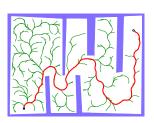
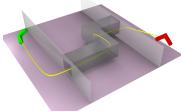
Motion planning I: basic concepts

Vojtěch Vonásek

Department of Cybernetics Faculty of Electrical Engineering Czech Technical University in Prague

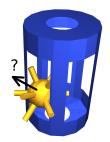




Motion planning: introduction

Informal definition: Motion planning is about automatic finding of ways how to move an object (robot) while avoiding obstacles (and considering other constraints).

- Classical problem of robotics
- Also Piano mover's problem
- Relation to other fields
 - Mathematics: graph theory & topology
 - · Computational geometry: collision detection
 - Computer graphics: visualizations
 - Control theory: feedback controllers required to navigate along paths
- Motion planning finds application in many practical tasks



References

- S. M. LaValle, Planning algorithms, Cambridge, 2006, online: planning.cs.uiuc.edu
- H. Choset, K. M. Lynch et al., Principles of Robot Motion: Theory, Algorithms, and Implementations (Intelligent Robotics and Autonomous Agents series), Bradford Book, 2005
- M. de Berg, Computational Geometry: Algorithms and Applications, 1997
- C. Ericson. Real-time collision detection. CRC Press, 2004.

Robotics, automation & automotive industry

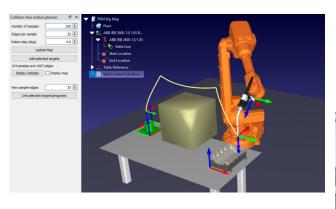
- mobile robots, manipulators, drones, modular robots, underwater, humanoids ...
- autonomous cars, parking assistant

Robotics, automation & automotive industry

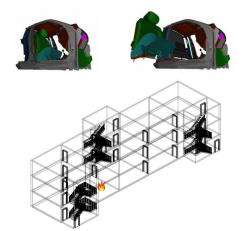
- mobile robots, manipulators, drones, modular robots, underwater, humanoids ...
- autonomous cars, parking assistant

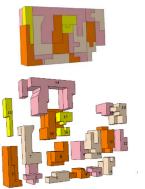
Robotics, automation & automotive industry

- mobile robots, manipulators, drones, modular robots, underwater, humanoids . . .
- autonomous cars, parking assistant

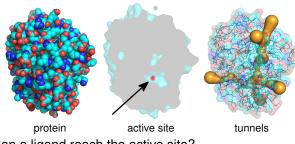


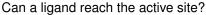
- (dis)assembly planning, maintainability studies
- evacuation & accessibility simulation
- motions of characters in computer games



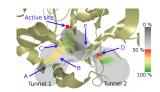


- protein folding
- analysis of protein tunnels



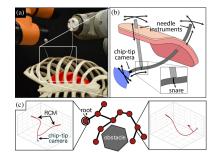


- Existence of a path indicates "promising" candidate
- Faster than in vitro or Molecular dynamics simulations

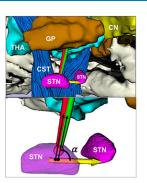


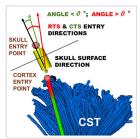
Surgery

- Paths for needles & other tools
- Robotic manipulators

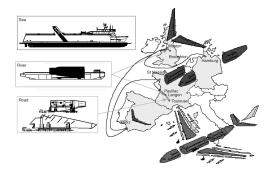


- A. Kuntz et al. "Motion planning for continuum reconfigurable incisionless surgical parallel robots", IEEE/RSJ IROS, 2017
- A. Segato, V. Pieri et al. "Automated Steerable Path Planning for Deep Brain Stimulation Safeguarding Fiber Tracts and Deep Gray Matter Nuclei"



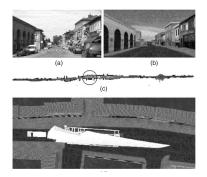


- Components for Airbus airplanes are made in distinct regions
- Transportation of large pieces (e.g. wings) through narrow streets
- Motion planning is used to design and/or verify routes



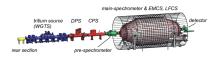
- Lamiraux, F. et al. "Trailer truck trajectory optimization: the transportation of components for the Airbus A380", IEEE Robotics & Automation Magazine, 12, 2005
- VanGeem, C., and C. A. M. Kineo. "Trailer-truck trajectory optimization for Airbus A380 component transportation."

