

Support Vector Machines

Additional material, with derivation of dual problem and examples Author: Ondřej Drbohlav Version 30/Nov/2017

Linear Classifier Revisited (1)

Classification according to signum of an affine function of \mathbf{x} :

$$q(\mathbf{x}) = \operatorname{sign}(\mathbf{w} \cdot \mathbf{x} + b) \tag{1}$$

A solution for $\{\mathbf{w}, b\}$ correctly classifying the training set:

Linear Classifier Revisited (2)

Classification according to signum of an affine function of \mathbf{x} :

$$q(\mathbf{x}) = \operatorname{sign}(\mathbf{w} \cdot \mathbf{x} + b) \tag{2}$$

But there are many solutions possible. Which one is the best?

Margin, Informal Introduction

- Assume linearly separable data.
- ullet Distance of a point ${f x}$ to the decision boundary: $d({f x})$
- Points closest to the decision boundary are called support vectors
- Margin m (our definition): twice the distance to a support vector
- Find the decision boundary maximizing the margin. Vapnik justifies the use of maximum margin from the viewpoint of Structural Risk Minimization.

Maximizing Margin, Formulation

Signed distance of a point \mathbf{x} belonging to class $y \in \{1, -1\}$:

$$d(\mathbf{x}, y) = \frac{y(\mathbf{w} \cdot \mathbf{x} + b)}{\|\mathbf{w}\|}$$
(3)

• We require $d(\mathbf{x}, y) > 0$ for all training data (all training points are in their class' half-space). This is equivalent to $y(\mathbf{w} \cdot \mathbf{x} + b) \ge \epsilon > 0$.

Optimization task:

$$(\mathbf{w}^*, b^*) = \operatorname*{argmax}_{\mathbf{w}, b} \min_{(\mathbf{x}, y) \in \mathcal{T}} 2d(\mathbf{x}, y)$$

subject to:

 $y(\mathbf{w} \cdot \mathbf{x} + b) \ge \epsilon > 0, \forall (\mathbf{x}, y) \in \mathcal{T}$ (C)

Maximizing Margin, Scale Ambiguity

There is a scale ambiguity in the parameters (w, b). Any feasible (w, b) (that is, satisfying Eq. (C) can be multiplied by a positive constant k > 0 to form (kw, kb), and:
 (i) feasibility does not change, as

$$y(k\mathbf{w}\cdot\mathbf{x}+kb) = ky(\mathbf{w}\cdot\mathbf{x}+b) \ge k\epsilon \Leftrightarrow y(\mathbf{w}\cdot\mathbf{x}+b) \ge \epsilon$$
, and (4)

(ii) signed distances do not change, as

Maximizing Margin, Fixing Scale

Break the scale ambiguity by setting $\epsilon = 1$:

$$(\mathbf{w}^*, b^*) = \underset{\mathbf{w}, b}{\operatorname{argmax}} \min_{(\mathbf{x}, y) \in \mathcal{T}} 2d(\mathbf{x}, y)$$

subject to: $y(\mathbf{w} \cdot \mathbf{x} + b) \ge 1, \forall (\mathbf{x}, y) \in \mathcal{T}$ (6)

Optimization task (original):

$$(\mathbf{w}^*, b^*) = \underset{\mathbf{w}, b}{\operatorname{argmax}} \min_{(\mathbf{x}, y) \in \mathcal{T}} 2d(\mathbf{x}, y)$$

m p

7/22

subject to:

$$y(\mathbf{w} \cdot \mathbf{x} + b) \ge \epsilon > 0, \forall (\mathbf{x}, y) \in \mathcal{T} \quad (\mathsf{C})$$
$$d(\mathbf{x}, y) = \frac{y(\mathbf{w} \cdot \mathbf{x} + b)}{\|\mathbf{w}\|}$$

Maximizing Margin, Final Optimization Formulation (1)

All points must be outside the strip delineated by the two lines $\mathbf{w} \cdot \mathbf{x} + b = 1$ and $\mathbf{w} \cdot \mathbf{x} + b = -1$. The width of this strip is $\frac{2}{\|\mathbf{w}\|}$. It follows that the maximum margin m^* is

$$m^* = \max_{\mathbf{w}, b} \min_{(\mathbf{x}, y) \in \mathcal{T}} 2d(\mathbf{x}, y) = \max_{\mathbf{w}, b} \frac{2}{\|\mathbf{w}\|}$$

subject to: $y(\mathbf{w} \cdot \mathbf{x} + b) \ge 1, \forall (\mathbf{x}, y) \in \mathcal{T}$ (7)

