
Paralelní a distribuované výpočty
(B4B36PDV)

Jakub Mareček
jakub.marecek@fel.cvut.cz

Artificial Intelligence Center
Department of Computer Science
Faculty of Electrical Engineering

Czech Technical University in Prague

What comes next?

What comes next?
https://github.com/jmarecek/parallel-cpp/blob/main/static/2023March15.pdf

What is OpenMP?
A Specification

2015: http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
2020: https://www.openmp.org/wp-content/uploads/OpenMP-API-
Specification-5-1.pdf
2022: https://www.openmp.org/wp-content/uploads/OpenMP-API-
Specification-5-2.pdf

http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-1.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-1.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-2.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-2.pdf

What is OpenMP?
A Specification

• OpenMP is a specification for parallel programming of shared-memory
systems in Fortran, C, and C++.

• The current version of the specification can be downloaded from
https://www.openmp.org/wp-content/uploads/OpenMP-API-
Specification-5-2.pdf with many examples at
https://github.com/OpenMP/Examples

• The generally does not provide any guarantees as to how a particular
directive or function is implemented.

• This also means that running on a different hardware may result in
different order of execution of floating-point operations and vastly
different performance.

• There is a long history of the evolution of OpenMP since 1997, from a
50-page long specification of OpenMP 1.0.

https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-2.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-2.pdf
https://github.com/OpenMP/Examples

What is OpenMP?
A Specification

Prime implementations include
• libgomp (GOMP) for GCC,
• libomp for clang, and
• liomp5 (IOMP) for ICC/Clang.
There are also two “subprime” implementation available in Microsoft Visual
Studio, which has its own OpenMP runtime (/openmp) and an experimental
support (/openmp:llvm) for the clang/llvm OpenMP runtime, in both cases
at version 2.0. If you wish to use Microsoft Visual Studio, notice that Intel
oneAPI release 2023.0 oficially supports Microsoft Visual Studio
2022.

What is OpenMP?
A Specification

• The specification is built on top of the fork-join model of parallel
execution (sériově-paralelní model uspořádání vláken).

By Wikipedia user A1 - w:en:File:Fork_join.svg, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=32004077

What is OpenMP?
A Specification

• The specification is built on top of the fork-join model of parallel
execution (sériově-paralelní model uspořádání vláken).

• Traditional implementations of OpenMP have been rather closely built on
top of Pthreads, which results in the lack of fine-grained
scheduling, memory management, network management, signaling, etc.

• The lack of fine-grained scheduling notably meant the lack of user-level
threads (co-routines) and the lack of queries as to the number of
hardware threads utilized by other processes, which often results in high
overhead when the number of threads (across all processes!) increases
above the number of hardware threads supported.

• Since OpenMP 5.0, the distinction between threads and tasks has been
erased and thread teams are also cast into tasks. There are now also
OpenMP implementations over lightweight threads, notably (BOLT is
OpenMP over Lightweight Threads, https://www.bolt-omp.org/).

What is OpenMP?
A Specification

“The Ongoing Evolution of OpenMP,”https://doi.org/10.1109/JPROC.2018.2853600

What is OpenMP?
A Specification

• OpenMP specifies preprocessor directives (pragmas) and a library of
functions exported via omp.h.

• Many OpenMP programs use only the preprocessor directives, which
makes it possible to compile them as serial code even without OpenMP-
aware compiler.

• Ideally, one and the same program written with OpenMP should be
possible to run as serial code, or with any number of threads.

What comes next?

• Structuring code
• OpenMP Task Region
• Threads and their Sizing
• Section
• Task
• Kernels, Teams, and Targets

• Synchronization primitives
• Atomic variables
• Mutexes and locks
• Critical sections
• Barrier
• Fences and Flushes

• For each

“The Ongoing Evolution of OpenMP,”https://doi.org/10.1109/JPROC.2018.2853600

Structuring code
Task Region

• Initially, OpenMP application starts with a single thread (initial/master
thread). This can spawn parallel regions, typically with multiple threads in
a thread pool (``thread team'') in the fork-join manner.

• This means that in any thread, one can either wait for all the ``sibling''
threads to finish (``join them'') or spawn a further, nested parallel region.

• A key construct in OpenMP is thus #pragma omp parallel, which
delineates a parallel region and opens a ``team of OpenMP threads'',
which could be seen as a thread pool of threads or user-level threads.

