Multi-robot localization

Miroslav Kulich

Intelligent and Mobile Robotics Group
Czech Institute of Informatics, Robotics and Cybernetics
Czech Technical University in Prague

Winter semester 2017/2018
Localization in a team of robots

- Every robot localizes independently
- Maximum likelihood estimation
- Particle filter
- Extended Kalman filter

- We talk about localization, i.e. a map of the environment is known in advance
- SLAM approaches for multi-robot teams exist, but these are out of scope of the course
Maximum likelihood estimation

Howard, Matarić, Sukhatme (2002)

Input:

- The set of measurements: $O = \{o\}$, where $o = (\mu, \Sigma, r_a, t_a, r_b, t_b)$, μ is the measured robot position r_b at time t_b relatively to the robot r_a at time t_a.
 - Odometry: $o = (\mu, \Sigma, r_a, t_a, r_a, t_b)$
 - Measurement: $o = (\mu, \Sigma, r_a, t_a, r_b, t_a)$

Output:

- The set of positions estimates: $H = \{h\}$, where $h = (\hat{q}, r, t)$, \hat{q} is estimate of robot’s position r at time t.
Maximum likelihood estimation

- We want to determine a set of positions H, which maximizes probability of a measurement set O, i.e. maximizes $P(O|H)$.
- Assume the measurements are independent:
 \[P(O|H) = \prod_{o \in O} P(o|H) \]
- After performing log minimization:
 \[U(O|H) = \sum_{o \in O} U(o|H), \]
 where $U(O|H) = -\log P(O|H)$ and $U(o|H) = -\log P(o|H)$
- Assume normal distribution for measurement uncertainty:
 \[U(o|H) = \frac{1}{2} (\mu - \hat{\mu})^T \Sigma (\mu - \hat{\mu}) \]
- Motion model: $\hat{\mu} = \Gamma(\hat{q}_a, \hat{q}_b)$
- Optimization by a standard numerical techniques (gradient descent, steepest descent)
Localization in a team of robots

Maximum likelihood estimation

Practical notes

- Dimensionality of the problem increases linearly with H and every step of the optimization process increases linearly with O.

- To decrease complexity we apply:
 - Filtering of old measurements.
 - Filtering of similar measurements.
 - Limiting of the rate at which pose estimates are generated.
Localization in a team of robots

Particle filter
Fox, Burgard, Kruppa, Thrun (2000)

- Extension of a standard particle filter.
- Integration of detection - one robot „sees“ the other one.
- Naive approach: state space incorporates positions of all robots:
 \[x_t = x_t^1 \times x_t^2 \times ... x_t^N \]
- Dimensionality increases linearly with the number of robots and the number of particles \(x_t \) exponentially.
- Factorization:
 \[p(x_t^1, x_t^2, \ldots, x_t^N | d^{(t)}) = p(x_t^1 | d^{(t)}) \cdot p(x_t^2 | d^{(t)}) \cdot ... \cdot p(x_t^N | d^{(t)}) \]
- Every robot keeps only its own position and only if the robot detects another one, information is exchanged.
- It is approximation only, positions of robots are not independent!
Localization in a team of robots

Particle filter

• Assume the following data:
 • Odometry - motion integration

\[
Bel(x^n_t) = \int p(x^n_t|x^n_{t-1}, u^n_t) Bel(x^n_{t-1})
\]

• Sensor measurement

\[
Bel(x^n_t) = p(z|x^n_t) Bel(x^n_t)
\]

• Detection of other robots
Localization in a team of robots

Particle filter
Derivation of equations for detection

• The robot R_n detects another robot R_m by measuring r_{tm}^m.

\[
Bel(x_{t}^n) = p(x_{t}^n | d_{(t)}^n) \\
= p(x_{t}^n | d_{(t-1)}^n) p(x_{t}^n | d_{t}^m) \\
= p(x_{t}^n | d_{(t-1)}^n) \int p(x_{t}^n | x_{t}^m, r_{tm}^m) p(x_{t}^m | d_{(t-1)}^m) dx_{t}^m
\]

• Which leads to:

\[
Bel(x_{t}^n) = Bel(x_{t-1}^n) \int p(x_{t}^n | x_{t}^m, r_{tm}^m) Bel(x_{t}^m) dx_{t}^m
\]

• Update of m-th robot’s position is done symmetrically.
Particle filter

Implementation

• Extension of the particle filter for multiple robots is not straightforward – how to multiply two sets of particles?

\[\text{Bel}(x_t^n) = \text{Bel}(x_{t-1}^n) \int p(x_t^n|x_t^m, r_t^m) \text{Bel}(x_t^m) dx_t^m \]

