
1/22Support Vector Machines
Additional material, with derivation of

dual problem and examples
Author: Ondřej Drbohlav
Version 30/Nov/2017

http://cmp.felk.cvut.cz


2/22
Linear Classifier Revisited (1)

Classification according to signum of an affine function of x:

q(x) = sign(w · x+ b) (1)

A solution for {w, b} correctly classifying the training set:
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Linear Classifier Revisited (2)

Classification according to signum of an affine function of x:

q(x) = sign(w · x+ b) (2)

But there are many solutions possible. Which one is the best?
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Margin, Informal Introduction

� Assume linearly separable data.
� Distance of a point x to the decision boundary: d(x)
� Points closest to the decision boundary are called support vectors
� Margin m (our definition): twice the distance to a support vector
� Find the decision boundary maximizing the margin. Vapnik justifies the use of
maximum margin from the viewpoint of Structural Risk Minimization.

A margin m: Maximum margin m∗:
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Maximizing Margin, Formulation

� Signed distance of a point x belonging to class y ∈ {1,−1}:

d(x, y) =
y(w · x+ b)

‖w‖
(3)

� We require d(x, y) > 0 for all training data (all training points are in their class’
half-space). This is equivalent to y(w · x+ b) ≥ ε > 0 .

Optimization task:

(w∗, b∗) = argmax
w,b

min
(x,y)∈T

2d(x, y)

subject to:
y(w · x+ b) ≥ ε > 0,∀(x, y) ∈ T (C)
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Maximizing Margin, Scale Ambiguity

� There is a scale ambiguity in the parameters (w, b). Any feasible (w, b) (that is,
satisfying Eq. (C) can be multiplied by a positive constant k > 0 to form (kw, kb), and:
(i) feasibility does not change, as

y(kw · x+ kb) = ky(w · x+ b) ≥ kε⇔ y(w · x+ b) ≥ ε, and (4)

(ii) signed distances do not change, as

d(x, y) =
y(kw · x+ kb)

‖kw‖
=
y(w · x+ b)

‖w‖
. (5)

Optimization task:

(w∗, b∗) = argmax
w,b

min
(x,y)∈T

2d(x, y)

subject to:
y(w · x+ b) ≥ ε > 0,∀(x, y) ∈ T (C)
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Maximizing Margin, Fixing Scale

� Break the scale ambiguity by setting ε = 1:

(w∗, b∗) = argmax
w,b

min
(x,y)∈T

2d(x, y)

subject to: y(w · x+ b) ≥ 1,∀(x, y) ∈ T (6)

Optimization task (original):

(w∗, b∗) = argmax
w,b

min
(x,y)∈T

2d(x, y)

subject to:
y(w · x+ b) ≥ ε > 0,∀(x, y) ∈ T (C)

d(x, y) =
y(w · x+ b)

‖w‖
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Maximizing Margin, Final Optimization Formulation (1)

� All points must be outside the strip delineated by the two lines w · x+ b = 1 and
w · x+ b = −1. The width of this strip is 2

‖w‖. It follows that the maximum margin m∗
is

m∗ = max
w,b

min
(x,y)∈T

2d(x, y) = max
w,b

2

‖w‖
subject to: y(w · x+ b) ≥ 1,∀(x, y) ∈ T (7)

Optimization task (original):

(w∗, b∗) = argmax
w,b

min
(x,y)∈T

2d(x, y)

subject to:
y(w · x+ b) ≥ ε > 0,∀(x, y) ∈ T (C)

d(x, y) =
y(w · x+ b)

‖w‖
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Maximizing Margin, Final Optimization Formulation (2)

� All points must be outside the strip delineated by the two lines w · x+ b = 1 and
w · x+ b = −1. The width of this strip is 2

‖w‖. It follows that the maximum margin m∗
is

m∗ = max
w,b

min
(x,y)∈T

2d(x, y) = max
w,b

2

‖w‖
subject to: y(w · x+ b) ≥ 1,∀(x, y) ∈ T (8)

� There holds: argmax
w

2

‖w‖
= argmin

w
‖w‖ = argmin

w

1

2
‖w‖2. Therefore, the (w∗, b∗)

maximizing the margin are:

(w∗, b∗) = argmin
(w,b)