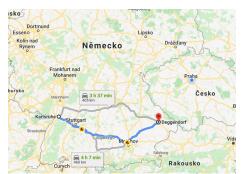
- Components for Airbus airplanes are made in distinct regions
- Transportation of large pieces (e.g. wings) through narrow streets
- Motion planning is used to design and/or verify routes



- Lamiraux, F. et al. "Trailer truck trajectory optimization: the transportation of components for the Airbus A380", IEEE Robotics & Automation Magazine, 12, 2005
- VanGeem, C., and C. A. M. Kineo. "Trailer-truck trajectory optimization for Airbus A380 component transportation."

- KATRIN neutrino detector in Karlsruhe Institute of Technology, Karlsruhe, Germany
- The core was constructed in Deggendorf (~ 400 km from KIT)





- KATRIN neutrino detector in Karlsruhe Institute of Technology, Karlsruhe, Germany
- The core was constructed in Deggendorf (~ 400 km from KIT)
- Transport around Europe (\sim 8600 km)

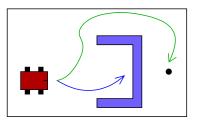
Relation to navigation/control

Path planning

- Requires models of robot and environment
- Can ensure finding global optimum
- Computationally intensive

Navigation/obstacle avoidance

- Fast, reactive way of reasoning
 - Sensor-based navigation
 - No (or limited) model of environment
- Cannot ensure reaching global goal
- Limited time horizon



navigation towards goal vs. planning towards goal

Planning is rather "global"; navigation is more "local"

Lectures overview

Introduction & motivation

Formal definition, configuration space Why we need discretization of configuration space

.

Low-dimensional cases Visibility graphs, Voronoi diagrams, . . . General cases
Sampling-based planning
Planning under constraints

Technical details

sampling, collision-detection, fast distance calculation, tips & tricks

Lecture 1

Lecture 2

ecture 3

Motion planning: definitions

World \mathcal{W}

- is space where the robot operates
- \mathcal{W} is usually $\mathcal{W} \subseteq \mathbf{R}^2$ or $\mathcal{W} \subseteq \mathbf{R}^3$
- $\mathcal{O} \subseteq \mathcal{W}$ are obstacles

Robot A

- A is the geometry of the robot
- $A \subseteq \mathbf{R}^2$ (or $A \subseteq \mathbf{R}^3$)
- or set of links $A_1, \dots A_n$ for n-body robot

Configuration q

- Specifies position of **every** point of ${\mathcal A}$ in ${\mathcal W}$
- Usually a vector of Degrees of freedom (DOF)

$$q=(q_1,q_2,\ldots,q_n)$$

Configuration space $\mathcal C$ (aka C-Space or $\mathcal C$ -space)

 \bullet $\, \mathcal{C}$ is a set of **all** possible configurations

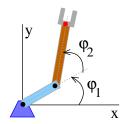
3D Bugtrap benchmark

$$\mathcal{W} \subseteq \mathbf{R}^3, \, \mathcal{A} \subseteq \mathbf{R}^3$$
 $\mathcal{O} \subseteq \mathbf{R}^3$
 (x, y, z) is 3D position
 (r_x, r_y, r_z) is 3D rotation
 $q = (x, y, z, r_x, r_y, r_z)$
 \mathcal{C} -space is 6D

Configuration space

- A configuration is a **point** in $\mathcal C$
- $\mathcal{A}(q)$ is set of **all points** of the robot determined by configuration $q \in \mathcal{C}$
- ullet Therefore, point $q\in\mathcal{C}$ fully describes how the robot looks in \mathcal{W}
- \bullet The number of dimensions of ${\cal C}$ equals to the number of DOFs of the robot.
- For robots with more than 4 DOFs, $\ensuremath{\mathcal{C}}$ is considered already as high-dimensional

Example: a robotic arm with two revolute joints; $q = (\varphi_1, \varphi_1) \rightarrow 2D$ \mathcal{C} -space Robot geometry has two rigid shapes: \mathcal{A}_1 and \mathcal{A}_2



Configuration space

11/51

$$\mathcal{C}_{\mathrm{obs}} = \{ \boldsymbol{q} \in \mathcal{C} \, | \, \mathcal{A}(\boldsymbol{q}) \cap \mathcal{O} \neq \emptyset \}, \quad \mathcal{C}_{\mathrm{obs}} \subseteq \mathcal{C}$$

- $oldsymbol{\cdot}$ \mathcal{C}_{obs} contains robot-obstacle collisions and self-collisions
- Self-collisions: e.g. in the case of robotic arms
- q is feasible, if it is collision free $ightarrow q \in \mathcal{C}_{ ext{free}}$

$$\mathcal{C}_{free} = \mathcal{C} \backslash \mathcal{C}_{obs}$$

Implicit definition of C_{obs}

- We cannot (generally) enumerate points in C_{obs}
- Difficult to determine the nearest colliding configuration
- The main reason, why high-dimensional C is difficult to search!

