}{\sqrt{p}}, j \frac{n}{\sqrt{p}} \\
\end{array} \)
(a) Communication patterns used in the 2-D block mapping. When computing $d^{(k)}_{l,r}$, information must be sent to the highlighted process from two other processes along the same row and column. (b) The row and column of \sqrt{p} processes that contain the k^{th} row and column send them along process columns and rows.
Floyd's Algorithm: Parallel Formulation Using 2-D Block Mapping

1. procedure FLOYD_2DBLOCK($D^{(0)}$)
2. begin
3. for $k := 1$ to n do
4. begin
5. each process $P_{i,j}$ that has a segment of the k^{th} row of $D^{(k-1)}$;
broadcasts it to the $P_{*,j}$ processes;
6. each process $P_{i,j}$ that has a segment of the k^{th} column of $D^{(k-1)}$;
broadcasts it to the $P_{i,*}$ processes;
7. each process waits to receive the needed segments;
8. each process $P_{i,j}$ computes its part of the $D^{(k)}$ matrix;
9. end
10. end FLOYD_2DBLOCK

Floyd's parallel formulation using the 2-D block mapping. $P_{*,j}$ denotes all the processes in the j^{th} column, and $Pi,*$ denotes all the processes in the i^{th} row. The matrix $D^{(0)}$ is the adjacency matrix.
Floyd's Algorithm: Parallel Formulation Using 2-D Block Mapping

- During each iteration of the algorithm, the k^{th} row and k^{th} column of processors perform a one-to-all broadcast along their rows/columns.
- The size of this broadcast is $n\sqrt{p}$ elements, taking time $\Theta((n \log p)/\sqrt{p})$.
- The synchronization step takes time $\Theta(\log p)$.
- The computation time is $\Theta(n^2/p)$.
- The parallel run time of the 2-D block mapping formulation of Floyd's algorithm is

$$T_P = \Theta\left(\frac{n^3}{p}\right) + \Theta\left(\frac{n^2}{\sqrt{p} \log p}\right).$$
Floyd's Algorithm: Parallel Formulation Using 2-D Block Mapping

- The above formulation can use $O(n^2 / \log^2 n)$ processors cost-optimally.
- The isoefficiency of this formulation is $\Theta(p^{1.5} \log^3 p)$.
- This algorithm can be further improved by relaxing the strict synchronization after each iteration.
Floyd's Algorithm: Speeding Things Up by Pipelining

- The synchronization step in parallel Floyd's algorithm can be removed without affecting the correctness of the algorithm.
- A process starts working on the k^{th} iteration as soon as it has computed the $(k-1)^{th}$ iteration and has the relevant parts of the $D^{(k-1)}$ matrix.
Floyd's Algorithm: Speeding Things Up by Pipelining

- The overall parallel run time of this formulation is:

\[T_P = \Theta \left(\frac{n^3}{p} \right) + \Theta(n). \]

- The pipelined formulation of Floyd's algorithm uses up to \(O(n^2) \) processes efficiently.
- The corresponding isoefficiency is \(\Theta(p^{1.5}) \).
All-pairs Shortest Path: Comparison

- The performance and scalability of the all-pairs shortest paths algorithms on various architectures with bisection bandwidth. Similar run times apply to all cube architectures, provided that processes are properly mapped to the underlying processors.

<table>
<thead>
<tr>
<th></th>
<th>Maximum Number of Processes for $E = \Theta(1)$</th>
<th>Corresponding Parallel Run Time</th>
<th>Isoefficiency Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dijkstra source-partitioned</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n^2)$</td>
<td>$\Theta(p^3)$</td>
</tr>
<tr>
<td>Dijkstra source-parallel</td>
<td>$\Theta(n^2 / \log n)$</td>
<td>$\Theta(n \log n)$</td>
<td>$\Theta((p \log p)^{1.5})$</td>
</tr>
<tr>
<td>Floyd 2-D block</td>
<td>$\Theta(n^2 / \log^2 n)$</td>
<td>$\Theta(n \log^2 n)$</td>
<td>$\Theta(p^{1.5} \log^3 p)$</td>
</tr>
<tr>
<td>Floyd pipelined 2-D block</td>
<td>$\Theta(n^2)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(p^{1.5})$</td>
</tr>
</tbody>
</table>
Connected Components

- The **connected components** of an **undirected graph** are the equivalence classes of vertices under the ``is reachable from'' relation.

A graph with three connected components: \{1,2,3,4\}, \{5,6,7\}, and \{8,9\}.
Connected Components: Depth-First Search Based Algorithm

- Perform **DFS on the graph to get a forest** - arc tree in the forest corresponds to a separate connected component.

Part (b) is a **depth-first forest** obtained from depth-first traversal of the **graph in part (a)**. Each of these trees is a connected component of the graph in part (a).
Connected Components: Parallel Formulation

• Partition the graph across processors and run independent connected component algorithms on each processor. At this point, we have p spanning forests.