• By default, the number of threads is set based on the available hardware
threads, but this can be affected by the environment variables
(OMP_NUM_THREADS) and modifiers of the pragma (num_threads(2)) and
function calls (omp_set_num_threads()).

Structuring code
Task Region

Structuring code
Task Region

The parallel construct can take a number of modifiers, including:
• num_threads: number of threads to use in the team
• private (list of variables): those variables will be private to each thread
• firstprivate (list of variables): those variables will be private to each thread,

but initially their value will be copied from the master thread using the default
copy constructor.

• lastprivate (list of variables): those variables will be private to each thread,
but at the end, their value will be copied to the master thread using the
default copy constructor.

• shared (list of variables): these variables will be shared between the master
thread and all threads in the new team. It is the programmer’s responsibility
to keep the variables constructed as long as the parallel region is running

• default : values of private, firstprivate, shared, none suggest what should
be the default behaviour for variables not listed above. The default is shared ,
which is suboptimal from both performance and thread-safety perspective. It
is wise to issue default(none) .

Structuring code
Task Region

The parallel construct can take a number of modifiers, including:
• reduction (reduction-identifier : list) suggests that variables in list should be

treated as shared, when they are used by the function reduction-identifier ,
which could also take the special values of +, -, *, \&, |, ^, ||, max, min. The list
can include array elements and, when reduction-identifier is a static function
of a class, accessible data objects of the object.

• proc_bind : values of master and close and spread suggest how far from the
master thread should be executed the new threads (same core, close in non-
uniform architectures, as far as possible in non-uniform architectures).

Structuring code
Task Region

The parallel construct can take a number
of modifiers, including:
• reduction (reduction-identifier : list)

suggests that variables in list should
be treated as shared, when they are
used by the function reduction-
identifier , which could also take the
special values of +, -, *, \&, |, ^, ||, max,
min. The list can include array
elements and, when reduction-
identifier is a static function of a class,
accessible data objects of the object.

• proc_bind : values of master and
close and spread suggest how far from
the master thread should be executed
the new threads (same core, close in
non-uniform architectures, as far as
possible in non-uniform architectures).

The reduction produces a single value
from an associative operations such
as addition, multiplication, taking of
the minimum, maximum, or custom
associative functions. The goal is for
each thread to run the reduction with
a private copy and then to produce
the final result with the same
reduction, perhaps in a hierarchical
fashion.

Structuring code
Task Region

Whether the nested
parallel regions create
their own thread teams
or use the existing
thread teams depends
on settings that we can
affect through
omp_set_nested, or
environment variables
OMP_NESTED (which
can be true or false)
and
OMP_MAX_ACTIVE_L
EVELS , which controls
the maximum number
of nested active
parallel regions.

Structuring code
Threads and their Sizing

As has been mentioned
above, ideally one and
the same program
written with OpenMP
should be possible to
run as serial code, or
with any number of
threads.

This requires sizing the
work in each thread
depending on the
number of threads:

https://github.com/OpenMP/Examples/blob/main/sources/Example_parallel.1.c

Structuring code
Sections

An alternative, non-iterative
structuring of the code is
possible with sections.
Each section is a block of
code executed by one
thread of the current thread
team (corresponding to the
innermost enclosing
parallel region).
One can use private,
firstprivate, lastprivate,
and reduction modifiers,
similar to the parallel
construct.
There is an implied barrier
of the sections region,
unless eliminated by a
nowait clause.

Structuring code
Sections

An alternative, non-iterative
structuring of the code is
possible with sections.
Each section is a block of
code executed by one
thread of the current thread
team (corresponding to the
innermost enclosing
parallel region).
One can use private,
firstprivate, lastprivate,
and reduction modifiers,
similar to the parallel
construct.
There is an implied barrier
of the sections region,
unless eliminated by a
nowait clause.

Structuring code
Tasks

• The closest to a
coroutine in OpenMP is
the concept of a task.

• While it does not come
with a promise of an
implementation with a
user-level thread library
(cf. Argobots, Converse
threads, Qthreads,
MassiveThreads,
Nanos++, Maestro,
GnuPth,
StackThreads/MP,
Protothreads, Capriccio,
StateThreads, TiNy-
threads, etc), it often is
implemented thus.

