
Paralelní a distribuované výpočty
(B4B36PDV)

Jakub Mareček
jakub.marecek@fel.cvut.cz

Artificial Intelligence Center
Department of Computer Science
Faculty of Electrical Engineering 

Czech Technical University in Prague



What comes next?



What comes next?



What comes next?

• Structuring code
• Thread
• Jthread
• Coroutines

• Atomic variables
• Mutexes and locks
• Barrier

• For each
• Reduce
• Merge



Structuring code
Threads

• C++11 had a very basic support for threads, in terms of std::thread of 
header thread. 

• The thread starts running once the constructor is called. 
• The object is not CopyConstructible nor CopyAssignable. 

The challenge in C++11 threads:
• one needs to call join or detach prior to the destructor being called. If 

neither was called, the program was std::aborted.
• Prior to calling either, one needs to check whether the thread is joinable().
• At the same time, it is almost impossible to handle exceptions while being 

able to call join correctly.
• The use of the C++11 thread is thus considered harmful and we will present 

only two short examples.



Structuring code
Threads

• The use of the C++11 thread is thus considered harmful and we will present 
only two short examples.



Structuring code
Threads



Structuring code
C++20 jthread

• C++20 adds a new class jthread (``joining threads''), which does not require a 
call to join or detach. Instead, the destructor waits for completion of the code 
(``joins'') automatically.

This is an example of the 
``resource acquisition is 
initialization'' idiom.
In RAII, the resource allocation is 
tied to an object's lifetime and is 
hence a class invariant. 
In a constructor, one allocates 
the resources. 
In a destructor, one releases the 
resources. 
There is no risk of a resource 
leak.

• Notice that the example would very like result in abnormal program 
termination, if we changed jthread to thread. (Why?)



Structuring code
C++20 jthread

• When we use standard output, it is prudent to wrap it in a syncstream:



Structuring code
C++20 jthread

• Rather commonly, one uses the lambda function to define the thread.

(This is the []().)



Structuring code
C++20 jthread

• When we pass the first argument of type std::stop_token token, we request 
the thread to stop its execution by calling request_stop() on the jthread
object:



Structuring code
C++20 jthread

One can define 
std::stop_callback
object inside the 
thread, whose 
constructor takes the 
stop token and a 
function.

The function gets 
executed, when the 
thread is requested 
to stop via the 
std::stop_token.



• Within a particular thread, one may utilize multiple
coroutines, which can be seen as subroutines that can run in 
multiple steps, but sometimes can serve as a light-weight
alternative to hardware threads. 

Structuring code
Coroutines

https://blog.eiler.eu/posts/20210512/images/coroutines.png



• Coroutines can be called, can return when completed, but also
can suspend themselves, yielding control and partial results, and 
be resumed by another co-routine. 

• Typical uses involve generators and factories and various other
concepts within ``lazy evaluation'', as well as event-driven
architectures within cooperative multi-tasking. 

• That is: two coroutines within one thread never run in parallel, 
but one can have the runs of two or more coroutines
interleaved. We can suspend a co-routine in one thread and 
resume it within another thread. 

• As it turns out, the ``context switch'' with user-level threads has 
a similar cost to a function call or suspending a coroutine
(co_yield). Indeed, coroutines are typically implemented with
user-level threads, which leads to cheaper context-switch 
compared with hardware threads. Within the user-level threads, 
one can distinguish stackful and stackless versions, where
coroutine state is saved on the heap (as in C++). 

Structuring code
Coroutines



Structuring code
Coroutines

In C++23 or 26, we hope to see some standard syntax for defining coroutines 
(cf. P2502), such as:



Structuring code
Coroutines

In terms of using the coroutine, there are three new keywords:
• co_await awaiter suspends computation and block the co-routine until the 

computation is resumed by another co-routine calling ``resume'' method of 
the present coroutine. In the process, it tests whether it is possible to 
suspend the computation using an awaiter such as std::suspend_always (or 
an awaitable object, more generally, as discussed below) and, if so, saves all 
local variables to a heap-allocated handle.

• co_yield yields a value and suspends computation as above, and 
• co_return returns a value. (There is no notion of an optional return type in-

built.)



Structuring code
Coroutines

A difficulty in using coroutines is the fact that the coroutine may live longer 
than the scope it has been called from. It is hence not advisable to pass by 
reference, except perhaps std::ref or std::cref. 

One can either pass by value or pass, e.g., std::unique_ptr:



Structuring code
Coroutines

Unfortunately, defining the coroutine in C++20 take some more effort. 

In particular, it requires:
• defining the behaviour of the coroutine, which is known as a promise

(different from std::promise), and requires one returns the type used to access 
the state of the coroutine on the heap, which is known as the handle, 

• defining how to store the state of the coroutine on the heap, using template 
class std::coroutine_handle parametrized by the promise

Clearly, one needs to declare one, define the other, and then return to declare 
the first one. We will see how to do this later.

Optionally, we can also define an awaiter, which controls suspension and 
resumption behaviour.