How to determine if q is collision-free or not?

- Generally: compute $\mathcal{A}(q)$ and detect collisions with $\mathcal{O} \to \mathsf{time}$ consuming
 - Special cases: direct representation of C, then point-location query

Configuration space: construction

- ullet C-space can be explicitly constructed using Minkowski sum of ${\mathcal A}$ and ${\mathcal O}$
- Minkowski sum ⊕ of two sets X and Y is

$$X \oplus Y = \{x + y \in \mathbf{R}^n | x \in X \text{ and } y \in Y\}$$

where *n* is the dimension

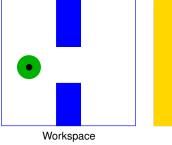
- $\mathcal{C}_{\mathrm{obs}}$ can be computed as $\mathcal{O} \oplus -\mathcal{A}(0)$
- A(0) is the robot at origin
- -A(0) is achieved by replacing all $x \in A(0)$ by -x

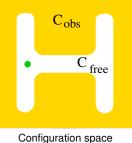
Example: 1D robot A = [-2, 1] and obstacle O = [2, 4]:

$$C_{\rm obs} = [1, 6]$$

Configuration space: 2D disc robot

- 2D workspace W ⊆ R²
- 2D disc robot $A \subseteq \mathbf{R}^2$, reference point in the disc's center
- We assume only translation
- Therefore, configuration q = (x, y) and C is 2D

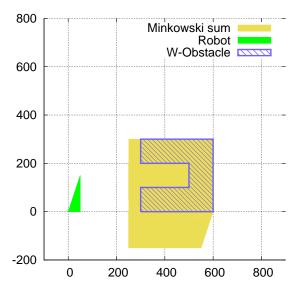




- All $q \in \mathcal{C}_{\text{free}}$ are collision-free $o \mathcal{A}(q) \cap \mathcal{O} = \emptyset$
- Volume of $\mathcal{C}_{\mathrm{free}}$ depends both on the robot and obstacles
- What happens if the robot is a point?

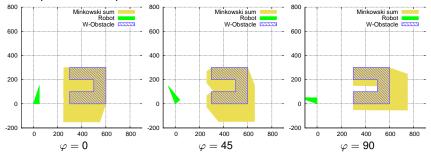
Configuration space: 2D robot I

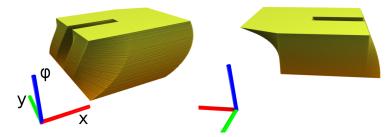
• 2D robot, only translation, $q = (x, y) \rightarrow 2D C$



Configuration space: 2D robot II

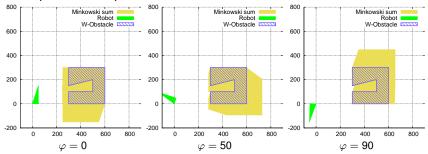
- 2D robot, translation + rotation, $q = (x, y, \varphi) \rightarrow 3D C$
- Requires to compute Minkowski sum for each rotation

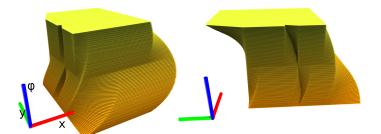




Configuration space: 2D rotating robot III

- 2D robot, translation + rotation, $q = (x, y, \varphi) \rightarrow 3D C$
- Requires to compute Minkowski sum for each rotation





Explicit construction of C

- ullet Construction of ${\mathcal C}$ Minkowski sums is straightforward, but ...
- We have only 2D/3D models of robots and obstacles
- ightarrow directly we can construct ${\mathcal C}$ only for "translation only" systems
- Other DOFS need to be discretized and Minkowski sum computed for each combination

Minkowski sum of two objects of *n* and *m* complexity

2D polygons

•)

- convex \oplus convex, O(m+n)
- convex ⊕ arbitrary, (mn)
- arbitrary \oplus arbitrary, (m^2n^2)

3D polyhedrons

- convex \oplus convex, O(mn)
- arbitrary \oplus arbitrary, (m^3n^3)

- \bullet Explicit construction of ${\cal C}$ is computationally demanding!
- Not practical for high-dimensional systems

Path & trajectory

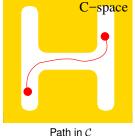
• A **path** in C is a continuous curve connecting two configurations q_{init} and $q_{\rm goal}$:

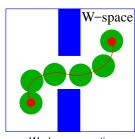
$$\tau: s \in [0,1] \rightarrow \tau(s) \in \mathcal{C}; \quad \tau(0) = q_{\text{init}} \text{ and } \tau(1) = q_{\text{goal}}$$

