Automata Examples

Operations on Regular Languages

Automata Representing Operations on Regular Languages

Hamming and Levenshtein Distance

Approximate Text Search

Automaton Bit Arrays Simulation
Automaton C_1 accepts union of sets
$L_1 = \{00, 0011, 001100, 00110011, 0011001100, ...\} \cup \{11, 1100, 110011, 11001100, 1100110011, ...\}$.

Automaton C_2 accepts language L_2 over $\Sigma = \{0, 1\}$, in each word of L_2:
-- there is at least one symbol 1,
-- each symbol 1 is followed by exactly two or three symbols 0.
Automaton C_3 accepts all binary nonnegative integers divisible by 3, any number of leading zeros may be included.

Automaton C_4 accepts all binary positive integers divisible by 3, no leading zeros are allowed.
Language operations

Operations on regular languages revisited

Let L_1 and L_2 be any languages. Then

$L_1 \cup L_2$ is union of L_1 and L_2. It is a set of all words which are in L_1 or L_2.

$L_1 \cap L_2$ is intersection of L_1 and L_2. It is a set of all words which are simultaneously in L_1 and L_2.

$L_1 \cdot L_2$ is concatenation of L_1 and L_2. It is a set of all words w for which holds $w = w_1w_2$ (concatenation of words w_1 and w_2), where $w_1 \in L_1$ and $w_2 \in L_2$.

L_1^* is Kleene star or Kleene closure or iteration of language L_1. It is a set of all words which are concatenations of any number (incl. zero) of any words of L_1 in any order.

Closure

Whenever L_1 and L_2 are regular languages then $L_1 \cup L_2$, $L_1 \cap L_2$, $L_1 \cdot L_2$, L_1^* are regular languages too.

Automata support

When L_1 is regular language accepted by automaton A_1 and L_2 is regular language accepted by automaton A_2 then there also are automata A_3, A_4, A_5, A_6, which accept $L_1 \cup L_2$, $L_1 \cap L_2$, $L_1 \cdot L_2$, L_1^*, respectively.
Automaton A_3 accepting union of two regular languages L_1, L_2 accepted by automata A_1, A_2 respectively.

Automaton A_3 is constructed using A_1 and A_2:

Do not change A_1 and A_2.
Create new additional start state S_0, add ε-transitions from S_0 to start states S_1 and S_2 of A_1 and A_2 respectively.
Define set of final states of A_3 as union of final states of A_1 and A_2.
Automaton B_3 accepts any word from sets
{00, 0011, 001100, 00110011, 0011001100, ...}
{11, 1100, 110011, 11001100, 1100110011, ...}
and also any binary nonnegative integer divisible by 3
with any number of leading zeros
Automaton A_5 accepting concatenation of two regular languages L_1, L_2 accepted by automata A_1, A_2 respectively.

Automaton A_5 is constructed using A_1 and A_2:

- Do not change A_1 and A_2.
- Add ε - transitions from each final state F_k of A_1 to the start state S_2 of A_2.
- Define start state of A_5 to be equal to the start state of A_1.
- Define set of final states of A_5 to be equal to the set of final states of A_2.

![Diagram showing the construction of A_5 from A_1 and A_2.]
Automaton B_5 accepts any word over \{0, 1\} which can be split into two consecutive words w_1 and w_2, where word w_1 is described by regular expression $0^*(100+1000)(100+1000)^*$, word w_2 represents binary positive integer divisible by 3 w/o leading 0's.
Automaton A_{6} accepting iteration of language L_{1} accepted by automaton A_{1}.

Automaton A_{6} is constructed using A_{1}:

Do not change A_{1}.
Create new aditional start state S_{0} and add ε - transition from S_{0} to start state S_{1} of A_{1}
Add ε - transitions from all final states F_{k} of A_{1} to state S_{1}.
Define start state of A_{6} to be S_{0}.
Define set of final states of A_{6} as union of final states F_{k} and S_{0}.
Automaton B_6 accepts any word created by concatenation and repetition of any words accepted by C_2 including empty word.

Maybe you can find some more telling informal description of the corresponding language?
Automaton A_4 accepting intersection of two regular languages L_1, L_2 accepted by automata A_1, A_2 respectively.

Automaton A_4 is constructed using A_1 and A_2:

Create Cartesian product $Q_1 \times Q_2$, where Q_1, Q_2 are sets of states of A_1, A_2.

