
Paralelní a distribuované výpočty
(B4B36PDV)

Jakub Mareček, Michal Jakob

jakub.marecek@fel.cvut.cz

Artificial Intelligence Center
Department of Computer Science
Faculty of Electrical Engineering

Czech Technical University in Prague

Dnes s využitím materiálů Brana Bošanského: https://cw.fel.cvut.cz/b192/courses/b4b36pdv/lectures/start

Motivation

https://www.pluralsight.com/guides/time-profiling-neural-networks-model

Motivation

https://www.pluralsight.com/guides/time-profiling-neural-networks-model

Motivation

https://www.pluralsight.com/guides/time-profiling-neural-networks-model

Motivation

https://www.pluralsight.com/guides/time-profiling-neural-networks-model

Motivation

https://oneapi-src.github.io/oneDNN/v1.0/cpu_performance_profiling_8cpp-example.html

#include <iostream>
#include <vector>
#include "mkldnn.hpp"

using namespace mkldnn;

…

int main(int argc, char **argv) {
try {

simple_net();
std::cout << "ok\n";

} catch (error &e) {
std::cerr << "status: " << e.status << std::endl;
std::cerr << "message: " << e.message << std::endl;

}
return 0;

}

Parallel Programming
For numerical linear algebra

In the second lecture, we have seen
that within shared-memory parallel
programming, we have broadly four
options:
• Confinement: Do not share memory

between threads.
• Immutability: Do not share any

mutable data between threads.
• Thread-safe code: Use data types

with additional guarantees for
storing any mutable data shared
between threads, or even better, use
implementations of algorithms that
are already parallelized and handle
the concurrency issues for you.

• Synchronization: Use
synchronization primitives to prevent
accessing the variable at the same
time.

BLAS
For prototyping numerical linear algebra

A key tool within linear algebra and machine learning are
two ancient specifications, known as:

BLAS (``Basic Linear Algebra Subprograms''),
which covers vector addition, dot products, and linear combinations (this dates
back to 1979).
Level 2 added support for vector-matrix operations (1986),
and level 3 added support for matrix-matrix operations and
block-partitioned algorithms (1988).

LAPACK (``Linear Algebra Package''), which
covers matrix factorizations (LU, Cholesky and QR),
eigenvalue and least squares solvers.

BLAS
For prototyping numerical linear algebra

BLAS and LAPACK subroutines are all named naaop, where:

n suggests whether to use real floating-point numbers in
single (S) or double (D) precision,
or complex number with single (C)
or double (Z) precision.
aa denotes the assumptions on the matrix, e.g.,
diagonal (DI) specified by a vector, and
general matrix (GE).
op denotes the algorithm, e.g.,
matrix-matrix multiplication (MM), and
solving linear system (SV).

SGEMM is thus matrix-matrix multiplication of general dense matrices in single
precision, and DDOT is vector-vector dot product in double precision.

BLAS
For prototyping numerical linear algebra

http://www.netlib.org/blas/blasqr.pdf

BLAS
For prototyping numerical linear algebra

Most vendors of acclerators maintain their own BLAS
• implementation:
• AMD maintains rocBLAS,
• Apple maintains Accelerate,
• ARM maintains Arm Performance Libraries,
• Intel develops Intel Math Kernel Library (iMKL), and
• NVIDIA maintains cuBLAS and NVBLAS.

BLAS
For prototyping numerical linear algebra

Most vendors of acclerators maintain their own BLAS
• implementation:
• AMD maintains rocBLAS,
• Apple maintains Accelerate,
• ARM maintains Arm Performance Libraries,
• Intel develops Intel Math Kernel Library (iMKL), and
• NVIDIA maintains cuBLAS and NVBLAS.

Notable open-source implementation focussing mostly on CPUs are
ATLAS, BLIS (BLAS-like Library Instantiation Software), and OpenBLAS.
A special mention should be devoted to the ATLAS library, which
automatically optimizes itself for any architecture, including complicated
cache hierarchies.