A **trajectory** is a path parametrized by time

$$\tau: t \in [0, T] \rightarrow \tau(t) \in \mathcal{C}$$

Trajectory/path defines motion is workspace





Workspace motion

Path/motion planning problem

Let's assume we have

- model of the world ${\mathcal W}$ and robot ${\mathcal A}$
- and configurations $q_{ ext{init}}, q_{ ext{goal}} \in \mathcal{C}_{ ext{free}}$

Path planning

- To find a collision-free path au(s) from $q_{ ext{init}}$ to $q_{ ext{goal}}$
- i.e., $q(s) \in \mathcal{C}_{ ext{free}}$ for all $s \in [0,1]$, $s(0) = q_{ ext{init}}$, $s(1) = q_{ ext{goal}}$

Motion planning

- To find a collision-free trajectory au(t) from $q_{ ext{init}}$ to $q_{ ext{goal}}$
- i.e., $q(t) \in \mathcal{C}_{ ext{free}}$ for all $t \in [0, T]$, $s(0) = q_{ ext{init}}$, $s(T) = q_{ ext{goal}}$

Other specifications

- Kinematic constraints (e.g. 'car-like' vehicle)
- Dynamic constraints (e.g. maximal acceleration)
- Task constraints (e.g 'do not spill the beer')

Confusion in terminology

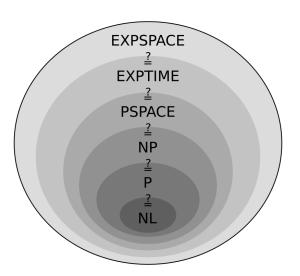
- Path/motion planning are studied in several disciplines
 - Robotics, computation geometry, mathematics, biology
 - ... since 1950's !
- Each field uses different meaning for "path" and "trajectory"
 ... and different meaning for path/motion planning
- this continues up to now

What is then the "trajectory"?

- Robotics (including this lecture): path + time
- Control-oriented part of robotics: path + time + control inputs
- Computational biology: 3D path of atom(s) (with or without time)

Before you start to solve a planning problem, define (or agree on) the basic terms first!

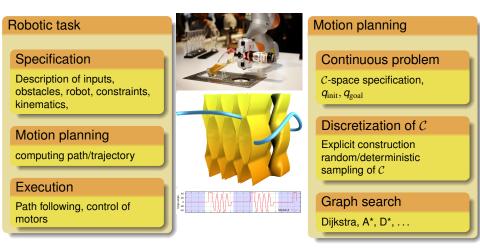
Complexity of motion planning



General motion planning problem is PSPACE-complete.

J. Canny. The complexity of robot motion planning. MIT press, 1988.

Hierarchy of tasks

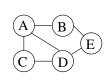


The art-of-motion-planning

- Understand and formulate the problem, define $\mathcal C$
- Apply suitable method to represent C by a graph
- Search the graph

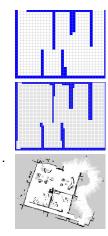
World representations

- Map: the representation of the world
 - grid-maps: 2D/3D/nD arrays/grids represent both \mathcal{C}_{free} and \mathcal{C}_{obs}
 - geometric maps: polygons, polyhedrons (usually for $\mathcal{C}_{obs})$
 - topological maps: relations between regions of $\mathcal{C}_{\text{free}}$
- Properties
 - Memory requirements
 - Supported operations (e.g. merging maps, adding new information, deleting obstacles, ...)
 - · Computational complexity of these procedures
 - Precision
 - Robustness (with respect to numerical errors)
- One should always choose a map suitable for the given application



Grid maps

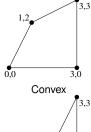
- Binary maps: 0/1 (obstacle, free spaces)
- Probability: 0-1 (0=free space, 1=obstacle)
 - occupancy grid
 - often used for integration of sensor data
- ✓ Metric information (distance/angle/area ...)
- ✓ Easy implementation
- ✓ Efficient search for obstacle cells, nearest obstacle cell, . . .
- ✓ Straightforward update of cells & map merging
- ✓ Integration of data from different sensors
- High memory requirements
 - depends on environment size & map resolution
 - practical limit to 2D and 3D environments



Polygonal maps

- 2D worlds
- Obstacle is represented by polygon $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$
- (x_i, y_i) are vertices
- The map is the collection of obstacles
- Simple polygon: does not intersect itself, no holes
- Polygons with holes: contour + one or more holes
- Memory efficient, easy to process, metric information
- ✓ Fast tests for collisions, point location
- Numerical stability of (some) algorithms
- Number of vertices can dramatically grow if map is built from (unfiltered) sensor data

