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Consider a classification problem with 0/1 loss matrix. Recall that given an observation =z,
the optimal Bayesian strategy ¢(x) decides for a class k which maximizes the posterior:

q(x) = arg?axmk\w) - (1)

For a binary (2-class) classification, this can equivalently be expressed as follows. Define the
log odds a(x) as the log of the ratio of the posteriors:

o(z) = nglg (2)
Then,
a(z) >0 = qg(x) =1, (3)
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Now, let us check the functional form of the log odds in the following problems:
Normal distributions with equal variances
Independent features with binary outcomes
Multinomial naive Bayes
Normal distributions with equal variances
p(z|1) = N (z[p1, 0) (5)
p(z]2) = N (z[p2, 0) (6)
p(llz) . p(z[1)p(1) { 1 2 2 } p(1)
a(x) = In = In =<¢—((x — 1) — (z — o +In—=
) =0 z) = " pelp(@) | 22 ()T ) i

1
= E('ul — /LQ)QJ + const = wi1x + wg (’UJl, Wo € R) (8)
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Independent features with binary outcomes (D = number of features)
D
p(al) = [T (1 = m)t (9)
i=1
D
p(z]2) = [ [ £7(1 = k)™ (mi, ks € R,z € {0,1}) (10)
i=1

Note that the assumption that the features are independent may be quite strong. If this
assumption is true (or anyway adopted), we talk about naive Bayes approach.

The log odds are:

RS p(1)
a(z) = ; {z;Inm;+ (1 —2)In(1 —m;) —az;Ink; — (1 —2) In(1 — &)} + ln@ (11)

= w-x+ wo (w € RP, wy € R) (12)
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Multinomial naive Bayes
The analysis is similar to the case of binary outcomes. Here, the feature components z; are

not binary but they represent counts, summing to certain constant n (Zfil x; =n). The
probabilities of observing the “histogram” {z;,i =1,2,.., D} are

plalt) = —5— [ 7 (13)

!
p(gj|2) — Dn. ' H K,;Ci (xz c No,ﬂ'i, K; € R, Zz’;l Xr;, = TL) (14)

It is easy to see that the log odds a(x) are again linear in x.

Summary

In many real-world problems, the log odds a(x) are a linear function of the observations x.
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Idea: Let us look for the log of the ratio of posteriors (log odds) a(x) directly as a linear

function of the input vector x = (x1, 2, ...,2p) € RY (D is the dimensionality of the
feature space):

alx) = In = wW- T+ Wy, w:(wl,wg,...,wD)ERD,
@)=t e
wo € R, (15)
where wyq is the bias term.
Let us rewrite this as
o
a(x) =w-x+wy-1=|wy,wr,ws, ..., wp] :13:1 =uw' 2. (16)
/[\ .
o —~ LD -

Note: From now on, we will drop the dash sign and write again only 'x" or 'w’, with the
understanding that these include the zero-index components o =1 and wg € R
implementing the bias.
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Here is the relationship between the the log odds a(xz) and the posterior probabilities p(1|x)
and p(2|x).

The log odds a(x) is (remember the bias term is consumed in the x and w)

o(z) = m%B —wea (17)
From this, it follows that
P —eRal) = ple) = — s (19
and
p(lz) =1-p(2|o) = 2D __ GRS T
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Again,
_ i Paz)
a(z) =1 (2[7) (20)
p(1]2) = T = 0w+ ) 1)
pC2le) = T = o(-w ) (22)

where o(u) = 1/(1 + exp (—u)) is the logistic sigmoid function.

