Support Vector Machines

Additional material, with derivation of dual problem and examples
Author: Ondřej Drbohlav
Version 30/Nov/2017

Linear Classifier Revisited (1)

Classification according to signum of an affine function of \mathbf{x} :

$$
\begin{equation*}
q(\mathbf{x})=\operatorname{sign}(\mathbf{w} \cdot \mathbf{x}+b) \tag{1}
\end{equation*}
$$

A solution for $\{\mathbf{w}, b\}$ correctly classifying the training set:

Linear Classifier Revisited (2)

Classification according to signum of an affine function of \mathbf{x} :

$$
\begin{equation*}
q(\mathbf{x})=\operatorname{sign}(\mathbf{w} \cdot \mathbf{x}+b) \tag{2}
\end{equation*}
$$

But there are many solutions possible. Which one is the best?

Margin, Informal Introduction

- Assume linearly separable data.
- Distance of a point \mathbf{x} to the decision boundary: $d(\mathbf{x})$
- Points closest to the decision boundary are called support vectors
- Margin m (our definition): twice the distance to a support vector
- Find the decision boundary maximizing the margin. Vapnik justifies the use of maximum margin from the viewpoint of Structural Risk Minimization.

A margin m :

Maximum margin m^{*} :

Maximizing Margin, Formulation

- Signed distance of a point \mathbf{x} belonging to class $y \in\{1,-1\}$:

$$
\begin{equation*}
d(\mathbf{x}, y)=\frac{y(\mathbf{w} \cdot \mathbf{x}+b)}{\|\mathbf{w}\|} \tag{3}
\end{equation*}
$$

- We require $d(\mathbf{x}, y)>0$ for all training data (all training points are in their class' half-space). This is equivalent to $y(\mathbf{w} \cdot \mathbf{x}+b) \geq \epsilon>0$.

Optimization task:

$$
\left(\mathbf{w}^{*}, b^{*}\right)=\underset{\mathbf{w}, b}{\operatorname{argmax}} \min _{(\mathbf{x}, y) \in \mathcal{T}} 2 d(\mathbf{x}, y)
$$

subject to:

$$
\begin{equation*}
y(\mathbf{w} \cdot \mathbf{x}+b) \geq \epsilon>0, \forall(\mathbf{x}, y) \in \mathcal{T} \tag{C}
\end{equation*}
$$

Maximizing Margin, Scale Ambiguity

- There is a scale ambiguity in the parameters (\mathbf{w}, b). Any feasible (\mathbf{w}, b) (that is, satisfying Eq. (C) can be multiplied by a positive constant $k>0$ to form ($k \mathbf{w}, k b$), and:
(i) feasibility does not change, as

$$
\begin{equation*}
y(k \mathbf{w} \cdot \mathbf{x}+k b)=k y(\mathbf{w} \cdot \mathbf{x}+b) \geq k \epsilon \Leftrightarrow y(\mathbf{w} \cdot \mathbf{x}+b) \geq \epsilon, \text { and } \tag{4}
\end{equation*}
$$

(ii) signed distances do not change, as

$$
\begin{equation*}
d(\mathbf{x}, y)=\frac{y(k \mathbf{w} \cdot \mathbf{x}+k b)}{\|k \mathbf{w}\|}=\frac{y(\mathbf{w} \cdot \mathbf{x}+b)}{\|\mathbf{w}\|} \tag{5}
\end{equation*}
$$

Optimization task:

$$
\left(\mathbf{w}^{*}, b^{*}\right)=\underset{\mathbf{w}, b}{\operatorname{argmax}} \min _{(\mathbf{x}, y) \in \mathcal{T}} 2 d(\mathbf{x}, y)
$$

subject to:

$$
\begin{equation*}
y(\mathbf{w} \cdot \mathbf{x}+b) \geq \epsilon>0, \forall(\mathbf{x}, y) \in \mathcal{T} \tag{C}
\end{equation*}
$$

Maximizing Margin, Fixing Scale

- Break the scale ambiguity by setting $\epsilon=1$:

$$
\begin{align*}
& \left(\mathbf{w}^{*}, b^{*}\right)=\underset{\mathbf{w}, b}{\operatorname{argmax}} \min _{(\mathbf{x}, y) \in \mathcal{T}} 2 d(\mathbf{x}, y) \\
& \text { subject to: } y(\mathbf{w} \cdot \mathbf{x}+b) \geq 1, \forall(\mathbf{x}, y) \in \mathcal{T} \tag{6}
\end{align*}
$$