Map \sim 100 \times 5 m, \sim 1k vertices

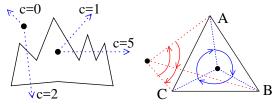


Polygon from Lidar

Polygonal maps: basic operations I

Point-in-polygon

- Is a point inside/outside of a polygon?
- Crossing test:
 - shot a ray from the query point and compute crossings
 - the point is inside if the number of crossings is odd
- Winding number:
 - sum up (signed) angles from query point to all vertices
 - · point is outside, if the sum is near-zero
 - slow (practically): required trigonometric functions
- Crossing test & Winding number: for convex/non-convex, O(n)
- Faster algorithm for convex polygons: O(log n)



Polygonal maps: basic operations II

Collision-detection

- Used to determine if $q \in \mathcal{C}_{ ext{free}}$ or $q \in \mathcal{C}_{ ext{obs}}$
- Leads to computations of intersections between polygons $\mathcal{A}(q)$ and \mathcal{O}
- Collision determination: compute the result of the collision
- Collision detection: only report if there is collision or not (True/False)

Intersection of two polygons P and Q

- ullet The result is the polygon of intersection o collision determination
- Time complexity O(|P| + |Q|)

Collision detection

- Naïve: check all segments of $\mathcal{A}(q)$ vs. all segments of $O \to \mathcal{O}(|\mathcal{A}||\mathcal{O}|)$
- Disadvantage: also "distant" segment are tested (slow)
- Better solution: sweepline method, e.g. Bentley-Ottman algorithm
- Bentley, J. L.; Ottmann, T. A. (1979), "Algorithms for reporting and counting geometric intersections", IEEE Transactions on Computers, C-28 (9)

Path planning for special cases

Special cases with an explicit representation of \mathcal{C}

Point robot in 2D or 3D W

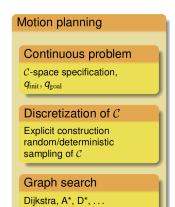
- The map of \mathcal{W} is also representation of \mathcal{C}
- Polygons/polyhedrons are suitable

Disc/sphere robot in 2D or 3D ${\cal W}$

- The obstacles are "enlarged" by radius of the robot (Minkowski sum)
- Then, representation of \mathcal{W} is also representation of C

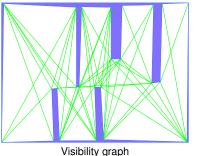
Geometric planning methods

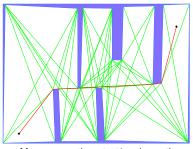
- Assume point/disc robots
- Use geometric (usually polygonal) representation of W (= \mathcal{C})
- Voronoi diagram, Visibility map, Decomposition-based methods



Visibility graph

- Two points v_i, v_i are visible \iff $(sv_i + (1-s)v_i) \in \mathcal{C}_{\text{free}}, s \in (0,1)$
- Visibility graph (V, E), V are vertices of polygons, E are edges between visible points
- Start/goal are connected in same manner to visible vertices





After connecting start/goal + path

- No clearance
- Suitable only for 2D

Visibility graph (VG)

• Straightforward, näive, implementation $O(n^3)$

Input: polygonal obstacle Output: visibility graph G = (V, E)1 V = all vertices of polygonal obstacles 2 foreach $u, v \in V$ do 3 foreach obstacle edge e do 4 if segment u, v intersects e then 5 continue; 6 add edge u, v to E

- n² pairs of vertices
- Complexity of checking one intersection is O(n)
- \rightarrow Total complexity $O(n^3)$

Lee's algorithm O(n² log n)

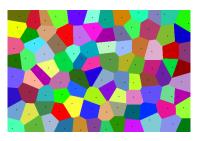
Fast methods

- Overmars/Welz method O(n²)
- Ghosh/Mount method O(|E|nlog n)
- Lee, Der-Tsai, Proximity and reachability in the plane, 1978
- D. Coleman, Lee's O(n2 log n) Visibility Graph Algorithm Implementation and Analysis, 2012.
- D. Coleman, Lee's O(n2 log n) Visibility Graph Algorithm implementation and Analysis, 2012.
 M. H. Overmars, E. Welzl, New methods for Computing Visibility Graphs, Proc. of 4th Annual Symposium on Comp. Geometry, 1998
 - S. Ghosh and D. M. Mount, An output-sensitive algorithm for computing visibility graphs, SIAM Journal on Computing, 1991

Voronoi diagram

- Let $P = v_1, \dots, v_n$ are n distinct points ("input sites") in a d-dimensional space
- Voronoi Diagram (VD) divides P into n cells $V(p_i)$

$$V(p_i) = \{x \in \mathbf{R}^d : ||x - p_i|| \le ||x - p_j|| \ \forall j \le n\}$$



- Construction using Fortune's method in O(n log n)
- S. Fortune. A sweepline algorithm for Voronoi diagrams. Proc. of the 2nd annual composium on Computational geometry. pages 313-322. 1986.