BLAS
For prototyping numerical linear algebra

For C++ , there are multiple implementations of BLAS, loosely
speaking.

Libraries such as Armadillo, eigen, Intel OneAPI, LAPACK++, uBlas
are sometimes linked against ancient Fortran code, but provide
decent C++ interfaces.

eigen and CLBlast actually provide C++ implementations too.

Intel OneAPI Mathematical Kernels comes with excellent
documentation, examples, and support, but rather cumbersome
naming conventions.

BLAS
For prototyping numerical linear algebra

BLAS
For prototyping numerical linear algebra

In contrast, Boost.org uBlas provides a much more modern C++20-
only syntax, and can be linked to arbitrary vendor-provided BLAS
library.

BLAS
For prototyping numerical linear algebra

BLAS
For prototyping numerical linear algebra

BLAS
For prototyping numerical linear algebra

As you may know, the tensor
computations underlie much of modern
machine learning, in the form of training
deep neural networks. The TensorFlow
and PyTorch are key contenders
there, again easy to link against any
vendor-provided BLAS.

Libraries such as TensorFlow make make
it possible to exploit much of the
theoretically available processing power.
See, for example, Summit, a
supercomputer at the Oak Ridge National
Laboratory in Tennessee, USA.
It 9,216 POWER9 22-core CPUs
and 27,648 NVIDIA Tesla V100 GPUs,
each of which has 5,120 CUDA Cores. In
total, this means 141+ million cores with
circa 200 petaFLOPS performance.

BLAS
For prototyping numerical linear algebra

As you may know, the tensor
computations underlie much of
modern machine learning, in the
form of training deep neural
networks. The TensorFlow and
PyTorch are key contenders
there, again easy to link against
any vendor-provided BLAS.

Libraries such as TensorFlow
make make it possible to exploit
much of the theoretically
available processing power.
Consider the scaling for training
ResNet deep neural network on
ImageNet benchmark.

https://code.ornl.gov/olcf-analytics/summit/distributed-deep-learning-examples

Parallel Programming
For numerical linear algebra

In the second lecture, we have seen
that within shared-memory parallel
programming, we have broadly four
options:
• Confinement: Do not share memory

between threads.
• Immutability: Do not share any

mutable data between threads.
• Thread-safe code: Use data types

with additional guarantees for
storing any mutable data shared
between threads, or even better, use
implementations of algorithms that
are already parallelized and handle
the concurrency issues for you.

• Synchronization: Use
synchronization primitives to prevent
accessing the variable at the same
time.

Matrix-vector Multiplication
The easy part

a11 a12 a13 a14 a15

a21 …

…

a55

x1

x2

x3

x4

x5

X =

y1

y2

y3

y4

y5

𝑦! = #
"#!,…,&

𝑎!" . 𝑥"

Matrix-vector Multiplication
The easy part

Embarrassingly parallel:

a11 a12 a13 a14 a15

a21 …

…

a55

x1

x2

x3

x4

x5

X =

y1

y2

y3

y4

y5

𝑦! = #
"#!,…,&

𝑎!" . 𝑥"

P1

P2

…

Matrix-vector Multiplication
The easy part

Can you vectorize this?

Matrix-vector Multiplication
The easy part

x1

x2

x3

x4

x5

a11

a12

a13

a14

a15

. =

a11.x1

a12.x2

a13.x3

a14.x4

a15.x5

+ = y1

• We could pre-compute helper variables column-wise:

a11 a12 a13 a14 a15

a21 …

a31

a41

a51 a55

x1

x2

x3

x4

x5

X =

y1

y2

y3

y4

y5

𝑧"' = 𝑎"'. 𝑥'

P1
…

P2

𝑦" = #
'#!,…,&

𝑧"'

Matrix-vector Multiplication
The not-so-easy part

x1

x1

x1

x1

x1

a11

a21

a31

a41

a51

. =

a11.x1

a21.x1

a31.x1

a41.x1

a51.x1

x2

x2

x2

x2

x2

a12

a22

a32

a42

a52

. =

a12.x2

a22.x2

a32.x2

a42.x2

a52.x2

z1

z2

a11.x1

a21.x1

a31.x1

a41.x1

a51.x1

a12.x2

a22.x2

a32.x2

a42.x2

a52.x2

+ +…+ =

y1

y2

y3

y4

y5

Matrix-vector Multiplication
The not-so-easy part

What is not to like?