Optimization task (original):

$$
\left(\mathbf{w}^{*}, b^{*}\right)=\underset{\mathbf{w}, b}{\operatorname{argmax}} \min _{(\mathbf{x}, y) \in \mathcal{T}} 2 d(\mathbf{x}, y)
$$

subject to:

$$
\begin{align*}
& y(\mathbf{w} \cdot \mathbf{x}+b) \geq \epsilon>0, \forall(\mathbf{x}, y) \in \mathcal{T} \tag{C}\\
& d(\mathbf{x}, y)=\frac{y(\mathbf{w} \cdot \mathbf{x}+b)}{\|\mathbf{w}\|}
\end{align*}
$$

Maximizing Margin, Final Optimization Formulation (1)

- All points must be outside the strip delineated by the two lines $\mathbf{w} \cdot \mathbf{x}+b=1$ and $\mathbf{w} \cdot \mathbf{x}+b=-1$. The width of this strip is $\frac{2}{\|\mathbf{w}\|}$. It follows that the maximum margin m^{*} is

$$
\begin{align*}
& m^{*}=\max _{\mathbf{w}, b} \min _{(\mathbf{x}, y) \in \mathcal{T}} 2 d(\mathbf{x}, y)=\max _{\mathbf{w}, b} \frac{2}{\|\mathbf{w}\|} \\
& \text { subject to: } y(\mathbf{w} \cdot \mathbf{x}+b) \geq 1, \forall(\mathbf{x}, y) \in \mathcal{T} \tag{7}
\end{align*}
$$

Optimization task (original):

$$
\left(\mathbf{w}^{*}, b^{*}\right)=\underset{\mathbf{w}, b}{\operatorname{argmax}} \min _{(\mathbf{x}, y) \in \mathcal{T}} 2 d(\mathbf{x}, y)
$$

subject to:

$$
\begin{align*}
& y(\mathbf{w} \cdot \mathbf{x}+b) \geq \epsilon>0, \forall(\mathbf{x}, y) \in \mathcal{T} \tag{C}\\
& d(\mathbf{x}, y)=\frac{y(\mathbf{w} \cdot \mathbf{x}+b)}{\|\mathbf{w}\|}
\end{align*}
$$

Maximizing Margin, Final Optimization Formulation (2)

- All points must be outside the strip delineated by the two lines $\mathbf{w} \cdot \mathbf{x}+b=1$ and $\mathbf{w} \cdot \mathbf{x}+b=-1$. The width of this strip is $\frac{2}{\|\mathbf{w}\|}$. It follows that the maximum margin m^{*} is

$$
\begin{align*}
& m^{*}=\max _{\mathbf{w}, b} \min _{(\mathbf{x}, y) \in \mathcal{T}} 2 d(\mathbf{x}, y)=\max _{\mathbf{w}, b} \frac{2}{\|\mathbf{w}\|} \\
& \text { subject to: } y(\mathbf{w} \cdot \mathbf{x}+b) \geq 1, \forall(\mathbf{x}, y) \in \mathcal{T} \tag{8}
\end{align*}
$$

- There holds: $\underset{\mathbf{w}}{\operatorname{argmax}} \frac{2}{\|\mathbf{w}\|}=\underset{\mathbf{w}}{\operatorname{argmin}}\|\mathbf{w}\|=\underset{\mathbf{w}}{\operatorname{argmin}} \frac{1}{2}\|\mathbf{w}\|^{2}$. Therefore, the $\left(\mathbf{w}^{*}, b^{*}\right)$ maximizing the margin are:

$$
\begin{align*}
& \left(\mathbf{w}^{*}, b^{*}\right)=\underset{(\mathbf{w}, b)}{\operatorname{argmin}} \frac{1}{2}\|\mathbf{w}\|^{2} \\
& \text { subject to: } y(\mathbf{w} \cdot \mathbf{x}+b) \geq 1, \forall(\mathbf{x}, y) \in \mathcal{T} \tag{9}
\end{align*}
$$

- This is a Quadratic Programming (QP) problem (more generally, it is minimization of a convex function on a convex domain.)

