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What comes next?



What comes next?
https://github.com/jmarecek/parallel-cpp/



What is SYCL?
A Specification

2015: SYCL 1.2 Specification
2022: SYCL 2020 Specification revision 6, 
https://registry.khronos.org/SYCL/specs/sycl-2020/html/sycl-2020.html



What is SYCL?
A Specification

https://www.khronos.org/files/sycl/sycl-2020-reference-guide.pdf



What is SYCL?
A Specification

• SYCL is a specification for parallel programming of diverse computing 
devices using standard C++20.

• Cheatsheet: https://www.khronos.org/files/sycl/sycl-2020-reference-
guide.pdf

• SYCL Academy: https://github.com/codeplaysoftware/syclacademy
• Reference: https://registry.khronos.org/SYCL/specs/sycl-2020/html/sycl-

2020.html

https://www.khronos.org/files/sycl/sycl-2020-reference-guide.pdf
https://www.khronos.org/files/sycl/sycl-2020-reference-guide.pdf
https://github.com/codeplaysoftware/syclacademy
https://registry.khronos.org/SYCL/specs/sycl-2020/html/sycl-2020.html
https://registry.khronos.org/SYCL/specs/sycl-2020/html/sycl-2020.html


What is SYCL?
A Specification

Prime implementations include
• Intel ComputeCpp™ with support for NVIDIA (via OpenCL) and AMD 

GPUs (via OpenCL) and Arm Mali GPUs (via OpenCL),
• Intel DPC++ and oneAPI with support for NVIDIA (CUDA) and Intel GPUs 

(oneAPI Level Zero) and Intel Altera FPGAs (OpenCL)
• AdaptiveCpp (formerly known as hipSYCL and OpenSYCL) with support 

for NVIDIA (CUDA) and AMD ROCm (clang HIP toolchain) and Intel GPUs 
(oneAPI Level Zero), as well as OpenMP and plain C++. Notably 
AdaptiveCpp adds GPGPU support for Parallel STL. 

• Reference implementation triSYCL with support for AMD Xilinx FPGAs.

See https://sycl.tech/#get-sycl



What is a GPGPU?
A Powerful Piece of Hardware

https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf



What is a GPGPU?
A Powerful Piece of Hardware

AMD Threadripper 3990X + NVIDIA GeForce RTX 4090
• Singlethreaded:

49 GFLOPS (0.05 %)
• Multithreaded: 

3732 GFLOPS (4%)
• Multithreaded with GPGPU: 

100 TFLOPS
@ CZK 200K

NVIDIA DGX:
• Singlethreaded: 

30+ GFLOPS (cca. 0.00001 %)
• Multithreaded: 

4 TFLOPS across 128 cores 
(cca. 0.0016 %)

• Multithreaded with GPGPU: 
2496 TFLOPS across 86016 cores 

@ $300K
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf



What is a GPGPU?
A massively parallel system

Let us briefly consider a particular example of the NVIDIA Ampere 
architecture of GeForce RTX 3080 or NVIDIA A100:
• There are seven Graphics Processing Clusters (GPCs), sharing up to 40 

MB of L2 cache and up to 40 GB of high-speed HBM2 memory 
• Within each GPC, there are 12 Streaming Multiprocessors (SMs).

https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf



What is a GPGPU?
A massively parallel system

Let us briefly consider a 
particular example of the 
NVIDIA Ampere architecture:
• Within each SM, there are 

128 cores working with 
single-precision floating-
point (FP32) precision and 
two double-precision (FP64) 
units. There is also 128 KB 
of L1/Shared Memory, 
shared across the 128 cores. 

• Each SM is partitioned into 
four processing blocks (or 
partitions), each with a few 
kilobytes of L0 instruction 
cache and one warp 
scheduler.



What is a GPGPU?
A massively parallel system with plenty of restrictions

Altogether, A100 has 10752 cores, but their use is rather constrained. 

Threads should be running in warps of at least 32 for best performance. 
Each warp can have at most 32 threads and runs them in lock-step on one 
processing blocks. 

Each streaming multiprocessors can run at most 64 warps of 32 
threadblocks (i.e., 2048 threads per SM). 

Further constraints are due to the register use: each thread can use at 
most 255 registers, but there are only 65536 32-bit registers for the SM 
(yielding a limit of 257 threads per SM, at full register utilization). 

Further constraints are due to the use of memory hierarchy 
(esp. the 128 KB of shared memory, shared across the 128 cores). 