It will be advantageous to rename the clases from (1,2) to (1,—1). Then we can rewrite the
equations (21, 22) as

1
klx) = k —1,1 23
plkle) = s ke {-L1} (23)
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(ko) = ke {-1,1) (24)
p L) = 1+ e—kw-x’ !
How do we find w?
We adopt the Maximum Likelihood approach for finding w. Let us have the training set
T ={(z1,k1), (x2,k2),..., (N, kn)}. The optimal w* is the one which maximizes the
conditional log likelihood I(w):
[(w) = Z Inp(k|x) = — Z In(1 + e kv o) (conditional log likelihood) (25)
(x,k)ET (x,k)eT
w* = argmax(w) (optimal w™) (26)

w

In order for the optimization to fit into the minimization framework, we define the objective
function E(w) as the negative the conditional log likelihood, F(w) = —I(w). This objective
function corresponds to the cross entropy. Let us now analyze the properties of E(w).
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E(w) = — Z Inp(k|x) Z In(1 4 e~ Fw) (27)
(z,k)eT (x,k)eT
(28)

The gradient vector g(w) of E is:

—kw-x
(x,k)ET te (a:,k)ET\l _l_g o
p(—k|z)
= — >  (1-p(klz)) (30)
(x,k)ET

We require g(w) = 0 (the necessary condition for optimality). However, it seems that these
equations cannot be to be solved analytically. We will need to resort to the numerical
optimization methods. Let us continue and check the second order derivatives.
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The Hessian matrix H (w) of the objective function F is
O’E(x) 9dg(w) 0 1
(w) Ow? ow ow Z 1 4 ehwa"” (31)
(z,k)eT
ekw-x
(1+e )
(z,k)ET ~ (z,k)ET
> 0

This is a very important result. It shows that the Hessian matrix H(w) is positive definite
in every point w and, therefore, the function E(w) is convex. As a consequence, F/(w) has
a unique minimum.

Note 1. Can you show that H(w) is positive definite?

Note 2. Strictly speaking, H(w) is positive definite if the training set contains more than 1
distinct point (the outer product xz ' is positive semi-definite only). Due to the fact that

the zero-index component xg is fixed to 1, x and x’ are linearly independent if they are not
identical.
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Any method of convex optimization can be used to find the optimal w*. For the examples in
this lecture, the following gradient descent method with adaptive step size has been used:

# input: x (observations), k (class labels), w_init (initial w)

# init:

W = w_init

step_size = 1.0

E, g = compute_E_and_gradient(x, k, w)

# iterate:
while not TERMINATION CONDITION:
E_new, g_new = compute_E_and_gradient(x, k, w - step_size * g)

if E new < E: Notes:
# success. i) Iteration is accepted if F(w) decreases. |If it
w —= step_size * g hasn't decreased, either the step size is too high
g = g_new (thus it is halved), or optimum has been already
E = E_new

. _ found.

step_size *= 2 . _ _

clse. i) We normalize the gradient by the number of
step_size /= 2 training data N because otherwise its magnitude

scales linearly with N, causing the necessity for
return w smaller step sizes with higher V.
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p(]1) = N (2l = —3,01 = 1.5)
p(x|2) =N (z|uz = 0,09 = 1.5)
p(1) = p(2) = 0.5. Bayesian error is e¢g = 0.16
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Initial state.
Training set: 1000 samples from each of the distributions.

Iter: 0, E(w) =1.56e +03, ¢,.=0.38

1.0}

0.5}

0.0}

p(1|x) : The actual conditional for the 1st class.
prr(1|x) : The conditional for the 1st class predicted by logistic regression.
E(w) : the value of cross entropy.

€4 © the training error (error on the training set.)
(initial w = [1,—1] ")
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Iter: 1, F(w)=1.33e +03, ¢,., =0.36 Iter: 2, F(w)=1.03e +03, ¢, =0.28

1.0t

0.5¢

0.0t

1.0

0.5¢

0.0}

1.0t

0.5¢

0.0t
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Iter: 7, B(w) =7.22¢ +02, ¢,.,=0.14 Iter: 8, F(w)=7.10e +02, ¢,.,=0.14

1.0t

0.5¢

0.0t

1.0

0.5¢

0.0}

1.0t

0.5¢

0.0t
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l = ] 0%
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The cross-entropy E(w) and the progress of w with iterations.

18/28
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Converged state.
w=[-2.07,-1.35] .