Each state of A_4 will be an ordered pair of states of A_1, A_2.

State (S_1, S_2) will be start state of A_4, where S_1, S_2 are start states of A_1, A_2.

Final states of A_4 will be just those pairs (F, G), where F is a final state of A_1 and G is a final state of A_2.

Create transition from state (p_1, p_2) to (q_1, q_2) in A_4 labeled by symbol x if and only if

there is a transition $p_1 \rightarrow q_1$ labeled by x in A_1 and also
there is a transition $p_2 \rightarrow q_2$ labeled by x in A_2.
Scheme of an automaton A_4 accepting the intersection of two regular languages L_1, L_2 accepted by automata A_1, A_2 respectively.
Automaton A_4 accepting binary integers divisible by 3 (C_4) in which each symbol 1 is followed by exactly two or three symbols 0 (C_2).
Hamming distance

Hamming distance of two strings is equal to \(k \) (\(k \leq 0 \)), whenever \(k \) is the minimal number of rewrite operations which when applied on one of the strings produce the other string. Rewrite operation rewrites one symbol of the alphabet by some other symbol of the alphabet. Symbols cannot be deleted or inserted. Hamming distance is defined only for pairs of strings of equal length.

Informally: Align the strings and count the number of mismatches of corresponding symbols.
Automaton A_1 for approximate pattern matching. It detects all occurrences of substrings whose Hamming distance from the pattern $p_1 p_2 p_3 p_4$ is less or equal to 3.
Automaton A_2 for approximate pattern matching. It detects all occurrences of substrings whose Hamming distance from the pattern 'rose' is less or equal to 3.

Automaton A_2 detects among others also the words:

- rose (distance = 0)
- dose (distance = 1)
- rest (distance = 2)
- list (distance = 3)
- and more...
NFA accepting any word with subsequence $p_1p_2p_3p_4$ anywhere in it.

Example

NFA accepting any word with subsequence $p_1p_2p_3p_4$ anywhere in it, one symbol in the sequence may be altered.

Alternatively: NFA accepting any word containing a subsequence Q whose Hamming distance from $p_1p_2p_3p_4$ is at most 1.
Hamming distance of the found pattern Q from pattern P = "rose" cannot be deduced from the particular end state. E.g.: "rope":
\[r - 1 \cdot o - 2 \cdot p - 7 \cdot e - 8. \]
\[r - 5 \cdot o - 6 \cdot p - 10 \cdot e - 11. \]

Notation: \(\overline{x} = \Sigma - \{x\} \) means: Complement of x in \(\Sigma \).

Hamming distance from the pattern P = "rose" to the found pattern Q corresponds exactly to the end state.
Levenshtein distance

Levenshtein distance of two strings A and B is such minimal \(k (k \geq 0) \), that we can change A to B or B to A by applying exactly \(k \) edit operations on one of A or B. The edit operations are Remove, Insert or Rewrite any symbol of the alphabet anywhere in the string. (Rewrite is also called Substitution.)

Levenshtein distance is defined for any two strings over a given alphabet.

\[
\begin{align*}
\text{B R U X E L L E S} & \quad \text{Delete X.} \\
\text{B E T E L G E U S E} & \quad \text{Rewrite R->E, U->T, L->G.} \\
\text{Distance} & = 6 \\
\text{Insert U, E.}
\end{align*}
\]

Note

Although the distance is defined unambiguously (prove!), the particular edit operations transforming one string to another may vary (find an example).
Calculating Levenshtein distance

Apply a simple Dynamic Programming approach.

Let $A = a[1].a[2]. \ldots .a[n] = A[1..n]$, $B = b[1].b[2]. \ldots .b[m] = b[1..m]$, $n, m \geq 0$.

\[
Dist(A, B) = |m - n| \quad \text{if } n = 0 \text{ or } m = 0
\]

\[
Dist(A, B) = 1 + \min (\text{Dist}(A[1..n - 1], B[1..m]), \text{Dist}(A[1..n], B[1..m - 1]), \text{Dist}(A[1..n - 1], B[1..m - 1])) \quad \text{if } n > 0 \text{ and } m > 0
\]

\[
Dist(A, B) = \text{Dist}(A[1..n - 1], B[1..m - 1]) \quad \text{if } n > 0 \text{ and } m > 0 \text{ and } A[n] = B[m]
\]