• We can reorder the matrices

a11 a12 a13 a14 a15

a21 …

a31

a41

a51 a55

a11 a21 a31 a41 a51 …

Matrix-vector Multiplication
The not-so-easy part

• We can reorder the matrices

Matrix-vector Multiplication
The not-so-easy part

Matrix-vector Multiplication
Trivial tricks are best

Matrix-vector Multiplication
The Actual Implementations

Matrix-Matrix Multiplication
The definition

a11 a12 a13

a21 …

…

X =

𝑐"' = #
(#!,…,)

𝑎"(. 𝑏('

b11 b12 b13

b21 …

…

c11 c12 c13

c21 …

…

𝑐"' = #
(#!,…,)

𝑎"(. 𝑏('

Also embarrassingly parallel:

but scheduling is a lot harder.

Matrix-Matrix Multiplication
The first parallel version

a11 a12 a13 a14

a21 …

…

• Division into blocks
(submatrices) b11 b12 b13 b14

b21 …

…

c11 c12 c13 c14

c21 …

…

𝑐!! += 𝑎!!. 𝑏!! + 𝑎!*. 𝑏*!
𝑐!* += 𝑎!!. 𝑏!* + 𝑎!*. 𝑏**

…

Matrix-Matrix Multiplication
The second parallel version

Matrix-Matrix Multiplication
The second parallel version

Matrix-Matrix Multiplication
The second parallel version

Solving Linear Systems
Gauss elimination

a11 a12 a13 b1

a21 … b2

… b3

a11 a12 a13 b1

0 a´22 a´23 b´2

0 0 a´33 b´3

Solving Linear Systems
Gauss elimination

Solving Linear Systems
Remember the Ongoing Evlution of OpenMP?

“The Ongoing Evolution of OpenMP”
https://www.osti.gov/pages/servlets/purl/1465188

Solving Linear Systems
Via Solving Least Squares

Solving Linear Systems
Via Solving Least Squares

Optimization
Parallel Aspects

https://pt.slideshare.net/ShaleenGupta6/parallel-coordinate-descent-algorithms

Next Steps

Parallel Programming (B4M35PAG)
GPGPUs (B4M39GPU)
Bc Dissertation
State Exams
MSc Dissertation
State Exams
…
PhD
…
Real-world?

Next Steps
State Exams

Hardwarová podpora pro paralelní výpočty:

(super)skalární architektury, pipelining,

spekulativní vyhodnocování, vektorové

instrukce, vlákna, procesy, GPGPU.

Hierarchie cache pamětí.

Komplikace v paralelním programování:

souběh (race condition), uváznutí (deadlock),

iluze sdílení (false sharing).

Podpora paralelního programování v C a

C++: pthreads, thread, jthread, atomic,

mutex, lock_guard.

Podpora paralelního programování v

OpenMP: sériově-paralelní model uspořádání

vláken (fork-join), paralelizovatelná úloha

(task region), různé implementace

specifikace. Direktivy parallel, for, section,

task, barrier, critical, atomic.

Techniky dekompozice programu: statické a

paralelní rozdělení práce. Threadpool a fronta

úkolů. Balancování a závislosti

(dependencies).

Techniky dekompozice programu na

příkladech z řazení: quick sort, merge sort.

Techniky dekompozice programu na

příkladech z numerické lineární algebry a

strojového učení: násobení matice vektorem,

násobení dvou matic, řešení systému

lineárních rovnic.

