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In the previous lecture

• Parallel programming
• Aim: speeding up computation

• The influence of various approaches on the speedup

• Distributed programming
• Aim: consistency across a large number of machines

• The algorithms in state-of-the-art database engines

• CourseWare
• https://cw.fel.cvut.cz/wiki/courses/b4b36pdv/start



In the previous lecture
You have seen the textbook
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https://upload.wikimedia.org/wikipedia/commons/7/7b/An_illustration_of_the_dining_philosophers_problem.png



The Concepts

• Parallelism means two or more tasks can be executed
simultaneously. This is an option, which the compiler and 
operating system and processor can exercise, but does not 
come with any guarantees. 

• Often, this means no shared variables or other resources, and 
need not require any synchronization primitives.

• Concurrency means that two or more tasks start, run, and 
complete in overlapping time periods, while sharing some
resources. 

• If two tasks concurrently set shared variable x to 1 and 2, it is
not clear what value it would have, subsequently.

• More broadly, concurrent access to a mutable shared memory
can result in issues without the use of synchronization primitives
(data race, problém souběhu) and with the use of
synchronization primitives (deadlock, uváznutí).



Data Race
Problém souběhu

When we need to ensure mutual exclusion in access to two or more shared
mutable variables, e.g., read value of one of the variables and add it to another
variable, we may need to use some synchronization primitives (e.g., 
mutexes).Without the use of synchronization primitives, we are facing the risk of
a data race. 
For example, consider the a silly bank without a solid relational database 
management system, where there are three clients: Alice and Bob and 
Corporation C. 
• Transaction T1: Bob has $100 in his account, but will be paying a $50 bill to 

Corporation C. At the same time, in 
• Transaction T2, Alice will be paying $100 to Bob.

Depending on the ordering of the reading and writing operations, one may
obtain several outcomes.



Data Race
Problém souběhu

For example, consider the a silly bank without a solid relational database 
management system, where there are three clients: Alice and Bob and Corporation C. 
• Transaction T1: Bob has $100 in his account, but will be paying a $50 bill to 

Corporation C. At the same time, in 
• Transaction T2, Alice will be paying $100 to Bob.
Depending on the ordering of the reading and writing operations, one may obtain
several outcomes:
• Transaction T1 will read $100 valued of Bob's account. Transaction T2 will read

$100 value. Transaction T1 will write $200. Transaction T2 will write $50 value.
• Transaction T1 will read $100 valued of Bob's account. Transaction T1 will write

$50. Transaction T2 will read $50 value.Transaction T2 will write $150 value.
• Transaction T1 will read $100 valued of Bob's account. Transaction T2 will read

$100 value. Transaction T1 will write $50. Transaction T2 will write $200 value.
• Transaction T2 will read $100 value. Transaction T2 will write $200 value. 

Transaction T1 will read $200 valued of Bob's account.  Transaction T1 will write
$150.  

Either Bob or the bank could be up to $100 short. 



Deadlock
Problém uváznutí

• When we need to ensure mutual exclusion in access to two
or more shared variables, e.g., two temporary results
associated with two mutexes, one may naively lock the first
mutex first, and subsequently lock the other mutex. 

• This, however, can lead to a deadlock. 
• Instead, one needs to lock both mutexes at the same time.  
• Easily, one could run:



Deadlock
In Theory

In theory, a deadlock (Czech: ``problém uváznutí'') can occur
when:
• each lock is owned by one thread
• each thread has locked at least one lock and needs to lock at

least one more lock
• it is impossible to remove the lock ownership
• there is a cyclic dependency among the lock-using threads.



Amdahl's law
In Theory

• There is almost always some overhead in parallel
programming (e.g., synchronization primitives)

• There is almost always some nonparallelizable code:

• Let us consider the speed-up 𝑆 = !!"#$%&
!'%#%&&"&

of the parallel code

• E.g. if 10% of the code is nonparallelizable and there are p 
processors (hardware threads):

• 𝑆 = !!"#$%&
".$×(!"#$%&' &".'×!!"#$%&

≤ !!"#$%&
".'×!!"#$%&

• In general, for a fraction n of nonparallelizable code and p 
processors (hardware threads):

• 𝑆 = !!"#$%&
(')*)×

(!"#$%&
' &*×!!"#$%&

≤ !!"#$%&
*×!!"#$%&



Amdahl's law
In the previous lecture

Log-linear plot for certain proportions 
of non-parallelizable code. 