1

2
‖w‖2

subject to: y(w · x+ b) ≥ 1,∀(x, y) ∈ T (9)

� This is a Quadratic Programming (QP) problem (more generally, it is minimization of a
convex function on a convex domain.)
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SVM, Example (1D)
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SVM, Example (1D), Result
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SVM, Primal Problem

The derived optimization problem for w and b is

(w∗, b∗) = argmin
(w,b)

1

2
‖w‖2

subject to: y(w · x+ b) ≥ 1,∀(x, y) ∈ T (10)

It is called primal problem. We will also soon derive the dual problem. For now, note that
the above optimization task can be equivalently regarded as solving an unconstrained
problem (this observation will become handy when deriving the dual problem):

(w∗, b∗) = argmin
(w,b)

1

2
‖w‖2 +

∑
(x,y)∈T

f(x, y,w, b)

 , where (11)

f(x, y,w, b) =
{

0 if y(w · x+ b) ≥ 1,
∞, otherwise (12)

Note that f(x, y,w, b) for a given (x, y) is a convex function of w, b.

http://cmp.felk.cvut.cz


13/22
The Dual Formulation (1)

Start with just discussed primal formulation. Let T = {(x1, y1), (x2, y2), ..., (xN , yN)} be
the training set. We want to solve

(w∗, b∗) = argmin
(w,b)

{
1

2
‖w‖2 +

N∑
i=1

f(xi, yi,w, b)

}
, where

f(xi, yi,w, b) =
{

0 if yi(w · xi + b) ≥ 1.
∞, otherwise (13)

This is the same as (αi’s are non-negative multipliers):

(w∗, b∗) = argmin
w,b


1

2
‖w‖2 + max

{αi}
αi≥0

i∈{1,..,N}

(
−

N∑
i=1

αi[yi(w · xi + b)− 1]

) . (14)

because
yi(w · xi + b) > 1 ⇒ max

αi
(−αi[yi(w · xi + b)− 1]) = 0 for αi = 0 , (15)

yi(w · xi + b) < 1 ⇒ max
αi

(−αi[yi(w · xi + b)− 1]) =∞ for αi =∞ , (16)

yi(w · xi + b) = 1 ⇒ max
αi

(−αi[yi(w · xi + b)− 1]) = 0 for any αi ≥ 0 . (17)
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The Dual Formulation (2)

This is in turn the same as

(w∗, b∗) = argmin
w,b

max
{αi}
αi≥0

i∈{1,..,N}

{
1

2
‖w‖2 −

N∑
i=1

αi[yi(w · xi + b)− 1]

}
. (18)

There holds, in full generality, that maxpminq f(p, q) ≤ minqmaxp f(p, q). For our case,

min
w,b

max
{αi}
αi≥0

i∈{1,..,N}

{
1

2
‖w‖2 −

N∑
i=1

αi[yi(w · xi + b)− 1]

}
≥

≥ max
{αi}
αi≥0

i∈{1,..,N}

min
w,b

{
1

2
‖w‖2 −

N∑
i=1

αi[yi(w · xi + b)− 1]

}
(19)

This is the essence of converting the primal problem to the dual one. And, our case is even
better: strong duality holds, and the two terms are equal (duality gap is zero). Denote the
inner term by L(w, b, α) (corresponds to what’s commonly known as the Lagrangian):

L(w, b, α) =
1

2
‖w‖2 −

N∑
i=1

αi[yi(w · xi + b)− 1] (20)
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The Dual Formulation (3)

L(w, b, α) =
1

2
‖w‖2 −

N∑
i=1

αi[yi(w · xi + b)− 1] (21)

We want to find argmaxα≥0minw,bL(w, b, α). First, for fixed α, find minw,bL(w, b, α):

∂L

∂w
= w −

N∑
i=1

αiyixi = 0 ⇒ w =

N∑
i=1

αiyixi (22)

∂L

∂b
=

N∑
i=1

αiyi = 0 (23)

Put this to Lagrangian:

L(w, b, α) =
1

2
‖w‖2 −

N∑
i=1

αi[yi(w · xi + b)− 1] = (24)

=
1

2
‖w‖2 −

(
N∑
i=1

αiyixi

)
·w −

N∑
i=1

αiyib+

N∑
i=1

αi (25)

= −1
2
‖w‖2 +

N∑
i=1

αi =

N∑
i=1

αi −
1

2

N∑
i,j=1

αiαjyiyjxi · xj (26)
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The Dual Formulation, Result and Insights

The dual optimization problem:

α = argmax
α

(
min
w,b

L(w, b, α)

)
= argmax

α


N∑
i=1

αi −
1

2

N∑
i,j=1

αiαjyiyjxi · xj

 (27)

subject to:
∑
i

αiyi = 0; αi ≥ 0, ∀i ∈ {1, 2, ..., N} (28)

� Number of optimization variables αi’s is N (the number of training data). But at the
solution, all αi’s but those of support vectors are zero.