SVM, Example (1D)

SVM, Example (1D), Result

SVM, Primal Problem

The derived optimization problem for \mathbf{w} and b is

$$
\begin{align*}
& \left(\mathbf{w}^{*}, b^{*}\right)=\underset{(\mathbf{w}, b)}{\operatorname{argmin}} \frac{1}{2}\|\mathbf{w}\|^{2} \\
& \text { subject to: } y(\mathbf{w} \cdot \mathbf{x}+b) \geq 1, \forall(\mathbf{x}, y) \in \mathcal{T} \tag{10}
\end{align*}
$$

It is called primal problem. We will also soon derive the dual problem. For now, note that the above optimization task can be equivalently regarded as solving an unconstrained problem (this observation will become handy when deriving the dual problem):

$$
\begin{align*}
& \left(\mathbf{w}^{*}, b^{*}\right)=\underset{(\mathbf{w}, b)}{\operatorname{argmin}}\left\{\frac{1}{2}\|\mathbf{w}\|^{2}+\sum_{(\mathbf{x}, y) \in \mathcal{T}} f(\mathbf{x}, y, \mathbf{w}, b)\right\}, \text { where } \tag{11}\\
& f(\mathbf{x}, y, \mathbf{w}, b)= \begin{cases}0 & \text { if } y(\mathbf{w} \cdot \mathbf{x}+b) \geq 1, \\
\infty, & \text { otherwise }\end{cases} \tag{12}
\end{align*}
$$

Note that $f(\mathbf{x}, y, \mathbf{w}, b)$ for a given (\mathbf{x}, y) is a convex function of \mathbf{w}, b.

The Dual Formulation (1)

Start with just discussed primal formulation. Let $\mathcal{T}=\left\{\left(\mathbf{x}_{1}, y_{1}\right),\left(\mathbf{x}_{2}, y_{2}\right), \ldots,\left(\mathbf{x}_{N}, y_{N}\right)\right\}$ be the training set. We want to solve

$$
\begin{gather*}
\left(\mathbf{w}^{*}, b^{*}\right)=\underset{(\mathbf{w}, b)}{\operatorname{argmin}}\left\{\frac{1}{2}\|\mathbf{w}\|^{2}+\sum_{i=1}^{N} f\left(\mathbf{x}_{i}, y_{i}, \mathbf{w}, b\right)\right\}, \text { where } \\
f\left(\mathbf{x}_{i}, y_{i}, \mathbf{w}, b\right)= \begin{cases}0 & \text { if } y_{i}\left(\mathbf{w} \cdot \mathbf{x}_{i}+b\right) \geq 1 \\
\infty, & \text { otherwise }\end{cases} \tag{13}
\end{gather*}
$$

This is the same as (α_{i} 's are non-negative multipliers):

$$
\begin{equation*}
\left(\mathbf{w}^{*}, b^{*}\right)=\underset{\mathbf{w}, b}{\operatorname{argmin}}\left\{\frac{1}{2}\|\mathbf{w}\|^{2}+\max _{\substack{\left\{\alpha_{i}\right\} \\ \alpha_{i} \geq 0 \\ i \in\{1, \ldots, N\}}}\left(-\sum_{i=1}^{N} \alpha_{i}\left[y_{i}\left(\mathbf{w} \cdot \mathbf{x}_{i}+b\right)-1\right]\right)\right\} \tag{14}
\end{equation*}
$$

because

$$
\begin{align*}
& y_{i}\left(\mathbf{w} \cdot \mathbf{x}_{i}+b\right)>1 \Rightarrow \max _{\alpha_{i}}\left(-\alpha_{i}\left[y_{i}\left(\mathbf{w} \cdot \mathbf{x}_{i}+b\right)-1\right]\right)=0 \text { for } \alpha_{i}=0 \tag{15}\\
& y_{i}\left(\mathbf{w} \cdot \mathbf{x}_{i}+b\right)<1 \Rightarrow \max _{\alpha_{i}}\left(-\alpha_{i}\left[y_{i}\left(\mathbf{w} \cdot \mathbf{x}_{i}+b\right)-1\right]\right)=\infty \text { for } \alpha_{i}=\infty \tag{16}\\
& y_{i}\left(\mathbf{w} \cdot \mathbf{x}_{i}+b\right)=1 \Rightarrow \max _{\alpha_{i}}\left(-\alpha_{i}\left[y_{i}\left(\mathbf{w} \cdot \mathbf{x}_{i}+b\right)-1\right]\right)=0 \text { for any } \alpha_{i} \geq 0 . \tag{17}
\end{align*}
$$