Optimization task (original):

$$(\mathbf{w}^*, b^*) = \underset{\mathbf{w}, b}{\operatorname{argmax}} \min_{(\mathbf{x}, y) \in \mathcal{T}} 2d(\mathbf{x}, y)$$

m p

8/22

subject to:

$$y(\mathbf{w} \cdot \mathbf{x} + b) \ge \epsilon > 0, \forall (\mathbf{x}, y) \in \mathcal{T} \quad (\mathsf{C})$$
$$d(\mathbf{x}, y) = \frac{y(\mathbf{w} \cdot \mathbf{x} + b)}{\|\mathbf{w}\|}$$

Maximizing Margin, Final Optimization Formulation (2)

All points must be outside the strip delineated by the two lines w ⋅ x + b = 1 and w ⋅ x + b = -1. The width of this strip is ²/_{||w||}. It follows that the maximum margin m^{*} is

$$m^* = \max_{\mathbf{w}, b} \min_{(\mathbf{x}, y) \in \mathcal{T}} 2d(\mathbf{x}, y) = \max_{\mathbf{w}, b} \frac{2}{\|\mathbf{w}\|}$$

subject to: $y(\mathbf{w} \cdot \mathbf{x} + b) \ge 1, \forall (\mathbf{x}, y) \in \mathcal{T}$ (8)

9/22

• There holds: $\underset{\mathbf{w}}{\operatorname{argmax}} \frac{2}{\|\mathbf{w}\|} = \underset{\mathbf{w}}{\operatorname{argmin}} \|\mathbf{w}\| = \underset{\mathbf{w}}{\operatorname{argmin}} \frac{1}{2} \|\mathbf{w}\|^2$. Therefore, the (\mathbf{w}^*, b^*) maximizing the margin are:

$$(\mathbf{w}^*, b^*) = \underset{(\mathbf{w}, b)}{\operatorname{argmin}} \frac{1}{2} \|\mathbf{w}\|^2$$

subject to: $y(\mathbf{w} \cdot \mathbf{x} + b) \ge 1, \forall (\mathbf{x}, y) \in \mathcal{T}$ (9)

 This is a Quadratic Programming (QP) problem (more generally, it is minimization of a convex function on a convex domain.)

SVM, Example (1D)

SVM, Primal Problem

The derived optimization problem for $\ensuremath{\mathbf{w}}$ and b is

$$(\mathbf{w}^*, b^*) = \underset{(\mathbf{w}, b)}{\operatorname{argmin}} \frac{1}{2} \|\mathbf{w}\|^2$$

subject to: $y(\mathbf{w} \cdot \mathbf{x} + b) \ge 1, \forall (\mathbf{x}, y) \in \mathcal{T}$ (10)

It is called *primal* problem. We will also soon derive the *dual* problem. For now, note that the above optimization task can be equivalently regarded as solving an unconstrained problem (this observation will become handy when deriving the dual problem):

$$(\mathbf{w}^{*}, b^{*}) = \underset{(\mathbf{w}, b)}{\operatorname{argmin}} \left\{ \frac{1}{2} \|\mathbf{w}\|^{2} + \sum_{(\mathbf{x}, y) \in \mathcal{T}} f(\mathbf{x}, y, \mathbf{w}, b) \right\}, \text{ where } \left(11 \right)$$

$$f(\mathbf{x}, y, \mathbf{w}, b) = \left\{ \begin{array}{ccc} 0 & \text{if } y(\mathbf{w} \cdot \mathbf{x} + b) \ge 1, \\ \infty, & \text{otherwise} \end{array} \right\}$$

$$(11)$$

$$\left\{ \begin{array}{c} 0 & \text{if } y(\mathbf{w} \cdot \mathbf{x} + b) \ge 1, \\ 0 & 1 & y(\mathbf{w} \cdot \mathbf{x} + b) \end{array} \right\}$$

Note that $f(\mathbf{x}, y, \mathbf{w}, b)$ for a given (\mathbf{x}, y) is a convex function of \mathbf{w}, b .