Structuring code
Tasks

• There is a nascent support for
the use of GPGPUs via target
construct.

• While the block following the
target construct can be
arbitrary, in principle, most
GPUs are not able to support
arbitrary code.

• Specifically, there limitations on
the use of synchronization
primitives and coherence
among L1 caches.

• Ideally, one should combine
the offloading of the code to
the GPGU (via the target),
across multiple partitions (via
teams construct) etc. This can
get quite non-trivial:

Structuring code
Teams and Targets

• There is a nascent support for
the use of GPGPUs via target
construct.

• While the block following the
target construct can be
arbitrary, in principle, most
GPUs are not able to support
arbitrary code.

• Ideally, one should combine
the offloading of the code to
the GPGU (via the target),
across multiple partitions (via
teams construct.

• We could also use nowait as in
other OpenMP constructs, but
that does not match the
``lockstep'' execution on the
GPGPUs.

https://hpc-wiki.info/mediawiki/hpc_images/a/ab/GPU_tutorial_saxpy_cuda_c.pdf

Structuring code
Teams and Targets

• There is a nascent support for
the use of GPGPUs via target
construct.

• While the block following the
target construct can be
arbitrary, in principle, most
GPUs are not able to support
arbitrary code.

• Ideally, one should combine
the offloading of the code to
the GPGU (via the target),
across multiple partitions (via
teams construct.

• We could also use nowait as in
other OpenMP constructs, but
that does not match the
``lockstep'' execution on the
GPGPUs.

Building the code
Teams and Targets

Compiling OpenMP with offloading is non-trivial. Most likely, you have used gcc -
fopenmp, so far. Depending on what GPGPUs you wish to target, you may need
to switch:
• NVIDIA CUDA Compiler Driver NVCC may be the easiest to use with NVIDIA

hardware. For A100 of the RCI cluster, use cc80: nvcc –mp=gpu -gpu=cc80
• clang/LLVM compilers uses clang++ -fopenmp -fopenmp-targets=<target

triple>, where the triple is documented at
https://llvm.org/doxygen/Triple_8h_source.html

• AMD ROC is built on top of Clang, so starting with clang -fopenmp -offload-
arch=gfx908 is a good idea.

• Intel Compiler Collection is, since 2021, also built on top of Clang, except still
uses the Intel OpenMP library, so you start with icx -fiopenmp -fopenmp-
targets=<target triple>.

What comes next?

• Structuring code
• OpenMP Task Region
• Threads and their Sizing
• Section
• Task
• Kernels, Teams, and Targets

• Synchronization primitives
• Atomic variables
• Mutexes and locks
• Critical sections
• Barrier
• Fences and Flushes

• For each

Synchronisation Primitives
Atomic Variables

OpenMP has a rich support for
atomic variables. One can
specify:
• operations for which the

atomicity is enforced, out of
read, write, update,
capture, out of which
update is the default.
Capture makes it possible to
use operators such as += ,
e.g., {v = x; x binop= expr; .

• memory order, out of
seq_cst, acq_rel, release,
acquire, relaxed as
discussed in two weeks ago.
The default is relaxed-
consistency shared memory
model.

• N.B. use {} after atomic!

Synchronisation Primitives
Mutexes

OpenMP has only a
limited support for
mutexes, as in does
not support any
“resource acquisition is
initialization’’ (RAII)
variant,
which makes them
hard to use correctly.

One can, however,
construct one own's
RAII variant.

https://www.intel.com/content/www/us/en/develop/documentation/advisor-user-guide/top/model-threading-designs/add-parallelism-to-your-program/replace-annotations-with-
openmp-code/openmp-locks.html?wapkw=openmp%20locks

Synchronisation Primitives
Critical Sections

• Instead of mutexes,
one can safely use
critical sections in
OpenMP.

• A critical section is a
block of code which
can be executed by
at most one thread at
one time.

• This can be used to
protect non-trivial
non-associative
update
operations, for which
we cannot use
reductions.

Synchronisation Primitives
Barrier

• OpenMP provides a straightforward,
explicit barrier construct.

• Especially with nested parallel
regions, the behaviour can be quite
non-trivial. All threads of the current
team must complete execution of all
tasks bound to the same parallel
region prior to continuing past the
barrier. What is the current team,
however, e.g., whether it is created
by the innermost enclosing parallel
region, depends on the settings of
the nesting.