Tter : 188, F(w) =6.94e +02, ¢, =0.14

1.0}

0.5}

0.0}

Things to note:
¢ ¢ does not monotonically decrease with iterations. E(w) does.

¢ Some intermediate €;,.'s as well as the final one are lower than the
Bayesian error eg = 0.16. This is not a contradiction of the theory.
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p(z|1) =N (x| = =3,01 = 1.5)
p(z[2) = N (z|pz = 0,02 = 0.5)
p(1) = p(2) = 0.5. Bayesian error is e = 0.057
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Initial state.
w=I[1,-1]".
Training set: 1000 samples from each of the distributions.

Iter: 0, E(w)=1.39¢ +03, ¢,. =0.49

1.0}

0.5}

0.0f

21/28
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1.0t
0.5¢

0.0t

1.0
0.5¢

0.0}

1.0t
0.5¢

0.0t

Iter: 1, B(w)=1.17¢ +03, ¢,, =0.47

-------
-
~

-
L

S —

Iter: 5, F(w) =3.93e¢ +02, ¢, =0.05

— p(1|z)
== prr(1llx)

1.0t

0.5¢

0.0t

1.0

0.5¢

0.0}

1.0t

0.5¢

0.0t

Iter: 2, F(w)=8.66e +02, ¢,, =0.28

22/28

.....
-~
~

— p(1|z)

- prg(llz)

e e e e e e e s T T s s m e —————————————

x

Iter: 6, F(w) =3.80e +02, ¢, =0.05

=

— p(1]x)

prr(llx)
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Converged state.
w=[—2.88,—-2.85] .

Iter: 53, E(w) =3.75¢ +02, ¢,. =0.05
1.0} -=z

05| b

00

Things to note:

® The logistic regression cannot provide the two thresholds the optimal
decision strategy requires. But it can provide the one threshold which
matters most in reducing the classification error (here the left one.)
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p(z|1) =N (x| = =3,01 = 1.5)
p(x|2) =N (z|us = —3,02 = 0.5)
p(1) = p(2) = 0.5. Bayesian error is e = 0.26.
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Initial state.
w=I[1,-1]".
Training set: 1000 samples from each of the distributions.

Iter: 0, E(w) =4.08¢ +03, ¢,.=0.50

1.0}

0.5}

0.0f

25/28
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Iter: 1, F(w) =1.63e +03, ¢,.=0.45

1.0t

0.5¢

0.0t

1.0

0.5¢

0.0}

1.0t

0.5¢

0.0t

=== prp(llz) |

Iter: 5, F(w) =1.40e +03, ¢,,=0.61

-
-----
-
- -

—  p(1]z)
prr(llx) |

26/28

Iter: 2, F(w)=1.42e¢ +03, ¢, =0.51

—  p(1]z)
=== prp(llz) |

Iter: 4, F(w) =1.40e +03, ¢,, =0.63

1.0

0.5¢

0.0}

1.0t

0.5¢

0.0t

—  p(1]z)
=== prr(llz) |

Iter: 6, F(w) =1.40e +03, ¢,, =0.62

—  p(1]z)
prr(llz) |
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Converged state.
w = [—0.161, —0.053] .

Iter: 610, E(w) =1.39¢ +03, ¢, . =0.48

1.0}

0.5}

--- 1|x
0.0l )

Things to note:

¢ Failure case. The logistic regression cannot provide a good fit to the
log odds in this case.
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The logistic regression can be generalized to multiple classes as follows.
Each class k € {1,2,.., K'} has an associated weight vector wy.

The conditional probability for the k-th function is computed using the softmax function:

eWkT

p(k|z) = . (33)

eW1t L W2t - 4 eWK?®

Things to note:
The above term indeed sums to 1 (summing over k).

For two classes only, we get the same terms as previously, with w = w; — ws:

et 1
P11 = S = T e = 00— w2)o) (34
e2t 1

p(2|z) = o(— (w1 — ws) ) (35)

eW1T | oWl — 1+ 6—(w1—w2)33 —
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