The Dual Formulation (1)

Start with just discussed primal formulation. Let $\mathcal{T} = \{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), ..., (\mathbf{x}_N, y_N)\}$ be the training set. We want to solve

$$(\mathbf{w}^*, b^*) = \underset{(\mathbf{w}, b)}{\operatorname{argmin}} \left\{ \frac{1}{2} \|\mathbf{w}\|^2 + \sum_{i=1}^N f(\mathbf{x}_i, y_i, \mathbf{w}, b) \right\}, \text{ where}$$

$$f(\mathbf{x}_i, y_i, \mathbf{w}, b) = \left\{ \begin{array}{c} 0 & \text{if } y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1. \\ \infty, & \text{otherwise} \end{array} \right.$$

$$(13)$$

This is the same as (α_i 's are non-negative multipliers):

$$(\mathbf{w}^{*}, b^{*}) = \underset{\mathbf{w}, b}{\operatorname{argmin}} \left\{ \frac{1}{2} \|\mathbf{w}\|^{2} + \underset{\substack{\{\alpha_{i}\}\\\alpha_{i} \ge 0\\i \in \{1, \dots, N\}}}{\max} \left(-\sum_{i=1}^{N} \alpha_{i} [y_{i}(\mathbf{w} \cdot \mathbf{x}_{i} + b) - 1] \right) \right\}.$$
 (14)

because

$$y_i(\mathbf{w} \cdot \mathbf{x}_i + b) > 1 \implies \max_{\alpha_i} (-\alpha_i [y_i(\mathbf{w} \cdot \mathbf{x}_i + b) - 1]) = 0 \text{ for } \alpha_i = 0,$$
 (15)

$$y_i(\mathbf{w} \cdot \mathbf{x}_i + b) < 1 \implies \max_{\alpha_i} (-\alpha_i [y_i(\mathbf{w} \cdot \mathbf{x}_i + b) - 1]) = \infty \text{ for } \alpha_i = \infty,$$
 (16)

$$y_i(\mathbf{w} \cdot \mathbf{x}_i + b) = 1 \implies \max_{\alpha_i} (-\alpha_i [y_i(\mathbf{w} \cdot \mathbf{x}_i + b) - 1]) = 0 \text{ for any } \alpha_i \ge 0.$$
 (17)

The Dual Formulation (2)

This is in turn the same as

$$(\mathbf{w}^{*}, b^{*}) = \underset{\substack{\mathbf{w}, b \\ \alpha_{i} \ge 0 \\ i \in \{1, \dots, N\}}}{\operatorname{argmin}} \left\{ \frac{1}{2} \|\mathbf{w}\|^{2} - \sum_{i=1}^{N} \alpha_{i} [y_{i}(\mathbf{w} \cdot \mathbf{x}_{i} + b) - 1] \right\}.$$
 (18)

There holds, in full generality, that $\max_p \min_q f(p,q) \leq \min_q \max_p f(p,q)$. For our case,

$$\min_{\mathbf{w},b} \max_{\substack{\{\alpha_i\}\\\alpha_i \ge 0\\i \in \{1,..,N\}}} \left\{ \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^N \alpha_i [y_i(\mathbf{w} \cdot \mathbf{x}_i + b) - 1] \right\} \ge \\
\ge \max_{\substack{\{\alpha_i\}\\\alpha_i \ge 0\\i \in \{1,..,N\}}} \min_{\mathbf{w},b} \left\{ \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^N \alpha_i [y_i(\mathbf{w} \cdot \mathbf{x}_i + b) - 1] \right\}$$
(19)

This is the essence of converting the primal problem to the dual one. And, our case is even better: strong duality holds, and the two terms are equal (duality gap is zero). Denote the inner term by $L(\mathbf{w}, b, \alpha)$ (corresponds to what's commonly known as the Lagrangian):

$$L(\mathbf{w}, b, \alpha) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^{N} \alpha_i [y_i(\mathbf{w} \cdot \mathbf{x}_i + b) - 1]$$
(20)

The Dual Formulation (3)

$$L(\mathbf{w}, b, \alpha) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^{N} \alpha_i [y_i(\mathbf{w} \cdot \mathbf{x}_i + b) - 1]$$
(21)