Calculation corresponds to ... **Operation**

- $1 + \text{Dist}(A[1..n - 1], B[1..m])$, ... **Insert**($A$, $n - 1$, $B[m]$) or **Delete**(B, m)
- $1 + \text{Dist}(A[1..n], B[1..m - 1])$, ... **Insert**($B$, $m - 1$, $A[n]$) or **Delete**(A, n)
- $1 + \text{Dist}(A[1..n - 1], B[1..m - 1])$, ... **Rewrite**($A$, n, $B[m]$) or **Rewrite**(B, m, $A[n]$)
Levenshtein distance

Dist("BETELGEUSE","BRUXELLES") = 6

```
B   E   T   E   L   G   E   U   S   E
0  1  2  3  4  5  6  7  8  9  10
B  1  0  1  2  3  4  5  6  7  8  9
R  2  1  1  2  3  4  5  6  7  8  9
U  3  2  2  2  3  4  5  6  6  7  8
X  4  3  3  3  3  4  5  6  7  7  8
E  5  4  3  4  3  4  5  5  6  7  7
L  6  5  4  4  4  3  4  5  6  7  8
L  7  6  5  5  5  4  4  5  6  7  8
E  8  7  6  6  5  5  5  4  5  6  7
S  9  8  7  7  6  6  6  5  5  5  6
```

D[0][j] = j; D[i][0] = i;

```
for( i = 1; i <= n; i++ )
    for( j = 1; j <= m; j++ )
            D[i][j] = D[i-1][j-1];
        else
            D[i][j] = 1+ min(D[i-1][j-1], D[i-1][j], D[i][j-1]);
```
NFA searches in a text for a string within Levenshtein distance 3 from the pattern "rose".

More transitions than in Hamming distance NFA

vertical ... Insert operation
epsilon ... Delete operation

Self-check question
Label vertical transitions by Σ (whole alphabet). How will it change the functionality of this NFA?
Bit representation of NFA

Size of transition table T is $|Q| \times |\Sigma|$ and each its element $T[i, k]$ corresponds to state $q_i \in Q$ and symbol $a_k \in \Sigma$. $T[i, k]$ is vector of length $|Q|$ and it holds: $T[i, k][j] = 1 \iff q_j \in \delta(q_i, a_k)$.

For bit vector F of final states holds $F[j] = 1 \iff q_j \in F_A$.

Automaton A detects pattern aba in a text.
Text Search

starting configuration

sets of states represented by bit arrays during computation

A

sets of states

Text Symbols:

- text symbols:
 - a, c, a, b, c, a, a, b, a

<table>
<thead>
<tr>
<th>Time</th>
<th>State 0</th>
<th>State 1</th>
<th>State 2</th>
<th>State 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>i=0</td>
<td>1 1 1 1</td>
<td>1 1 1 1</td>
<td>1 1 1 1</td>
<td>1 1 1 1</td>
</tr>
<tr>
<td>i=1</td>
<td>0 1 0 0</td>
<td>0 0 1 1</td>
<td>0 0 1 1</td>
<td>0 0 1 1</td>
</tr>
<tr>
<td>i=2</td>
<td>0 0 0 0</td>
<td>0 0 0 0</td>
<td>0 0 0 0</td>
<td>0 0 0 0</td>
</tr>
<tr>
<td>i=3</td>
<td>0 0 0 0</td>
<td>0 0 0 0</td>
<td>0 0 0 0</td>
<td>0 0 0 0</td>
</tr>
</tbody>
</table>

Example:

Automaton is in states \{0,1\}, it reads symbol b

\[F = 00001 \]
Simulation of work of a NFA without ε-transitions
Basic method, implemented with bit vectors.

Input: Bit table T of transitions, bit vector F of final states,
number of states Q.size, text in array t (indexed from 1).
Output: Simulated run and output of the automaton.
(notation in format $[0101\ldots00]$ denotes characteristic vector of set of states)

```plaintext
S[0] = [100..0]; i = 1;  // init
while( (i <= t.length) && (S[i-1]!=000...0) ) {
    for( j=0; j < Q.size; j++ )
        if( (S[i][j] == 1) && (F[j] == 1) )
            print( q[j].final_state_info );
    S[i] = [000…0];
    for( j=0; j < Q.size; j++ )
        if( S[i-1][j]==1 )
            S[i] = S[i] | T[j][t[i]]; // "|
    i++;
}
```