The Dual Formulation (2)

This is in turn the same as

$$
\begin{equation*}
\left(\mathbf{w}^{*}, b^{*}\right)=\underset{\mathbf{w}, b}{\operatorname{argmin}} \max _{\substack{\left\{\alpha_{i}\right\} \\ \alpha_{i} \geq 0 \\ i \in\{1, . ., N\}}}\left\{\frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{i=1}^{N} \alpha_{i}\left[y_{i}\left(\mathbf{w} \cdot \mathbf{x}_{i}+b\right)-1\right]\right\} . \tag{18}
\end{equation*}
$$

There holds, in full generality, that $\max _{p} \min _{q} f(p, q) \leq \min _{q} \max _{p} f(p, q)$. For our case,

$$
\begin{align*}
& \min _{\mathbf{w}, b} \max _{\substack{\left\{\alpha_{i}\right\} \\
\alpha_{i} \geq 0 \\
i \in\{1, . ., N\}}}\left\{\frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{i=1}^{N} \alpha_{i}\left[y_{i}\left(\mathbf{w} \cdot \mathbf{x}_{i}+b\right)-1\right]\right\} \geq \\
& \geq \max _{\substack{\left\{\alpha_{i}\right\} \\
\alpha_{i} \geq 0 \\
i \in\{1, \ldots, N\}}} \min _{\mathbf{w}, b}\left\{\frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{i=1}^{N} \alpha_{i}\left[y_{i}\left(\mathbf{w} \cdot \mathbf{x}_{i}+b\right)-1\right]\right\} \tag{19}
\end{align*}
$$

This is the essence of converting the primal problem to the dual one. And, our case is even better: strong duality holds, and the two terms are equal (duality gap is zero). Denote the inner term by $L(\mathbf{w}, b, \alpha)$ (corresponds to what's commonly known as the Lagrangian):

$$
\begin{equation*}
L(\mathbf{w}, b, \alpha)=\frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{i=1}^{N} \alpha_{i}\left[y_{i}\left(\mathbf{w} \cdot \mathbf{x}_{i}+b\right)-1\right] \tag{20}
\end{equation*}
$$

The Dual Formulation (3)

$$
\begin{equation*}
L(\mathbf{w}, b, \alpha)=\frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{i=1}^{N} \alpha_{i}\left[y_{i}\left(\mathbf{w} \cdot \mathbf{x}_{i}+b\right)-1\right] \tag{21}
\end{equation*}
$$

We want to find $\operatorname{argmax}_{\alpha \geq 0} \min _{\mathbf{w}, b} L(\mathbf{w}, b, \alpha)$. First, for fixed α, find $\min _{\mathbf{w}, b} L(\mathbf{w}, b, \alpha)$:

$$
\begin{align*}
\frac{\partial L}{\partial \mathbf{w}} & =\mathbf{w}-\sum_{i=1}^{N} \alpha_{i} y_{i} \mathbf{x}_{i}=0 \Rightarrow \mathbf{w}=\sum_{i=1}^{N} \alpha_{i} y_{i} \mathbf{x}_{i} \tag{22}\\
\frac{\partial L}{\partial b} & =\sum_{i=1}^{N} \alpha_{i} y_{i}=0 \tag{23}
\end{align*}
$$

Put this to Lagrangian:

$$
\begin{align*}
L(\mathbf{w}, b, \alpha) & =\frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{i=1}^{N} \alpha_{i}\left[y_{i}\left(\mathbf{w} \cdot \mathbf{x}_{i}+b\right)-1\right]= \tag{24}\\
& =\frac{1}{2}\|\mathbf{w}\|^{2}-\left(\sum_{i=1}^{N} \alpha_{i} y_{i} \mathbf{x}_{i}\right) \cdot \mathbf{w}-\sum_{i=1}^{N} \alpha_{i} y_{i} b+\sum_{i=1}^{N} \alpha_{i} \tag{25}\\
& =-\frac{1}{2}\|\mathbf{w}\|^{2}+\sum_{i=1}^{N} \alpha_{i}=\sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i} \cdot \mathbf{x}_{j} \tag{26}
\end{align*}
$$

