
LS2018, ASSIGNMENT 5 — GRIDWORLD 1

Assignment 5
GridWorld

B4B36ZUI, BE4B36ZUI

Abstract—The assignment 5 focuses on Markov decision processes (MDPs) used for solving a GridWorld examples and is worth 12
points in total. The GridWorld consists of a rectangular grid of cells and the goal is to navigate an agent to reach the highest reward
using non–deterministic actions. The assignment is to be implemented in Python 3.6 using provided codes. The assignment consists of
both implementation part and experimental part.

F

1 INTRODUCTION

THE goal of this assignment is to find optimal decision
policy of an agent maximizing its reward in a Grid-

World MDP problem (see slides or Wikipedia for details).
A GridWorld consists of a rectangular grid of m × n cells.
The cells are described using coordinate system with [0, 0]
in top left corner. An agent can make for different actions
— it can go one cell north, east, south, and west from the
cell it is occupying. The actions are not deterministic and
intended action will be executed only with probability p
(action_proba) and some other action will be executed with
probability 1 − p. More specifically, only the action that
are neighbouring the intended cardinal direction might be
executed instead and each of them with uniform probability,
i.e. if the agent’s intended action is north, it will be executed
with probability p and action east or west will be executed
instead with probability 1−p

2 . Each action has an associated
cost c (action_cost), which, for the purposes of this
assignment, is identical for each action. This cost is applied
only when the cell where the action would have ended has
no associated reward — if the cell [i, j] has an associated
reward ri,j , the reward overrides the cost. (Note, if you
wanted to apply the action cost c in any case, just change
= at line 536 to +=).

In all the predefined worlds, the cells with defined
reward are also set be terminal states where the agent
ends when he reaches them. It is recommend for your
experiments to keep the set of reward states the same as the
set of the terminal state. A reward (or a cost if it is negative)
is obtained if the associated cell is reached by the agent.

2 ALGORITHMS

While the MDPs can be solved by both linear programming
and dynamic programming, this task focuses on the latter
— namely, only two variants of dynamic programming
for solving the MDP are needed: value iteration and policy
iteration. The dynamic programming approach consists of
iterative estimation of the values of individual states V (s)
and choosing the best policy π(s) for deciding for action a
from the set of actions A for each state 0 s from the set of
states S.

First, the action are evaluated using known valuation of
states Vn−1(s) and the transitional probabilities P (s′|a, s)
where s′ is the target state, s is the current state, and a is the
executed action:

Qn(s, a) = R(s) +
∑
s′∈S

P (s′|a, s)γVn−1(s′) (1)

where R(s) is the reward for going from state s and
γ ∈ [0, 1] is the discount factor.

The optimal policy πn(s) is chosen as

πn(s) = argmax
a∈A

Qn(s, a) (2)

and finally, the valuation of states Vn is recomputed:

Vn = R(s) +
∑
s′∈S

P (s′|πn(s), s)γVn−1(s′) (3)

2.1 Value iteration
The value iteration algorithm skips explicitly computing the
optimal policy and consists of a single step repeated until
convergence criterion is met:

Vn = max
a∈A

(
R(s) +

∑
s′∈S

P (s′|a, s)γVn−1(s′)
)

(4)

2.2 Policy iteration
The policy iteration consists of two steps — computation the
optimal policy πn(s) and evaluation of states Vn(s) given
the policy πn(s). The evaluation of states for given policy
might be either computed solving set of equations or itera-
tively similarly as in the value iteration. The assignment uses
the iterative version which consists of repeated computation
of Qn(s, a) and Vn until the Vn meets the convergence
criterion.

3 IMPLEMENTATION

There are several implementation details that are worth.
First, while, the functions are defined as multidimensional
arrays — R(s) is replaced by an array R of shape |S|
where R[s] = R(s), P (s′|a, s) is replaced by P of shape

http://cw.fel.cvut.cz/wiki/_media/courses/b4b36zui/mdps_show.pdf
https://en.wikipedia.org/wiki/Markov_decision_process

2 LS2018, ASSIGNMENT 5 — GRIDWORLD

|S| × |A| × |S| where P[s, a, s′] = P (s′|a, s). Also Vn(s) is
saved as an array Vn of shape |S| and Qn(s, a) as Qn of
shape |S| × |A|.

The set of states S consists of all cells from the grid and
a terminal sink state which is an added state that cannot
be left (all action with lead back to it with probability 1)
and which has no reward for reaching it. All action from the
states on the grid that are considered to be terminal leads
to the sink state to prevent repeated application of rewards
that are associated with such states.

3.1 Environment

The task is to be implemented and the provided codes are in
python 3.6. The other necessary packages are NumPy Walt
et al. 2011, matplotlib Hunter 2007, seaborn Waskom et al.
2016.