Linear plot, for multiples of 10% of 
non-parallizable code

Grafy z:
• https://upload.wikimedia.org/wikipedia/commons/e/ea/AmdahlsLaw.svg
• https://www.youtube.com/watch?v=QIHy8pXbneI

https://upload.wikimedia.org/wikipedia/commons/e/ea/AmdahlsLaw.svg


Concurrent programming
The Options

There are two essential models for concurrent programming: shared memory
and message passing. In sharing memory, we have broadly four options:
• Confinement: Do not share memory between threads. This is often

impossible.
• Immutability: Do not share any mutable data between threads. 
• Thread-safe code: Use data types with additional guarantees for storing

any mutable data shared between threads, or even better, use 
implementations of algorithms that are already parallelized and handle the
concurrency issues for you. 
For example in C++, one can use the standard template library with a 
suitable execution policy. 
In particular, the header execution defines objects std::execution::seq, 
std::execution::par, std::execution::par_unseq, which can be passed as the
first argument of any standard algorithm, e.g., std::vector<int> v 
std::sort(std::execution::par, v.begin(), v.end());

• Synchronization: Use synchronization primitives to prevent accessing the
variable at the same time. This option is explored in this chapter in more 
detail. 

Eventually, we will see that message passing can be implemented using the
synchronization primitives and may be the least challenging to use correctly. 



Concurrent programming
The Options Revisited

Lock-free approaches more broadly:
https://www.youtube.com/watch?v=Yl8Or0afcfg&ab_channel=ChurchillCompSciTalks



Structuring code
Processes, Threads, Tasks, Coroutines

• Processes, threads, tasks, and coroutines execute instructions. 
• A process provides all of the prerequisites for executing instructions: 

loads an executable program, 
sets up a virtual address space, 
sets up the environment (e.g. environment variables and a security
context), 
sets up the process control block (PCB, often stored in registers of the
processor and on a per-process stack in kernel memory), opens handles
to system objects (e.g., files, sockets), and often much more. 

• In some sense, one can imagine ``a virtual machine‘‘.
• All modern operating systems (OS) are multitasking, i.e., running

multiple processes with the operating system forcibly interrupting the
run one one process to execute another process after a certain amount
of time (``preemptive scheduling''). Switching between the processes
involves swapping the process control block (PCB). In Intel architectures, 
this is known as the task state segment (TSS), and there is hardware 
support for the switch. AMD64 does not support task switches in 
hardware.



Structuring code
Processes, Threads, Tasks, Coroutines

• Within a particular process, there is at least one thread. All 
threads of a particular process share the same virtual address
space and handles to system objects. Each thread, 
independently, operates its own context (registers, stack, 
exception handlers).

• Unless declared otherwise, threads of a particular process share
memory and are allocated ``time slices'' by the operating
system. 

• This can be seen as a ``virtual processor'' within a ``a virtual
machine'' of a process, often with no guarantees on the time
slicing.

• Most modern processors are multi-core and support 
multithreading in some form. This means that each process can
execute multiple ``hardware threads'' and there is some
support for switching between those. In Intel architectures, 
hyper-threading means each hardware core can execute
multiple threads, e.g., two, to take advantage of idle time (e.g., 
loading data, network communications). 



• Within a particular thread, one may utilize multiple
coroutines, which can be seen as subroutines that can run in 
multiple steps, but sometimes can serve as a light-weight
alternative to hardware threads. 