The Dual Formulation, Result and Insights

The dual optimization problem:

$$
\begin{equation*}
\alpha=\underset{\alpha}{\operatorname{argmax}}\left(\min _{\mathbf{w}, b} L(\mathbf{w}, b, \alpha)\right)=\underset{\alpha}{\operatorname{argmax}}\left\{\sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i} \cdot \mathbf{x}_{j}\right\} \tag{27}
\end{equation*}
$$

subject to: $\sum_{i} \alpha_{i} y_{i}=0 ; \quad \alpha_{i} \geq 0, \forall i \in\{1,2, \ldots, N\}$

- Number of optimization variables α_{i} 's is N (the number of training data). But at the solution, all α_{i} 's but those of support vectors are zero.
- Once the dual problem is solved, the primal variables can be computed as

$$
\begin{align*}
& \mathbf{w}=\sum_{i=1}^{N} \alpha_{i} y_{i} \mathbf{x}_{i} \quad \text { only support vectors }\left(\alpha_{i}>0\right) \text { contribute } \tag{29}\\
& y^{S}\left[\mathbf{w} \cdot \mathbf{x}^{S}+b\right]=1 \text { for any support vector }\left(\mathbf{x}^{S}, y^{S}\right) \Rightarrow b=y^{S}-\mathbf{w} \cdot \mathbf{x}^{S} \tag{30}
\end{align*}
$$

- The discriminant function $\mathbf{w} \cdot \mathbf{x}+b$ thus takes the form (\mathcal{P} are indices of all support vectors):

$$
\begin{equation*}
\mathbf{w} \cdot \mathbf{x}+b=\sum_{i \in \mathcal{P}} \alpha_{i} y_{i}\left(\mathbf{x}_{i} \cdot \mathbf{x}\right)+\underbrace{y^{S}-\sum_{i \in \mathcal{P}} \alpha_{i} y_{i}\left(\mathbf{x}_{i} \cdot \mathbf{x}^{S}\right)}_{\text {constant, independent of } \mathbf{x}} \tag{31}
\end{equation*}
$$

- Both the dual classification problem and the discriminant function involve data points only in the form of dot products.

The Dual Problem, Example (1)

Consider the 3 points as below
Objective: maximize
$\alpha_{1}+\alpha_{2}+\alpha_{3}-\frac{1}{2}\left[\begin{array}{c}\alpha_{1} \\ \alpha_{2} \\ \alpha_{3}\end{array}\right]^{T}\left[\begin{array}{lll}y_{1} y_{1} \mathbf{x}_{1} \cdot \mathbf{x}_{1} & y_{1} y_{2} \mathbf{x}_{1} \cdot \mathbf{x}_{2} & y_{1} y_{3} \mathbf{x}_{1} \cdot \mathbf{x}_{3} \\ y_{2} y_{1} \mathbf{x}_{2} \cdot \mathbf{x}_{1} & y_{2} y_{2} \mathbf{x}_{2} \cdot \mathbf{x}_{2} & y_{2} y_{3} \mathbf{x}_{2} \cdot \mathbf{x}_{3} \\ y_{3} y_{1} \mathbf{x}_{3} \cdot \mathbf{x}_{1} & y_{3} y_{2} \mathbf{x}_{3} \cdot \mathbf{x}_{2} & y_{3} y_{3} \mathbf{x}_{3} \cdot \mathbf{x}_{3}\end{array}\right]\left[\begin{array}{c}\alpha_{1} \\ \alpha_{2} \\ \alpha_{3}\end{array}\right]$
subject to: $\alpha_{1}, \alpha_{2}, \alpha_{3} \geq 0 ; \quad \alpha_{1}+\alpha_{2}-\alpha_{3}=0$

The Dual Problem, Example (2)

Consider the 3 points as below
Objective: maximize
$\alpha_{1}+\alpha_{2}+\alpha_{3}-\frac{1}{2}\left[\begin{array}{l}\alpha_{1} \\ \alpha_{2} \\ \alpha_{3}\end{array}\right]^{T}\left[\begin{array}{lll}1 & 2 & 1 \\ 2 & 5 & 2 \\ 1 & 2 & 1\end{array}\right]\left[\begin{array}{l}\alpha_{1} \\ \alpha_{2} \\ \alpha_{3}\end{array}\right]$
subject to: $\alpha_{1}, \alpha_{2}, \alpha_{3} \geq 0 ; \quad \alpha_{1}+\alpha_{2}-\alpha_{3}=0$