We want to find $\operatorname{argmax}_{\alpha \ge 0} \min_{\mathbf{w}, b} L(\mathbf{w}, b, \alpha)$. First, for fixed α , find $\min_{\mathbf{w}, b} L(\mathbf{w}, b, \alpha)$:

$$\frac{\partial L}{\partial \mathbf{w}} = \mathbf{w} - \sum_{i=1}^{N} \alpha_i y_i \mathbf{x}_i = 0 \implies \mathbf{w} = \sum_{i=1}^{N} \alpha_i y_i \mathbf{x}_i$$
(22)
$$\frac{\partial L}{\partial b} = \sum_{i=1}^{N} \alpha_i y_i = 0$$
(23)

Put this to Lagrangian:

$$L(\mathbf{w}, b, \alpha) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^N \alpha_i [y_i(\mathbf{w} \cdot \mathbf{x}_i + b) - 1] =$$
(24)
$$= \frac{1}{2} \|\mathbf{w}\|^2 - \left(\sum_{i=1}^N \alpha_i y_i \mathbf{x}_i\right) \cdot \mathbf{w} - \sum_{i=1}^N \alpha_i y_i b + \sum_{i=1}^N \alpha_i$$
(25)
$$= -\frac{1}{2} \|\mathbf{w}\|^2 + \sum_{i=1}^N \alpha_i = \sum_{i=1}^N \alpha_i - \frac{1}{2} \sum_{i,j=1}^N \alpha_i \alpha_j y_i y_j \mathbf{x}_i \cdot \mathbf{x}_j$$
(26)

The Dual Formulation, Result and Insights

The dual optimization problem:

$$\alpha = \operatorname*{argmax}_{\alpha} \left(\min_{\mathbf{w}, b} L(\mathbf{w}, b, \alpha) \right) = \operatorname*{argmax}_{\alpha} \left\{ \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{N} \alpha_i \alpha_j y_i y_j \mathbf{x}_i \cdot \mathbf{x}_j \right\}$$
(27)

subject to:
$$\sum_{i} \alpha_{i} y_{i} = 0; \ \alpha_{i} \ge 0, \ \forall i \in \{1, 2, ..., N\}$$
 (28)

- Number of optimization variables α_i's is N (the number of training data). But at the solution, all α_i's but those of support vectors are zero.
- Once the dual problem is solved, the primal variables can be computed as

$$\mathbf{w} = \sum_{i=1}^{N} \alpha_i y_i \mathbf{x}_i \quad \text{only support vectors } (\alpha_i > 0) \text{ contribute}$$
(29)
$$y^S[\mathbf{w} \cdot \mathbf{x}^S + b] = 1 \text{ for any support vector } (\mathbf{x}^S, y^S) \Rightarrow b = y^S - \mathbf{w} \cdot \mathbf{x}^S$$
(30)

• The discriminant function $\mathbf{w} \cdot \mathbf{x} + b$ thus takes the form (\mathcal{P} are indices of all support vectors):

$$\mathbf{w} \cdot \mathbf{x} + b = \sum_{i \in \mathcal{P}} \alpha_i y_i(\mathbf{x}_i \cdot \mathbf{x}) + \underbrace{y^S - \sum_{i \in \mathcal{P}} \alpha_i y_i(\mathbf{x}_i \cdot \mathbf{x}^S)}_{\text{constant independent of } \mathbf{x}}$$
(31)

constant, independent of \mathbf{x}

Both the dual classification problem and the discriminant function involve data points only in the form of dot products.

The Dual Problem, Example (1)

Consider the 3 points as below

Objective: maximize

$$\alpha_{1} + \alpha_{2} + \alpha_{3} - \frac{1}{2} \begin{bmatrix} \alpha_{1} \\ \alpha_{2} \\ \alpha_{3} \end{bmatrix}^{T} \begin{bmatrix} y_{1}y_{1}\mathbf{x}_{1} \cdot \mathbf{x}_{1} & y_{1}y_{2}\mathbf{x}_{1} \cdot \mathbf{x}_{2} & y_{1}y_{3}\mathbf{x}_{1} \cdot \mathbf{x}_{3} \\ y_{2}y_{1}\mathbf{x}_{2} \cdot \mathbf{x}_{1} & y_{2}y_{2}\mathbf{x}_{2} \cdot \mathbf{x}_{2} & y_{2}y_{3}\mathbf{x}_{2} \cdot \mathbf{x}_{3} \\ y_{3}y_{1}\mathbf{x}_{3} \cdot \mathbf{x}_{1} & y_{3}y_{2}\mathbf{x}_{3} \cdot \mathbf{x}_{2} & y_{3}y_{3}\mathbf{x}_{3} \cdot \mathbf{x}_{3} \end{bmatrix} \begin{bmatrix} \alpha_{1} \\ \alpha_{2} \\ \alpha_{3} \end{bmatrix}$$

subject to: $\alpha_1, \alpha_2, \alpha_3 \ge 0$; $\alpha_1 + \alpha_2 - \alpha_3 = 0$