It is recommended to use Anaconda distribution which
also contains a package manager which allows to install
many pre-compiled packages (which is especially beneficial
when using Windows as it is often problematic to compile
packages there).

4 TASK

The task consists of two parts, an implementative one and
experimental one. The goal of the implementative part is
to implement missing parts of several functions while the
experimental parts consists of several small experiments
with the GridWorld. The output of the assignment are
the implemented codes, script (or Jupyter notebook) for
launching the experiments, and report.

4.1 Implementative part [4p]

Your goal is to implement several helper functions
(Q_from_V, Q2V, Q2Vbypolicy, and Q2policy), evalu-
ation of the MDP for given policy (evaluate_policy),
value iteration (value_iteration), and policy iteration
(policy_iteration) in the file ZUI_MDP.py. You are
also provided a set of test cases (test_ZUI_MDP.py) that
can be used for testing your implementation using e.g.
unittest or nosetests modules. It is not necessary to
use the tests but it is recommended as the correctness of
your implementation will be tested similarly (mostly same
tests with just different parameterization).

4.2 Experimental part [6p]

Once you have correctly implemented all the necessary
functions, your goal is to experiment with the GridWorld
MDPs. You are required to do at least 4 different experi-
ments from which two are assigned (and are the same for
all of you) and you are required to come up with your
own ideas for the other two. All the experiments have
to be thoroughly described in the report — the settings,
used GridWorld parametrization, goals of the experiments,
results (including visualization) and (if necessary) a conclu-
sion.

0.0 0.2 0.4 0.6 0.8 1.0
p

0.0

0.2

0.4

0.6

0.8

1.0

va
lu

e

0
1
3
6
8

Figure 1. Example of output of Experiment 1 for the GridWorld 3x3 and
states 0, 1, 3, 6, and 8

4.2.1 Experiment 1: Policy switching based on action prob-
ability
Your goal is to analyze how the optimal policy changes
with the changes of action probability p for the predefined
GridWorld 3x4. The output is to be a list of values of p for
which there occurs a change in the optimal policy and also
a plot showing the valuation of states 0, 3, 6, 8, 9, 10, and
11 together with thresholds where the policy change occurs.
The plot should be similar to plot fig. 1 which shows the
Experiment 1 for the GridWorld 3x3 and states 0, 1, 3, 6,
and 8. The probability p should be on the x axis and the
valuation on the y axis.

4.2.2 Experiment 2: Policy switching based on action cost
Your goal is to analyze how the optimal policy changes with
the changes of action costs c ∈ [0,∞] for the predefined
GridWorld 5x5. The output is to be a list of values of
c for which there occurs a change in the optimal policy.
You also should show plots of the several most interesting
policies (you can use method GridWorld.plot) — the
exact policies you show are up to you.

4.2.3 Experiments 3 and 4 (or more)
You are required to come up with your own experiments
that should be at least as complex as the previous two exper-
iments. The possibilities are almost endless, e.g. measuring
the runtime based on the size of the grid, influence of both
action cost c and action probability p on certain states (you
would plot a heatmap where on the x axis would be action
probability p, on the y axis would be action cost c and the
color would encode the value of the given state),or simple
evolutionary algorithms for finding good policies (using
function evaluate_policy for evaluation the objective or
writing a custom evaluation function that solves equations
for evaluation the policy instead of iterating). At least one of
the experiments should be different from the experiments
described above (i.e. it is not sufficient to just take the
experiments described above and just change the GridWorld
instance to another predefined GridWorld instance).

You are required to include stand-alone scripts
named <username>_experiment_<n>.py (e.g.

https://www.anaconda.com/download/

B4B36ZUI, BE4B36ZUI 3

kuncvlad_experiment_2.py) that are launchable
in the described environment. For experiments running
longer than 5 minutes, write the approximate running
time in the report. Your experiment can be also in Jupyter
notebooks (.ipynb).

4.3 Report [2p]
You are required to describe all the steps in a short report.
The report has no fixed length limit but it is evaluated on the
basis of completeness and correctness of presented informa-
tion. You can get up to 2 points for the neatness and formal
requirements of the report — e.g. your figures should have
captions summarizing what is there, you should reference
figures from the text (usage of
cref{} is recommended), your report should have logical
structure, etc. You are required to hand in the report in the
PDF format (any PDF format that graders can open is ac-
ceptable but it is guaranteed that format PDF/A is fine). You
are not required to use LATEX but it is highly recommended,
furthermore a LATEX template ZUI_template.tex is pro-
vided for your use (and it is also recommended to use the
template).