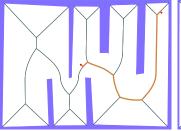
Voronoi diagram

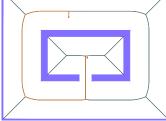
- Let $P = v_1, \dots, v_n$ are *n* distinct points ("input sites") in a *d*-dimensional space
 - Voronoi Diagram (VD) divides P into n cells V(p_i)

$$V(p_i) = \{ x \in \mathbf{R}^d : ||x - p_i|| \le ||x - p_j|| \ \forall j \le n \}$$

Generalized Voronoi diagram

- Many types of Voronoi Diagrams exist
 - e.g. points + weights, segments, spheres, ...
- Segment Voronoi Diagram (SVD) is computed on line-segments describing obstacles
- Maximize the path clearance
 - biggest possible distance between path and the nearest obstacle





Classic VD

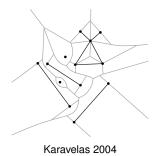
Weighted VD

Segment VD

Generalized Voronoi diagram

Algorithms for computing Segment Voronoi diagram of *n* segments

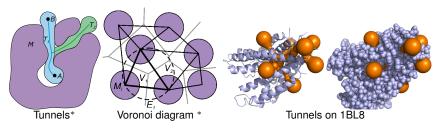
- Lee & Drysdale: $O(n \log^2 n)$, no intersections
- Karavelas: $O((n+m)\log^2 n)$, m intersections between segments



- Karavelas, M. I. "A robust and efficient implementation for the segment Voronoi diagram."
 International symposium on Voronoi diagrams in science and engineering. 2004
- Lee, D. T, R. L. Drysdale, III. "Generalization of Voronoi diagrams in the plane." SIAM Journal on Computing 10.1 (1981): 73-87.

Voronoi diagrams in bioinformatics

- Proteins are modeled using hard-sphere model
- Weighted Voronoi diagram of the spheres (weight is the atom radii Van der Waals radii)
- Path in the Voronoi diagram reveals "void space" and "tunnels"
- Tunnel properties (e.g. bottleneck) estimate possibility of interaction between protein and a ligand



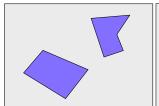
* • A. Pavelka, E. Sebestova, B. Kozlikova, J. Brezovsky, J. Sochor, J. Damborsky, CAVER: Algorithms for Analyzing Dynamics of Tunnels in Macromolecules, IEEE/ACM Trans. on compt. biology and bioinformatics, 13(3), 2016.

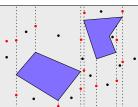
Decomposition-based methods

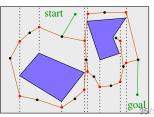
- The free space is partitioned into a finite set of cell
 - Determination of cell containing a point should be trivial
 - Computing paths inside the cells should be trivial
- The relations between the cells is described by a graph
- Path from start to goal is solved on the graph

Vertical cell decomposition

- Make vertical line from each vertex, stop at obstacles
- Determine centroids of the cells, centers of each segments
- Graph connects the neighbor centroids through the centers
- Connect start/goal to centroid of their cells
- Can be built in O(n log n) time

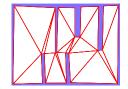






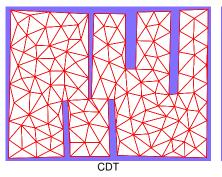
Decomposition via triangulation I

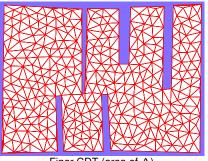
- Variant of decomposition-based methods
- C_{free} is triangulated
- Can be computed in O(n log log n) time
- Polygons can be triangulated in many ways
- C_{free} is represented by graph G = (V, E)
 - V are centroids of the triangles
 - $E = (e_{i,j})$ if Δ_i is neighbor of Δ_j
- Or
 - V are vertices of the triangulation
 - E are edges of the triangulation
- Planning: start/goal are connected to graph, then graph search
- How to triangulate polygonal map composed of n disconnected polygons?