• Barrier is also implied by the entry
and exit in parallel regions. There is
also an implicit barrier at the end of a
for, sections, single, scope, and
workshare constructs, unless one
explicitly adds a nowait clause.

Synchronisation Primitives
Barrier

• OpenMP provides a straightforward,
explicit barrier construct.

• Especially with nested parallel
regions, the behaviour can be quite
non-trivial. All threads of the current
team must complete execution of all
tasks bound to the same parallel
region prior to continuing past the
barrier. What is the current team,
however, e.g., whether it is created
by the innermost enclosing parallel
region, depends on the settings of
the nesting.

• Barrier is also implied by the entry
and exit in parallel regions. There is
also an implicit barrier at the end of a
for, sections, single, scope, and
workshare constructs, unless one
explicitly adds a nowait clause.

Synchronisation Primitives
Fences and Flushes

As we have suggested above, the default memory ordering is relaxed.

Similarly to a memory fence, the flush construct provides point at which a
thread is guaranteed to have a consistent view of memory.

The flush is also implied by the entry and exit in parallel regions, critical regions,
operations with locks etc.

Algorithms
Last but not least, the most frequent “idiom”

While OpenMP does not really implement any algorithms, some of the data-
parallel constructs are similar to algorithms in the STL library. Notably, OpenMP
makes it possible to use “for each’’.

Algorithms
Last but not least, the most frequent “idiom”

While OpenMP does not really implement any algorithms, some of the data-
parallel constructs are similar to algorithms in the STL library. Notably, OpenMP
makes it possible to use “for each’’.

Exercises

A simple exercise is to go through the examples at:
https://github.com/OpenMP/Examples
to understand the syntax in full.

A more demanding exercise may be to consider a simple ray tracer
https://github.com/ssloy/tinyraytracer/blob/master/tinyraytracer.cpp
with basic OpenMP parallelization and to try to target a GPGPU.

https://github.com/OpenMP/Examples

Backup Slides

Let us briefly consider a particular example of the NVIDIA Ampere
architecture of GeForce RTX 3080 or NVIDIA A100:
• There are seven Graphics Processing Clusters (GPCs), sharing up to 40

MB of L2 cache and up to 40 GB of high-speed HBM2 memory
• Within each GPC, there are 12 Streaming Multiprocessors (SMs),
• Within each SM, there are 128 cores working with single-precision

floating-point (FP32) precision and two double-precision (FP64) units.
There is also 128 KB of L1/Shared Memory, shared across the 128 cores.

• Each SM is partitioned into four processing blocks (or partitions), each
with a few kilobytes of L0 instruction cache and one warp scheduler.

Altogether, A100 has 10752 cores, but their use is rather constrained. Each
warp can have at most 32 threads and runs them in lock-step on one
processing blocks. Each streaming multiprocessors can run at most 64
warps of 32 threadblocks (i.e., 2048 threads per SM). Further constraints
are due to the register use: each thread can use at most 255 registers, but
there are only 65536 32-bit registers for the SM (yielding a limit of 257
threads per SM, at full register utilization). Further constraints are due to
the use of memory hierarchy (esp. the 128 KB of shared memory, shared
across the 128 cores).

Backup Slides

Similar to the CPU, the GPU hence has a memory hierarchy:
• L1 cache with 33 cycle latency and shared memory with even lower

latency, based on microbenchmarking
• L2 cache with up to 2080 GB/s read bandwidth (200 cycle latency),

based on microbenchmarking
• on-board HBM2 memory with 1555 GB/sec bandwidth (290 cycle

latency)
• intra-board NVLink with 50 Gb/sec per signal pair bandwidth
• access to RAM via PCI Express Gen 4 (PCIe Gen 4) at 31.5 GB/sec
• optionally, intra-node communication at 200 Gbit/sec using InfiniBand.

The interaction of the GPGPU memory hierarchy and CPU memory
hierarchy is non-trivial, but summarized by the suggestion to reduce the
number and volume of transfers between the host and the GPGPU, even
at the price of increasing the volume of computation substantially.
(Compare the numbers above to M.2 PCIe Gen4 SSDs with 7 GB/sec
bandwidth.)

Backup Slides

Backup Slides

Backup Slides