• Idea: transform a set of particles for \(m \) into a density tree:
 • Recursive space division using piece-wise constant density functions.
 • Node (leaf) density is a sum of weights of particles divided by a volume of the node.
 • Weight of a particle \(R_n \) is multiplied by corresponding density.
Particle filter

Problems

- Frequency of detection is high \(\Rightarrow\) a single detection is integrated many times.
- Identification of robots is needed.
- False-positive detection - robots "see" each other with relatively low frequency \(\Rightarrow\) small amount of false-positive plays a big role.
- Positive information only - negative information can be incorporated in general, but it is computationally demanding.
- Delayed integration - in case of high uncertainty of pose determination. It is necessary to keep information about all actions and measurements.
Localization in a team of robots

Extended Kalman filter

- Configuration of i-th robot $X_i = (x_i, y_i, \theta_i)$
- We aim to estimate the state

\[X = (X_1, X_2, \ldots, X_N) \]

- Covariance matrix:

\[\Sigma = \begin{pmatrix} \Sigma_{11} & \Sigma_{12} & \ldots & \Sigma_{1N} \\ \Sigma_{21} & \Sigma_{22} & \ldots & \Sigma_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ \Sigma_{N1} & \Sigma_{N2} & \ldots & \Sigma_{NN} \end{pmatrix} \]
Localization in a team of robots

Extended Kalman filter

Correction (measurement integration)

\[
K = \Sigma H^T (H\Sigma H^T + Q)^{-1}
\]

\[
\mu = \mu + K(z - h(\mu))
\]

\[
\Sigma = (E - KH)\Sigma
\]

- Detection (\(i\)-th robot „sees“ \(j\)-th)

 \[z = h(X_i, X_j) + w\]

- Jacobian \(H\):

 \[H = (0, \ldots, 0, H_i, 0, \ldots, 0, H_j, 0, \ldots, 0),\]

- and

 \[
 H\Sigma H^T + Q = H_i \Sigma_{ii} H_i^T + H_i \Sigma_{ij} H_j^T + H_j \Sigma_{ji} H_i^T + H_j \Sigma_{jj} H_j^T + Q = P_{zz}
 \]

 \[
 \mu_l = \mu_l + (\Sigma_{li} H_i^T + \Sigma_{lj} H_j^T) P_{zz}^{-1} (z - h(\mu_i, \mu_j))
 \]

 \[
 \Sigma_{lf} = \Sigma_{lf} - (\Sigma_{li} H_i^T + \Sigma_{lj} H_j^T) P_{zz}^{-1} (H_i \Sigma_{lf} + H_j \Sigma_{jf})
 \]
Extended Kalman filter

Examples of sensor models

- **Distance:**
 \[h_d(X_i, Y_i) = \sqrt{\Delta x^2 + \Delta y^2} \]
 \[
 H_i^d = \begin{pmatrix}
 -\frac{\Delta x}{\sqrt{\Delta x^2 + \Delta y^2}} \\
 -\frac{\Delta y}{\sqrt{\Delta x^2 + \Delta y^2}} \\
 0
 \end{pmatrix}, \\
 H_j^d = \begin{pmatrix}
 \frac{\Delta x}{\sqrt{\Delta x^2 + \Delta y^2}} \\
 \frac{\Delta y}{\sqrt{\Delta x^2 + \Delta y^2}} \\
 0
 \end{pmatrix}
 \]

- **Relative direction:**
 \[h_b(X_i, Y_i) = \arctan\left(\frac{-\sin \theta_i \Delta x + \cos \theta_i \Delta y}{\cos \theta_i \Delta x + \sin \theta_i \Delta y} \right) \]
 \[
 H_i^b = \begin{pmatrix}
 \frac{-\Delta y}{\Delta x^2 + \Delta y^2} \\
 \frac{-\Delta x}{\Delta x^2 + \Delta y^2} \\
 -1
 \end{pmatrix}, \\
 H_j^b = \begin{pmatrix}
 \frac{-\Delta y}{\Delta x^2 + \Delta y^2} \\
 \frac{\Delta x}{\Delta x^2 + \Delta y^2} \\
 0
 \end{pmatrix}
 \]
Extended Kalman filter

Examples of sensor models

- Relative orientation:

\[h_o(X_i, Y_i) = \theta_j - \theta_i \]
\[H_o^i = (0, 0, -1) \]
\[H_o^j = (0, 0, 1) \]

\[\Delta x = x_j - x_i \]
\[\Delta y = y_j - y_i \]