Decomposition via triangulation II

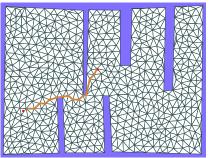
- Finer triangulation via Constrained Delaunay Triangulation (CDT)
 - if a triangle does not meet a criteria, it is further triangulated
 - criteria: triangle area or the largest angle



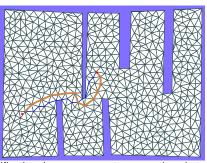


Decomposition via triangulation II

- Finer triangulation via Constrained Delaunay Triangulation (CDT)
 - if a triangle does not meet a criteria, it is further triangulated
 - criteria: triangle area or the largest angle



Path on edges



Modification: ignore segments connecting obstacles

Navigation functions

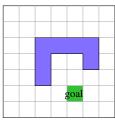
Let's assume a forward motion model

$$\dot{q} = f(q, u)$$

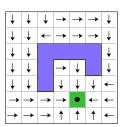
where $q \in \mathcal{C}$ and $u \in \mathcal{U}$; \mathcal{U} is the action space

• The navigation function F(q) tells which action to take at q to reach the goal

Example: robot moving on grid, actions $\mathcal{U} = \{\rightarrow, \leftarrow, \uparrow, \downarrow, \bullet\}$



Discrete planning problem



Navigation function

In discrete space, navigation f. is by-product of graph-search methods

Wavefront planner

- Simple way to compute navigation function on discrete space X
- Explores X in "waves" starting from goal until all states are explored

```
1 open = \{goal\}

2 i = 0

3 while open \neq \emptyset do

4 wave = \emptyset // new wave

5 foreach \ x \in open do

6 value(x) = i

7 foreach \ y \in N(x) do

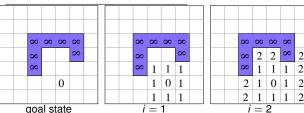
8 if \ y \ is \ not \ explored then

9 if \ y \ is \ not \ explored then

10 if \ y \ is \ not \ explored then

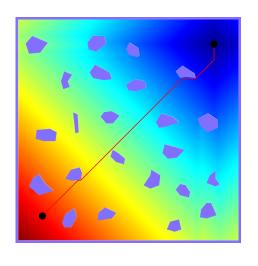
11 open = wave
```

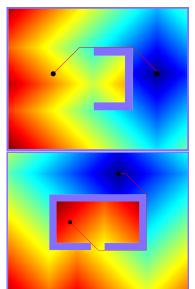
- N(x) are neighbors of x
- 4-/8-point connectivity
- The increase of the wave value i should reflect the distance between x and its neighbors
- Path is retrieved by gradient descend from start
- O(n) time for n reachable states



	_				
7	7	6		5	5
6	6	6	5	4	4
5	∞	∞	∞	∞	3
4	∞	2	2	∞	2
3	∞	1	1	1	2
3	2	1	0	1	2
3	2	1	1	1	2
	6 5 4 3	6 6 5 ∞ 4 ∞ 3 ∞ 3 2	6 6 6 5 ∞ ∞ 4 ∞ 2 3 ∞ 1 3 2 1	6 6 6 5 5 ∞ ∞ ∞ 4 ∞ 2 2 3 ∞ 1 1 3 2 1 0	6 6 6 5 4 5 0 0 0 0 4 0 2 2 0 3 0 1 1 1 3 2 1 0 1

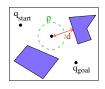
Wavefront planner





Potential field: principle

- Potential field *U*: the robot is repelled by obstacles and attracted by q_{goal}
- Attractive potential U_{att} , repulsive potential U_{rep}
- Weights K_{att} and K_{rep} , d is the distance to the nearest obstacle, ρ is radius of influence



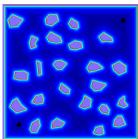
$$U_{att}(q) = \frac{1}{2} K_{att} dist(q, q_{\text{goal}})^2$$
 $U_{rep}(q) = \begin{cases} \frac{1}{2} K_{rep} (1/d - 1/\varrho)^2 & \text{if } d \leq \varrho \\ 0 & \text{otherwise} \end{cases}$

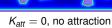
Combined attractive/repulsive potential

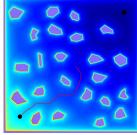
$$U(q) = U_{att}(q) + U_{rep}(q)$$

- Goal is reached by following negative gradient $-\nabla U(q)$
- Gradient-descend method
- Y. K. Hwang and N. Ahuja, A potential field approach to path planning, IEEE Transaction on Robotics and Automation, 8(1), 1992.