The Dual Problem, Example (2)

Consider the 3 points as below

Objective: maximize

$$\alpha_1 + \alpha_2 + \alpha_3 - \frac{1}{2} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix}^T \begin{bmatrix} 1 & 2 & 1 \\ 2 & 5 & 2 \\ 1 & 2 & 1 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix}$$

subject to: $\alpha_1, \alpha_2, \alpha_3 \ge 0$; $\alpha_1 + \alpha_2 - \alpha_3 = 0$

The Dual Problem, Example (3)

Substitute $\alpha_3 = \alpha_1 + \alpha_2$ and search for solution as a problem in α_1, α_2 . After some straightforward computation, the original problem turns to:

maximize
$$2(\alpha_1 + \alpha_2) - \frac{1}{2} \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix}^T \begin{bmatrix} 4 & 6 \\ 6 & 10 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix}^T$$

subject to: $\alpha_1, \alpha_2 \ge 0$. Solution: $(\alpha_1, \alpha_2) = (\frac{1}{2}, 0), \ \alpha_3 = \frac{1}{2} + 0 = \frac{1}{2}$.

The Dual Problem, Example, Result

Result: $(\alpha_1, \alpha_2, \alpha_3) = (\frac{1}{2}, 0, \frac{1}{2})$. The support vectors are \mathbf{x}_1 and \mathbf{x}_3 because their $\alpha_i > 0$. Vector $\mathbf{w} = \sum_{i=\{1,3\}} \alpha_i y_i \mathbf{x}_i = \frac{1}{2}(0, 1) - \frac{1}{2}(0, -1) = (0, 1)$. Offset $b = y^S - \mathbf{w} \mathbf{x}^S = 1 - \mathbf{w} \mathbf{x}_1 = -1 - \mathbf{w} \mathbf{x}_3 = 0$. р

m

20/22

Decision boundary $(0,1)^T \cdot \mathbf{x} = 0$.

Soft Margin SVM

If the data are not linearly separable, *slack variables* ξ_i need to be introduced.

- Position and size of margin is implied by ${f w}$ and b, as before.
- If a point (\mathbf{x}, y) fulfills the condition $y(\mathbf{w} \cdot \mathbf{x} + b) \ge 1$ then no penalty is paid.

• Otherwise, the condition is relaxed to $y(\mathbf{w} \cdot \mathbf{x} + b) \ge 1 - \xi$ and penalty $C \cdot \xi$ is paid (C > 0)

Optimization problem:

$$(\mathbf{w}^*, b^*) = \operatorname*{argmin}_{(\mathbf{w}, b)} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^N \xi_i$$
 (32)

subject to:

$$y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1 - \xi_i, \tag{33}$$

$$\xi_i \ge 0, \tag{34}$$

 $\forall i = 1, ..., N$

Soft Margin SVM

The primal problem

$$(\mathbf{w}^{*}, b^{*}) = \underset{(\mathbf{w}, b)}{\operatorname{argmin}} \frac{1}{2} \|\mathbf{w}\|^{2} + C \sum_{i=1}^{N} \xi_{i}$$

subject to: $y_{i}(\mathbf{w} \cdot \mathbf{x}_{i} + b) \ge 1 - \xi_{i}, \ \forall i = 1, ..., N$
 $\xi_{i} \ge 0, \ \forall i = 1, ..., N$ (35)
(36)

The dual problem:

$$\alpha = \operatorname*{argmax}_{\alpha} \left\{ \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{N} \alpha_i \alpha_j y_i y_j \mathbf{x}_i \cdot \mathbf{x}_j \right\}$$
(37)

subject to:
$$\sum_{i} \alpha_{i} y_{i} = 0$$
(38)

$$0 \le \alpha_i \le C, \ \forall i \in \{1, 2, ..., N\}$$
 (39)