What is a GPGPU?
A massively parallel system with plenty of restrictions

Similar to the CPU, the GPU hence has a memory hierarchy:
• L1 cache with 33 cycle latency and shared memory with even lower 

latency, based on microbenchmarking
• L2 cache with up to 2080 GB/s read bandwidth (200 cycle latency), 

based on microbenchmarking
• on-board HBM2 memory with 1555 GB/sec bandwidth (290 cycle 

latency)
• intra-board NVLink with 50 Gb/sec per signal pair bandwidth
• access to RAM via PCI Express Gen 4 (PCIe Gen 4) at 31.5 GB/sec
• optionally, intra-node communication at 200 Gbit/sec using InfiniBand.

The interaction of the GPGPU memory hierarchy and CPU memory 
hierarchy is non-trivial, but summarized by the suggestion to reduce the 
number and volume of transfers between the host and the GPGPU, even 
at the price of increasing the volume of computation substantially. 
(Compare the numbers above to M.2 PCIe Gen4 SSDs with 7 GB/sec 
bandwidth.)



Options for Programming GPGPUs

1991: OpenGL
1996: Direct3D
2006: OpenGL passes to Khronos
2007: NVIDIA CUDA (Compute Unified 
Device Architecture)
2009: OpenCL
2016: Vulkan replaces OpenGL
2017: OpenCL replaces OpenGL ES
2020: OpenCL 3.0 replaces OpenCL C++ 
Kernel Language, with C++ for OpenCL.
2021: Nvidia Ampere and Maxwell supports 
OpenCL 3.0
2022: Arm Mali-G615 supports OpenCL 3.0



Options for Programming NVIDIA GPGPUs
NVIDIA CUDA C++

https://hpc-wiki.info/mediawiki/hpc_images/a/ab/GPU_tutorial_saxpy_cuda_c.pdf

We have seen OpenMP offloading:



Options for Programming NVIDIA GPGPUs
NVIDIA CUDA C++



Options for Programming NVIDIA GPGPUs
NVIDIA Thrust: The C++ Parallel Algorithms Library

https://github.com/NVIDIA/thrust



Options for Programming NVIDIA GPGPUs
SYCL

The Thrust code is beautiful, but we it is not easily portable to another 
platform (AMD, Intel, ARM Mali). There may be several good reasons not to 
be tied specifically to NVIDIA:
• In consumer PC market, the biggest vendor of PC GPU is Intel with 71 

percent of the market by unit count as of Q4 2022. NVIDIA has a market 
share of 17 percent and AMD 12 percent. 

• In discrete PC GPU market, NVIDIA occupies 80-90% of the market, 
according to various estimates. Note that this market is rapidly declining.

• In mobile GPGPUs, ARM Mali is estimated to have close to 40% market 
share.  

• In gaming consoles, both Xbox and PlayStation use accelerators by AMD. 
• In high-performance computing, NVIDIA is popular, but the top 1 system 

(Frontier) currently uses AMD Instinct™ 250X accelerators, and number of 
other systems use ARM architectures. 



Options for Programming NVIDIA GPGPUs
SYCL



What comes next?

• Structuring computation
• Device selector
• Queue
• Work items, Work groups, and Kernels

• Synchronization primitives
• Unified shared memory
• Buffers and accessor
• Barriers

Asynchronous errors



Structuring computation
Selectors

• Selectors are used to pick device to run on.
• In header <device_selector.h>, there is an abstract class device_selector

with numerous implementations such as gpu_selector, host_selector, 
opencl_selector, and default_selector.

• One can also implement its own subclasses that specify to the runtime how 
to perform device selection.

• For example, it may query the amount of memory on the GPGPU and if it is 
sufficient, use GPGPU. If it were not sufficient, it could use CPU as a 
fallback. 

• In a device_selector, one overrides 
int operator()(const sycl::device& dev) const override
and returns an integer for the priority. The higher integer, the higher priority. 



Structuring computation
Queues

• A queue is a SYCL construct through which we orchestrate work on the 
device.

• In a constructor of a queue, we pass the device, which cannot be changed 
later, but one can create further queues for the same device.

• A key method is queue.submit. 

• In one memory model, a command group is a 
callable (a named type, a lambda function, or 
std::function), which receives a ``command 
group handler'' from the SYCL as an argument 
of operator() so as to access the API. 