� Once the dual problem is solved, the primal variables can be computed as

w =

N∑
i=1

αiyixi only support vectors (αi > 0) contribute (29)

yS[w · xS + b] = 1 for any support vector (xS, yS) ⇒ b = yS −w · xS (30)
� The discriminant function w · x+ b thus takes the form (P are indices of all support
vectors):

w · x+ b =
∑
i∈P

αiyi(xi · x) + yS −
∑
i∈P

αiyi(xi · xS)︸ ︷︷ ︸
constant, independent of x

(31)

� Both the dual classification problem and the discriminant function involve data points
only in the form of dot products.
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The Dual Problem, Example (1)

Consider the 3 points as below

Objective: maximize

α1 + α2 + α3 − 1
2

 α1

α2

α3

T  y1y1x1 · x1 y1y2x1 · x2 y1y3x1 · x3

y2y1x2 · x1 y2y2x2 · x2 y2y3x2 · x3

y3y1x3 · x1 y3y2x3 · x2 y3y3x3 · x3

 α1

α2

α3


subject to: α1, α2, α3 ≥ 0; α1 + α2 − α3 = 0
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The Dual Problem, Example (2)

Consider the 3 points as below

Objective: maximize

α1 + α2 + α3 − 1
2

 α1

α2

α3

T  1 2 1
2 5 2
1 2 1

 α1

α2

α3


subject to: α1, α2, α3 ≥ 0; α1 + α2 − α3 = 0
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The Dual Problem, Example (3)

Substitute α3 = α1 + α2 and search for solution as a problem in α1, α2. After some
straightforward computation, the original problem turns to:

maximize 2(α1 + α2)− 1
2

[
α1

α2

]T [
4 6
6 10

] [
α1

α2

]
subject to: α1, α2 ≥ 0. Solution: (α1, α2) = (12, 0), α3 =

1
2 + 0 = 1

2.
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The Dual Problem, Example, Result

Result: (α1, α2, α3) = (12, 0,
1
2). The support vectors are x1 and x3 because their αi > 0.

Vector w =
∑
i={1,3}αiyixi =

1
2(0, 1)−

1
2(0,−1) = (0, 1).

Offset b = yS −wxS = 1−wx1 = −1−wx3 = 0.

Decision boundary (0, 1)T · x = 0 .
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Soft Margin SVM

If the data are not linearly separable, slack variables ξi need to be introduced.

� Position and size of margin is implied by w and b, as before.

� If a point (x, y) fulfills the condition y(w · x+ b) ≥ 1 then no penalty is paid.

� Otherwise, the condition is relaxed to y(w · x+ b) ≥ 1− ξ and penalty C · ξ is paid
(C > 0)

Optimization problem:

(w∗, b∗) = argmin
(w,b)

1

2
‖w‖2 + C

N∑
i=1

ξi (32)

subject to:
yi(w · xi + b) ≥ 1− ξi, (33)
ξi ≥ 0, (34)
∀i = 1, ..., N

http://cmp.felk.cvut.cz


22/22
Soft Margin SVM

The primal problem

(w∗, b∗) = argmin
(w,b)

1

2
‖w‖2 + C

N∑
i=1

ξi

subject to: yi(w · xi + b) ≥ 1− ξi, ∀i = 1, ..., N (35)
subjectto :ξi ≥ 0, ∀i = 1, ..., N (36)

The dual problem:

α = argmax
α


N∑
i=1

αi −
1

2

N∑
i,j=1

αiαjyiyjxi · xj

 (37)

subject to:
∑
i

αiyi = 0 (38)

subject to: 0 ≤ αi ≤ C, ∀i ∈ {1, 2, ..., N} (39)
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