• In the second step, spanning forests are merged pairwise until only one spanning forest remains.
Connected Components: Parallel Formulation

Computing connected components in parallel. The adjacency matrix of the graph G in (a) is partitioned into two parts (b). Each process gets a subgraph of G ((c) and (e)). Each process then computes the spanning forest of the subgraph ((d) and (f)). Finally, the two spanning trees are merged to form the solution.
Connected Components: Parallel Formulation

• To merge pairs of spanning forests efficiently, the algorithm uses disjoint sets of edges.

• We define the following operations on the disjoint sets:
 • \textit{find}(x)
 – returns a pointer to the representative element of the set containing \(x\). Each set has its own unique representative.
 • \textit{union}(x, y)
 – unites the sets containing the elements \(x\) and \(y\). The two sets are assumed to be disjoint prior to the operation.
Connected Components: Parallel Formulation

• For merging forest A into forest B, for each edge (u,v) of A, a \textit{find} operation is performed to determine if the vertices are in the same tree of B.

• If not, then the two trees (sets) of B containing u and v are united by a \textit{union} operation.

• Otherwise, no \textit{union} operation is necessary.

• Hence, merging A and B requires at most $2(n-1)$ \textit{find operations} and $(n-1)$ \textit{union operations}.
Connected Components: Parallel 1-D Block Mapping

• The $n \times n$ adjacency matrix is partitioned into p blocks (1-D).
• Each processor can compute its local spanning forest in time $\Theta(n^2/p)$.
• Merging is done by embedding a logical tree into the topology. There are $\log p$ merging stages, and each takes time $\Theta(n)$. Thus, the cost due to merging is $\Theta(n \log p)$.
• During each merging stage, spanning forests are sent between nearest neighbors. Recall that $\Theta(n)$ edges of the spanning forest are transmitted.
Connected Components: Parallel 1-D Block Mapping

• The parallel run time of the connected-component algorithm is

\[T_p = \Theta \left(\frac{n^2}{p} \right) + \Theta(n \log p). \]

• For a cost-optimal formulation \(p = O(n / \log n) \). The corresponding *isoefficiency* is \(\Theta(p^2 \log^2 p) \).
Algorithms for Sparse Graphs

• A graph $G = (V,E)$ is sparse if $|E|$ is much smaller than $|V|^2$.

Examples of sparse graphs: (a) a linear graph, in which each vertex has two incident edges; (b) a grid graph, in which each vertex has four incident vertices; and (c) a random sparse graph.
Algorithms for Sparse Graphs

• Dense algorithms can be improved significantly if we make use of the sparseness. For example, the run time of Prim's minimum spanning tree algorithm can be reduced from $\Theta(n^2)$ to $\Theta(|E| \log n)$.

• Sparse algorithms use adjacency list instead of an adjacency matrix.

• Partitioning adjacency lists is more difficult for sparse graphs - do we balance number of vertices or edges?

• Parallel algorithms typically make use of graph structure or degree information for performance.
Finding a Maximal Independent Set

A set of vertices $I \subset V$ is called **independent** if no pair of vertices in I is **connected** via an edge in G. An independent set is called **maximal** if by including any other vertex not in I, the independence property is violated.

Examples of independent and maximal independent sets.

{a, d, i} is an independent set

{a, c, j, f, g} is a maximal independent set

{a, d, h, f} is a maximal independent set
Finding a Maximal Independent Set (MIS)

- Simple algorithms start by MIS I to be empty, and assigning all vertices to a candidate set C.
- Vertex v from C is moved into I and all vertices adjacent to v are removed from C.
- This process is repeated until C is empty.
- This process is inherently serial!
Finding a Maximal Independent Set (MIS)

- Parallel MIS algorithms use randomization to gain concurrency (Luby's algorithm for graph coloring).
- Initially, each node is in the candidate set C. Each node generates a (unique) random number and communicates it to its neighbors.
- If a node's number is smallest out of all its neighbors, it joins set I. All of its neighbors are removed from C.
- This process continues until C is empty.
- On average, this algorithm converges after $O(\log|V|)$ such steps.
Finding a Maximal Independent Set (MIS)

The different augmentation steps of Luby's randomized maximal independent set algorithm. The numbers inside each vertex correspond to the random number assigned to the vertex.
Finding a Maximal Independent Set (MIS): Parallel Formulation

- We use **three arrays**, each of length n. Array I, which stores nodes in MIS, C, which stores the candidate set, and R, the random numbers.

- Partition C across p processors. **Each processor generates the corresponding values in the R array**, and from this, computes which candidate vertices can enter MIS.

- The C **array is updated by deleting all the neighbors of vertices that entered MIS**.

- The performance of this algorithm is dependent on the structure of the graph.