5 GRADING

The whole assignment is worth 12 points in total. The im-
plementative part is for 4 points in total — implementation
of the helper functions is worth 1 point and the imple-
mentation of evaluate_policy, value_iteration, and
policy_iteration is worth 1 point for each function.
The experimental part is worth 6 points in total where
each experiment is worth 1.5 point (Note that the points
are transferable between experiments — a great experiment
might offset poorer experiment). The final 2 points are for
the report itself. Summary of the grading is in table 1.

subtask points
helper functions 1
evaluate_policy 1
value_iteration 1
policy_iteration 1
Experiment 1 1.5
Experiment 2 1.5
Experiment 3 1.5
Experiment 4 1.5
report 2
total 12

Table 1
Summary of points receivable for the assignment.

6 DEADLINE

The deadline for submission into the upload system is
22.5.2018 23:59:59 CES.

REFERENCES

[Hun07] John D. Hunter. “Matplotlib: A 2D Graphics
Environment”. In: Computing in Science & Engi-
neering 9.3 (2007), pp. 90–95. DOI: 10.1109/mcse.
2007.55. URL: http://dx.doi.org/10.1109/MCSE.
2007.55.

Figure 2. You can run the tests similarly as any other script — just keep
active the test file and click on Run

[Was+16] Michael Waskom et al. seaborn: v0.7.1 (June 2016).
June 2016. DOI: 10 . 5281 / zenodo . 54844. URL:
https://doi.org/10.5281/zenodo.54844.

[WCV11] Stefan van der Walt, S. Chris Colbert, and Gaël
Varoquaux. “The NumPy Array: A Structure for
Efficient Numerical Computation”. In: Comput-
ing in Science & Engineering 13.2 (Mar. 2011),
pp. 22–30. DOI: 10.1109/mcse.2011.37. URL: http:
//dx.doi.org/10.1109/MCSE.2011.37.

APPENDIX A
NOTES

Please follow the course webpage and the forum for up-
dates and additional information. In case of any ques-
tions, please write to the forum or write an email to
kuncvlad@fel.cvut.cz.

A.1 LATEX editor

Unless you have installed LATEX locally, it is recommended
to either use ShareLaTeX or Overleaf — these sites provide
online editors and also have many predefined templates and
also allow online collaboration (which might be useful for
your other projects). Both of them provide almost the same
functionality (they actually merged into one a year ago but
they still provide both services separately).

If you have LATEX installed locally, it is recommended to
set the matplotlib with LATEX which allows using LATEX
code inside the figure — e.g. for the legend or axis labels.

A.2 Using Unittests

While the tests can be launched from terminal, you can
launch them also directly from the PyCharm IDE. The usage
is very simple and is shown in figs. 2 and 3.

A.3 Virtual environment

It is recommended to use separate virtual environment for
your assignment. If you are using the Anaconda distribu-
tion, you can create new environment using

1 conda create -n ZUI_MDP python=3.6 numpy
seaborn matplotlib

which can be then activated using activate ZUI_MDP
on Windows and source activate ZUI_MDP on Linux.
More details are available in the documentation.

http://jupyter.org/
http://jupyter.org/
https://cw.felk.cvut.cz/brute/student/
https://doi.org/10.1109/mcse.2007.55
https://doi.org/10.1109/mcse.2007.55
http://dx.doi.org/10.1109/MCSE.2007.55
http://dx.doi.org/10.1109/MCSE.2007.55
https://doi.org/10.5281/zenodo.54844
https://doi.org/10.5281/zenodo.54844
https://doi.org/10.1109/mcse.2011.37
http://dx.doi.org/10.1109/MCSE.2011.37
http://dx.doi.org/10.1109/MCSE.2011.37
http://cw.fel.cvut.cz/wiki/courses/b4b36zui/tasks/task4-gridworld-en
https://cw.felk.cvut.cz/forum/forum-1494-page-1.html
https://www.sharelatex.com?r=8e97ffd0&rm=d&rs=b
https://www.overleaf.com/signup?ref=54db136ac70d
https://www.jetbrains.com/pycharm/
https://conda.io/docs/user-guide/tasks/manage-environments.html

4 LS2018, ASSIGNMENT 5 — GRIDWORLD

Figure 3. The results of the test shows in the lower left corner by default.
You can click on any of the tests to see details (and the script output in
case you print anything).

A.4 Saving figures
You should save the figures in a vectorized format which
is better for publication. This can be done easily in python
using

1 plt.savefig(’your_filename.pdf’, dpi=500,
transparent=True)

	Introduction
	Algorithms
	Value iteration
	Policy iteration

	Implementation
	Environment

	Task
	Implementative part [4p]
	Experimental part [6p]
	Experiment 1: Policy switching based on action probability
	Experiment 2: Policy switching based on action cost
	Experiments 3 and 4 (or more)

	Report [2p]

	Grading
	Deadline
	Appendix A: Notes
	LaTeX editor
	Using Unittests
	Virtual environment
	Saving figures