Structuring code
Processes, Threads, Tasks, Coroutines

https://blog.eiler.eu/posts/20210512/images/coroutines.png



• Within a particular thread, one may utilize multiple coroutines, 
which can be seen as subroutines that can run in multiple steps, 
but sometimes can serve as a light-weight alternative to 
hardware threads. Coroutines can be called, can return when
completed, but also can suspend themselves, yielding control
and partial results, and be resumed by another co-routine. 
Typical uses involve generators andfactories and various other
concepts within ``lazy evaluation'', as well as event-driven
architectures within cooperative multi-tasking. 

• That is: two coroutines within one thread never run in parallel, 
but one can have the runs of two or more coroutines
interleaved. We can suspend a co-routine in one thread and 
resume it within another thread. 

• As it turns out, the ``context switch'' with user-level threads has 
a similar cost to a function call or suspending a coroutine
(co_yield). Indeed, coroutines are typically implemented with
user-level threads, which leads to cheaper context-switch 
compared with hardware threads. Within the user-level threads, 
one can distinguish stackful and stackless versions, where
coroutine state is saved on the heap (as in C++). 

Structuring code
Processes, Threads, Tasks, Coroutines



• Coroutines can be called, can return when completed, but also
can suspend themselves, yielding control and partial results, and 
be resumed by another co-routine. 

• Typical uses involve generators and factories and various other
concepts within ``lazy evaluation'', as well as event-driven
architectures within cooperative multi-tasking. 

• That is: two coroutines within one thread never run in parallel, 
but one can have the runs of two or more coroutines
interleaved. We can suspend a co-routine in one thread and 
resume it within another thread. 

• As it turns out, the ``context switch'' with user-level threads has 
a similar cost to a function call or suspending a coroutine
(co_yield). Indeed, coroutines are typically implemented with
user-level threads, which leads to cheaper context-switch 
compared with hardware threads. Within the user-level threads, 
one can distinguish stackful and stackless versions, where
coroutine state is saved on the heap (as in C++). 
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Structuring code
Processes, Threads, Tasks, Coroutines

Generator myCoroutine() {
int x = 0;
while (true) {

co_yield x++;
}

}

int main() {
auto c = myCoroutine();
int x = 0;
while ((x = c.get_next()) < 10) {

std::cout << x << "\n";
}

}



Structuring code
Processes, Threads, Tasks, Coroutines



• A task is a rather abstract unit of work, e.g., a function, which
can be executed by any thread, but often allocated to one of
a many threads within a pool. 

Structuring code
Processes, Threads, Tasks, Coroutines



Memory order

• First, one should like to understand several options for
implementing synchronization primitives, known as memory
orders. All guarantee atomicity and modification-order
consistency.

Obrázek z https://github.com/GorNishanov/await/blob/master/2018_CppCon/NanoCoroutines%20-
%20Gor%20Nishanov%20-%20CppCon%202018.pdf



Memory order

• First, one should like to understand several options for
implementing synchronization primitives, known as memory
orders. All guarantee atomicity and modification-order
consistency.

https://developer.arm.com/Processors/CoreLink%20CCI-500



Memory order

• Let us focus on ARM in particular:

The ARMv8 architecture employs a weakly-ordered model of 
memory. In general terms, this means that 
• the order of memory accesses is not required to be the same as 

the program order for load and store operations. 
• The processor is able to re-order memory read operations with 

respect to each other. 
• Writes may also be re-ordered (for example, write combining).
As a result, hardware optimizations, such as the use of cache and 
write buffer, function in a way that improves the performance of the 
processor, which means that the required bandwidth between the 
processor and external memory can be reduced and the long latencies 
associated with such external memory accesses are hidden.

https://developer.arm.com/documentation/den0024/
a/Memory-Ordering?lang=en



Memory order
In C++11

• In memory_order_relaxed, no further guarantees are provided and 
specifically no order is imposed on concurrent memory accesses. This is
also how weakly-ordered architectures (e.g. ARM) operate, by default: if
two threads access shared memory the load in one thread does not 
have to read a value written by another thread very recently.