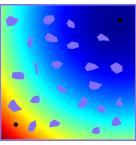
Potential field: parameters



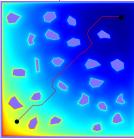




 $K_{att} \sim K_{rep}$



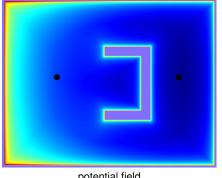
 $K_{att} \gg K_{rep}$, no repulsion

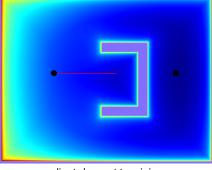


optimal settings

Potential field: local minima problem

- Potential field may have more local minima/maxima
- Gradient-descent stucks there





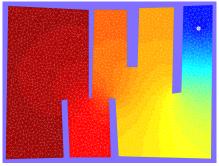
potential field

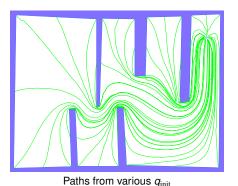
gradient-descent to minimum

- Escape using random walks
- Use a better potential function without multiple local minima harmonic field

Harmonic field

Harmonic field is an ideal potential function: only one extrem





Images by J. Mačák, Multi-robotic cooperative inspection, Master thesis, 2009

Potential field: summary

- ullet Usually computed using grid or a triangulation of the ${\cal W}$
- Suitable for 2D/3D C-space
 - memory requirements (in case of grid-based computation)
 - requires to compute distance d to the nearest obstacle in C!
- Parameters K_{att} , K_{rep} and ϱ need to be tuned
- ullet Problem with local minima o hamornic fields

But how to really find the path?

So far we know ...

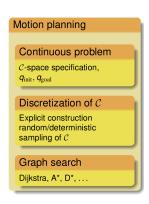
- Visiblity graphs, Voronoi diagrams, Decomposition-based planners
- Navigation functions & Potential fields

What they do?

- Discretize workspace/C-space by "converting" it to a graph structure
- The graph is also called roadmap
- The roadmap is a "discrete image" of the continuous $\mathcal{C}\text{-space}$
- The path is then found as path in the graph

Graph-search

- Breath-first search
- Dijkstra
- A*, D* (and their variants)



Graph search: Dijkstra's algorithm

- Finds shortest path from $s \in V$ (source) to all nodes
- dist(v) is the distance traveled from the source to the node s; prev(v) denotes the predecessor of node v

```
Q = \emptyset
2 for v \in V do
        prev[v] = -1
                           // predecessor of v
     dist[v] = \infty
                                   // distance to v
5 \text{ dist}[s] = 0
6 add all v \in V to Q
   while Q is not empty do
        u = \text{vertex from } Q \text{ with min } dist[u]
        remove \mu from \Omega
        foreach neighbor v of u do
10
             dv = dist[u] + d_{u,v}
11
             if dv < dist[v] then
12
                  dist[v] = dv
13
                  prev[v] = u
14
```


- Path from $v \rightarrow s$: $v, pred[v], pred[pred[v]], \dots s$
- Dijkstra, E. W. "A note on two problems in connection with graphs." Numerische mathematik

Completeness and optimality

- Algorithm is complete, if for any input it correctly reports in finite time if there is a solution or no.
- If a solution exists, it must return one in a finite time
- Computationally very hard
- Complete methods exist only for low-dimensional problems

Probabilistic completeness

- Algorithm is prob. complete if for scenarios with existing solution the probability of finding that solution converges to one.
- If solution does not exists, the method can run forever

Optimal vs. non-optimal

- Optimal planning: algorithm ensures finding of the optimal solution (according to a criterion)
- Non-optimal: any solution is returned

Completeness and optimality

Visibility graph

· Complete and optimal

Voronoi diagram, decomposition-based method

Complete, non-optimal

Navigation function

- Complete
- Optimal for Wavefront/Dijkstra/-based navigation functions

Potential field

Complete only if harmonic field is used (one local minima!)

Consider the limits of these methods!

• Point/Disc robots, low-dimensional C-space

E. Rimon and D. Koditschek. "Exact robot navigation using articial potential functions." IEEE
 Transactions on Robotics and Automation, 1992.

Optimality of planning methods

Do we always need optimal solution?

- No! in many cases, non-optimal solution is fine
 - e.g. for assembly/disassembly studies, computational biology
 - generally: if the existence of a solution is enough for subsequent decisions
- in industry:
 - scenarios, where robot "waits" due to technological limits
 - e.g., welding robots

When to prefer optimal one?

- Repetitive executing of the same plan
- Benchmarking of algorithms

Summary of the lecture

- Motion planning: how to move objects and avoid obstacles
- Configuration space C
- Generally, planning leads to search in continuous C
- But we (generally) don't have explicit representation of C
- We have to first create a discrete representation of C
- and search it by graph-search methods
- Special cases: point robot and 2D/3D worlds
 - Explicit representation of \mathcal{W} is also rep. of
 - Geometric planning methods: Visibility graph, Voronoi diagram, decomposition-based
 - Also navigation functions + potential field