• A command group objects may also combine 
the callable and a set of requirements (edges of 
a task-graph) and accessors. Based on the 
accessors, the task-graph can be constructed 
automatically. 

https://github.com/codeplaysoftware/syclacademy/blob/main/Lesson_Materials/Lecture_02_Enqueuing_a_Kernel/composing_a_command_group.png



Structuring computation
Queues

• Asynchronous execution also means an undefined order of execution, 
• unless we use wait or suggest the dependencies between the ``actions'' in 

the form of a task graph.
• We can also declare the queue to be in-order, similar to sorted in OpenMP:

queue q{property::queue::in_order()};



Structuring computation
Work Items, Work Groups, Kernels

• Within an action submitted to the queue, we execute kernels.
• Kernels are callables

• receiving an index to the run of the kernel as auto idx or id<1> idx or 
similar.

• returning nothing; with void return type 
• which cannot allocate memory dynamically
• which cannot use certain other features (e.g., RTTI). 

• Within the single_task function method of the ``command group handler'' 
API, we pass a C++ function object as a parameter and have it executed 
once. 

• Kernel can also be a class that overloads operator void operator()(id<1> idx).

• Most often, we want the kernel executed many times, in a data-parallel 
fashion. 

• In the so-called nd-ranges (``kernel grid'' on NVIDIA), we partition the index-
set of data hierarchically first into into global ranges, and then into local 
ranges. 

• The local range corresponds to a work-group and each element 
corresponds to a work item (= single run of a kernel). 



Structuring computation
Work Items, Work Groups, Kernels

• The work-group local memory can often be accessed very efficiently, via 
local_accessor, and can be used to coordinate multiple work items 
(= single runs) within a work group.

• The threads of one work group (``thread block'' on NVIDIA) are sent to one 
Streaming Multiprocessors (SM), but one SM can execute threads by 
multiple work groups in its multiple processing blocks. At most one work 
group per processing block.

• Recalling the memory hierarchies of GPGPUs, each work item can access:
• private memory
• work-group local memory
• global memory accessible to all work items within an nd-range, but 

whose access can be very expensive, as it involves copying data 
across PCIe bus

• constant memory, which is a part of the global memory, but which can 
be very cheap to access. 



Memory Access

At the cost of some latency, one can use a unified shared memory across 
both the host and the device, wherein one uses the same pointer on both 
the host and the device. This requires:
• template <typename T> T* malloc_shared(size_t count, const queue& 

q, const property_list &propList = {})
• void free(void* ptr, sycl::queue& syclQueue)

Alternatively, one can use buffers and accessors for complete control. 



Memory Access

• A buffer is a constrained view of a 1-, 2-, or 3-dimensional array.
• The constraints specify how it can be accessed on the host, the device 

or both. 
• A buffer is constructed with a pre-allocated, trivially copyable C++ 

objects (e.g., STL container). 
• Within the contract for the use of the buffer, one promises not to 

amend the memory used to initialise the buffer during the lifetime of 
the buffer. 

• Buffer promises to update the memory in the host upon destruction, in 
RAII spirit. 



Memory Access

In the case of one-dimensional arrays, one can call the constructor with 
an interator:
template <typename InputIterator> buffer(InputIterator first, 
InputIterator last, const property_list &propList={});

Once in a kernel, an accessor specifies constraints on the use of a buffer 
therein. The key choices are:
• access mode: read, write, and read_write, where write access mode 

also implicitly defines dependencies between tasks
• access target: global_memory suggests that the data resides in the 

global memory space of the device. 
• no_init suggests that the initial data can be discarded (not moved to 

the device). 



Memory Access



Error Handling

The SYCL implementation may throw ``synchronous errors'' (one at a 
time).

In contrast, asynchronous errors are produced by a command group or a 
kernel (with many kernels running at any point). By default, asynchronous 
errors are not propagated to the host. 

One can, however, defined and error handler and pass it to a queue
queue q(default_selector{}, exception_handler);
The error handler receives an exception_list, wherein one can iterate over
std::exception_ptr.

See https://www.codingame.com/playgrounds/48226/introduction-to-
sycl/error-handling for a great tutorial with code that is editable, 
compilable, and runnable online. Let us simplify their main example in the 
next slide. 



Error Handling



Building with SYCL



What have we seen?

• Structuring computation
• Device selector
• Queue
• Work items, Work groups, and Kernels

• Synchronization primitives
• Unified shared memory
• Buffers and accessor
• Barriers

Asynchronous errors