• With memory_order_release and memory_order_acquire specifiers, we
force weakly-ordered achitectures to behave closer to strongly-ordered
architectures (e.g., Intel). If one thread writes into shared memory
atomically with memory_order_release and another thread reads the
memory atomically with memory_order_acquire, the load in the second 
thread is guaranteed to read the value written by another thread. 

• With memory_order_seq_cst, we additionally require a single total
ordering of all modifications (with this specifier). A load with this
specifier gets its value either from the last store with this specifier or
from some store without this specifier that did not precede the most 
recent memory_order_seq_cst store. This is the default option. 



Compare and swap
In General

Synchronization primitives are typically implemented using some hardware 
instructions, typically compare-and-swap. In locking, these make it
possible to test whether the lock is free, and if so, acquire the lock within a 
single operation that the hardware guarantees to execute atomically.

The atomic compare and swap (CAS) instruction compares the value of an
atomic variable against a given value. If there is a match, CAS stores a given
new value in the atomic variable. That is:
• we declare an atomic variable (and a pointer to it)
• (*) we save the value of an atomic variable to a local, private variable (by 

dereferencing the pointer)
• based on the saved value in a local, private variable, we compute the

new value, which we would like to store in the atomic variable
• the CAS instruction is used. If the current value matches the value saved

in the local, private variable, we will overwrite the value with the newly
computed value. If the current value no longer matches the value saved
in the local, private variable, we wait (some random and growing from a 
small starting value) and repeat from (*). 



Compare and swap
In C++

In C++, the atomic header defines two variants of ``compare
and swap'' and a specialization thereof for pointers:
• bool compare_exchange_weak(_Tp& __e, _Tp __i, 

memory_order __s, memory_order __f) noexcept
• bool compare_exchange_strong(_Tp& __e, _Tp __i, 

memory_order __s, memory_order __f) noexcept
Both are called with the desired value e, the new value i, and 
the memory orders to consider if there is a match and if there is
no match. 
Typically, if there is a match and we want to replace the value, 
we may use std::memory_order_release. If there is no match, 
we are just reading the value and std::memory_order_acquire
would suffice. In the latter variant, we pass two pointers. 



Compare and Swap
Weak and strong variants

• The difference between the weak and strong variant is in 
that the weak variant may return false even if there is a 
match, in certain cases, but can be much faster in certain
architectures. This notably entails ARM architectures (RISC-V 
and MIPS), where the weak variant will be implemented
using the so called load-link/store-conditional pair of
instructions (load exclusive register / ldxr and store exclusive
register / stxr in ARM version 8). These are much faster than
the comparable instructions issuing a barrier (ldaxr/stlxr in 
ARM version 8).

• All four ARM instructions utilize only two registers, compared
to three registers for CAS proper in Intel architectures
(Compare and exchange / cmpxchg since 80486 and 
cmpxchg8b and cmpxchg16b since Intel Core 2). On recent
Intel and AMD processors, cmpxchg is only marginally slower
than a non-cached load.



Memory order
In C++11

If you want to understand memory orders in more detail:

• See https://arxiv.org/abs/1803.04432

• See also: 
https://www.youtube.com/watch?v=A_vAG6LIHwQ&ab_chan
nel=ACCUConference



Synchronization primitives

• Synchronization primitives make it possible to synchronize or restrict
access of multiple threads to some resources (e.g., global variables, file
handles, sockets). You can use them as an interface, without knowing
their implementation. 

• Raw synchronization primitives: Lock, Mutex, Semaphore, Atomic, 
Memory Fence, Condition Variable are synchronization primitives, which
make it possible to synchronize or restrict access of multiple threads to 
some resources. 

• Lock is a very general term for a synchronization primitive. Mutexes are 
usually used by one thread only, while semaphores are shared between
multiple threads. 

• The binary semaphore is the most simple type of a lock, which provides
exclusive access for both reading and writing. 

• The counting semaphore limits the use of a single resource by at most a 
given number of threads. 

• A spinlock, the thread simply waits ("spins") until the lock becomes
available. This is efficient if threads are blocked for a short time, because
it avoids the overhead of operating system process re-scheduling. It is
inefficient if the lock is held for a long time, or if the progress of the
thread that is holding the lock depends on preemption of the locked
thread.