The Dual Problem, Example (3)

Substitute $\alpha_{3}=\alpha_{1}+\alpha_{2}$ and search for solution as a problem in α_{1}, α_{2}. After some straightforward computation, the original problem turns to:

$$
\text { maximize } 2\left(\alpha_{1}+\alpha_{2}\right)-\frac{1}{2}\left[\begin{array}{l}
\alpha_{1} \\
\alpha_{2}
\end{array}\right]^{T}\left[\begin{array}{cc}
4 & 6 \\
6 & 10
\end{array}\right]\left[\begin{array}{l}
\alpha_{1} \\
\alpha_{2}
\end{array}\right]
$$

subject to: $\alpha_{1}, \alpha_{2} \geq 0$. Solution: $\left(\alpha_{1}, \alpha_{2}\right)=\left(\frac{1}{2}, 0\right), \alpha_{3}=\frac{1}{2}+0=\frac{1}{2}$.

The Dual Problem, Example, Result

Result: $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)=\left(\frac{1}{2}, 0, \frac{1}{2}\right)$. The support vectors are \mathbf{x}_{1} and \mathbf{x}_{3} because their $\alpha_{i}>0$.
Vector $\mathbf{w}=\sum_{i=\{1,3\}} \alpha_{i} y_{i} \mathbf{x}_{i}=\frac{1}{2}(0,1)-\frac{1}{2}(0,-1)=(0,1)$.
Offset $b=y^{S}-\mathbf{w} \mathbf{x}^{S}=1-\mathbf{w} \mathbf{x}_{1}=-1-\mathbf{w} \mathbf{x}_{3}=0$.
Decision boundary $(0,1)^{T} \cdot \mathbf{x}=0$.

Soft Margin SVM

If the data are not linearly separable, slack variables ξ_{i} need to be introduced.

- Position and size of margin is implied by \mathbf{w} and b, as before.
- If a point (\mathbf{x}, y) fulfills the condition $y(\mathbf{w} \cdot \mathbf{x}+b) \geq 1$ then no penalty is paid.
- Otherwise, the condition is relaxed to $y(\mathbf{w} \cdot \mathbf{x}+b) \geq 1-\xi$ and penalty $C \cdot \xi$ is paid ($C>0$)

Optimization problem:

$$
\begin{equation*}
\left(\mathbf{w}^{*}, b^{*}\right)=\underset{(\mathbf{w}, b)}{\operatorname{argmin}} \frac{1}{2}\|\mathbf{w}\|^{2}+C \sum_{i=1}^{N} \xi_{i} \tag{32}
\end{equation*}
$$

subject to:

$$
\begin{align*}
& y_{i}\left(\mathbf{w} \cdot \mathbf{x}_{i}+b\right) \geq 1-\xi_{i}, \tag{33}\\
& \xi_{i} \geq 0 \tag{34}\\
& \forall i=1, \ldots, N
\end{align*}
$$

Soft Margin SVM

The primal problem

$$
\begin{align*}
& \left(\mathbf{w}^{*}, b^{*}\right)=\underset{(\mathbf{w}, b)}{\operatorname{argmin}} \frac{1}{2}\|\mathbf{w}\|^{2}+C \sum_{i=1}^{N} \xi_{i} \\
& \text { subject to: } y_{i}\left(\mathbf{w} \cdot \mathbf{x}_{i}+b\right) \geq 1-\xi_{i}, \forall i=1, \ldots, N \tag{35}\\
& \tag{36}\\
& \quad \xi_{i} \geq 0, \forall i=1, \ldots, N
\end{align*}
$$

The dual problem:

$$
\begin{align*}
& \alpha=\underset{\alpha}{\operatorname{argmax}}\left\{\sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i} \cdot \mathbf{x}_{j}\right\} \tag{37}\\
& \text { subject to: } \sum_{i} \alpha_{i} y_{i}=0 \tag{38}\\
& \qquad 0 \leq \alpha_{i} \leq C, \forall i \in\{1,2, \ldots, N\} \tag{39}
\end{align*}
$$