Structuring code
Coroutines

First, we need to be able to define a promise class, which defines the behaviour
of the coroutine by implementing methods:
• coroutine get_return_object() is called to inialize the coroutine and create the 

coroutine handle
• std::suspend_always initial_suspend(), suggests whether the coroutine starts 

right after initialization 
std::suspend_always final_suspend() noexcept, which can be rather 
formulaic std::suspend_always() 

• void return_void() or void return_value(const auto& value), which is called 
upon reaching the end of the coroutine and upon reaching co_return. The 
latter (return_value) often just stores the result locally.

• void unhandled_exception(), which can be rather formulaic std::terminate(), 
or can save the exception via std::current_exception().



Structuring code
Coroutines

The promise class is instantiated for each instance of the coroutine, and its 
methods are called as follows:



Structuring code
Coroutines



Structuring code
Awaiters

Finally, let us consider awaiters, which can be called when a coroutine is 
suspended or resumed.
Key methods of an awaiter include:
• await_ready() is called immediately before suspension of a coroutine. If it 

returns true, the coroutine will not be suspended.
• await_suspend(handler) is called immediately after the suspension of the 

coroutine. The handler of type std::coroutine_handle can be used to pass 
the state of the coroutine (e.g., to another thread).

• await_resume() is called when the coroutine is resumed after a successful 
suspension. If it returns a value, this will be returned by the co_await
routine.

The awaiters we have seen so far (std::suspend_never() and 
std::suspend_always()) returned boolean constants in await_ready()



Structuring code
Awaiters

By defining await_transform() in the promise type, the compiler will use 
co_await promise.await_transform(<expr>) instead of any call of co_await
<expr> in the coroutine.



Structuring code
Our Own Generator



Structuring code
Our Own Generator



Structuring code
Our Own Generator



Structuring code
Our Own Message-Passing



Structuring code
Our Own Message-Passing



Structuring code
Our Own Message-Passing



What comes next?

• Structuring code
• Thread
• Jthread
• Coroutines

• Atomic variables
• Mutexes and locks
• Barrier

• For each
• Reduce
• Merge



Synchronisation Primitives
Atomic Variables

Since C++11, there is an excellent support for atomic variables in header 
<atomic>. The primary template can be instantiated with types that are 
TriviallyCopyable, CopyConstructible, and CopyAssignable.



Synchronisation Primitives
Atomic Variables

Since C++11, there is an excellent support for atomic variables in header 
<atomic>. The primary template can be instantiated with types that are 
TriviallyCopyable, CopyConstructible, and CopyAssignable.



Synchronisation Primitives
Atomic Variables



Synchronisation Primitives
Barrier

• Since C++20, there is support for 
barriers in header <barrier>. 

• The constructor takes an integer 
value, which is the number of 
threads that the barrier is 
expected to block. 

• arrive_and_wait(): blocking wait 
until the number of threads arrive 
at the same spot

• arrive_and_drop(): decrements 
the initial expected count for all 
uses by one, as if one thread 
could never reach the barrier 
subsequently. This can be very 
useful in error management.



Synchronisation Primitives
Barrier

More complicated uses of barriers may use the template parameter 
CompletionFunction and have a callable executed whenever the barrier is hit 
(reaches zero):



Synchronisation Primitives
Mutexes and Locks

• Standard Template Library in header <mutex> provides multiple mutexes (of 
type BasicLockable that implement lock and unlock methods): mutex, 
recursive_mutex, timed_mutex, recursive_timed_mutex, and unique_lock.

• A good practice for the use of mutexes is to lock them via the RAII idiom. 
Since C++11, this is available as std::unique_lock and std::lock_guard, and 
since C++17 scoped_lock in header <mutex>.

• Crucially, using scoped_lock provides the ability to lock multiple mutexes at 
once, avoiding deadlock.

• One may hence advise to use one or more mutex with a scoped_lock on top.



Synchronisation Primitives
Mutexes and Locks



Synchronisation Primitives
Mutexes and Locks



Algorithms in the Standard Template Library
For each

Since C++17, there is an excellent Parallel Standard Template Library in 
header <algorithm>.

The most useful algorithm from the Standard Template Library (STL) in terms 
of parallel programming is surely for each. As in the serial version of STL, the 
callable within for each is permitted to change the state of elements, if the 
underlying range is mutable, but cannot invalidate iterators.



Algorithms in the Standard Template Library
Reduce

• Similarly useful is the reduce operation (also known as fold, accumulate, 
aggregate, compress, or inject). 

• In Map Reduce, one applies an associative operation to each piece of data to 
obtain a partial result, and then obtains the final result by applying the same 
associative operation to the partial results. 

• The binary-tree reduction makes it possible to utilize O(log(n)) rounds of 
computation on n processors.



Algorithms in the Standard Template Library
Merge

Finally, in implementing parallel sorting algorithms, we will utilize the parallel 
merge operation:



What we have seen?

• Structuring code
• Thread
• Jthread
• Coroutines

• Atomic variables
• Mutexes and locks
• Barrier

• For each
• Reduce
• Merge