Synchronization primitives
In C++

• In C++, the only synchronization primitive that is guaranteed
to be hardware implemented is a particular atomic boolean
type, which is known as std::atomic_flag. 

• Unlike all specializations of std::atomic, it is guaranteed to 
be lock-free. 

• Prior to C++20, it has been very restricted, because there
was no way to check the value of std::atomic_flag without
setting it. C++20 adds method test(). 



Synchronization primitives
And how to implement them



Further features
In C++23

Further synchronization features
• Fences help order non-atomic and atomic memory accesses, 

without any associated operations. On Intel architectures
(including x86-64), atomic_thread_fence do not issue any 
instructions, except
std::atomic_thread_fence(std::memory_order::seq_cst).

• Barrier provides a thread-coordination mechanism that blocks a 
group of threads until all threads in that group have reached the
barrier. Such a barrier can be used repeatedly to wait until a 
number of threads have finished their operations. 

• Latch and is a downward counter, whose initial value is initialized
and then threads may block on the latch until the counter is
zero. One thread may decrement a latch multiple times, but no 
thread can increment the latch. Thus, it serves as a single-use 
barrier.

• We will also see synchronized output streams. The synchronized
buffer is flushed only when the destructor of the synchronized
buffer is called, but provides for guarantees of atomicity for the
access. (That is, std::endl and std::flush no longer flush!)



Debugging
https://godbolt.org/

https://godbolt.org/z/cEdE7r5fq
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https://godbolt.org/



Debugging
https://clang.llvm.org/docs/ThreadSanitizer.html

• https://github.com/google/sanitizers/wiki/ThreadSanitizerCppManual

https://clang.llvm.org/docs/ThreadSanitizer.html
https://github.com/google/sanitizers/wiki/ThreadSanitizerCppManual


What comes next?



Odpovídající státnicové otázky
Paralelní část

Hardwarová podpora pro paralelní výpočty: 

(super)skalární architektury, pipelining, 

spekulativní vyhodnocování, vektorové

instrukce, vlákna, procesy, GPGPU. 

Hierarchie cache pamětí.

Komplikace v paralelním programování: 

souběh (race condition), uváznutí (deadlock), 

iluze sdílení (false sharing).

Podpora paralelního programování v C a 

C++: pthreads, thread, jthread, atomic, 

mutex, lock_guard.

Podpora paralelního programování v 

OpenMP: sériově-paralelní model uspořádání

vláken (fork-join), paralelizovatelná úloha

(task region), různé implementace

specifikace. Direktivy parallel, for, section, 

task, barrier, critical, atomic.

Techniky dekompozice programu: statické a 

paralelní rozdělení práce. Threadpool a fronta

úkolů. Balancování a závislosti

(dependencies).

Techniky dekompozice programu na

příkladech z řazení: quick sort, merge sort.

Techniky dekompozice programu na

příkladech z numerické lineární algebry a 

strojového učení: násobení matice vektorem, 

násobení dvou matic, řešení systému

lineárních rovnic.



Odpovídající státnicové otázky
Distribuovaná část

Úvod do distribuovaných systémů (DS). 

Charakteristiky DS. Čas a typy selhání v DS.

Detekce selhání v DS. Detektory selhání a 

jejich vlastnosti.

Čas a kauzalita v DS. Uspořádání událostí v 

DS. Fyzické hodiny a jejich synchronizace. 

Logické hodiny a jejich synchronizace.

Globální stav v DS a jeho výpočet. Řez

distribuovaného výpočtu. Algoritmus pro 

distribuovaný globální snapshot. Stabilní

vlastnosti DS.

Vzájemné vyloučení procesů v DS. Algoritmy

pro vyloučení procesů a jejich vlastnosti.

Volba lídra v DS. Algoritmy pro volbu lídra a 

jejich vlastnosti.

Konsensus v DS. FLP teorém. Algoritmy pro 

distribuovaný konsensus.


