
Autonomous Robotics: lecture notes

Karel Zimmermann

1 Lidar, camera and their mutual calibration

In this section, we formulate lidar-lidar calibration and camera-lidar calibration
from known correspondences as optimization problems a derive closed-form so-
lution.

1.1 Lidar-lidar calibration

Lidar is a sensor, which repeatedly measure the depth in its field-of-view using
time-of-flight principle to provide 3D pointclouds. When two lidars are available,
they both provide measurements relative to their own coordinate frame. To
transform measurement from one lidar to another, unknown transformation
g ∈ SO(3) needs to be estimated.

Pairs of 3D points from pointclouds pi = (px, py, pz)
> (from the first lidar)

and qi = (qx, qy, z)
> (from the second lidar), which both correspond to the

same physical point in the real world are called 3D-3D correspondences. The
Euclidean transformation g between lidars, aligns pairs from 3D-3D correspon-
dence to the same point:

qi = Rpi + t ∀i=1...N

Since measurements contains noise, the set of equations does not have an
exact solution with respect to R ∈ SO(3) and t ∈ R3. Assuming Gaussian
noise and i.i.d. measurements (see Appendix A for the derivation), we estimate
the unknown parameters R∗, t∗ as follows:

R∗, t∗ = arg min
R∈SO(3),t∈R3

∑
i

‖Rpi + t− qi‖22 (1)

This problem has the following closed-form solution:

R∗ = VU>,

t∗ = q̃−R∗p̃,

where USV> = H is SVD decomposition of 3× 3 matrix H =
∑
i p
′
iq
′>
i with

p′i = pi −
1

N

∑
i

pi︸ ︷︷ ︸
p̃

, q′i = qi −
1

N

∑
i

qi︸ ︷︷ ︸
q̃

1

Proof: We will first show that the problem (1) splits into two sub-problems,
then particular solutions for R∗ and t∗ are derived.

R∗, t∗ = arg min
R∈SO(3),t∈R3

∑
i

‖Rpi+t−qi‖22 = arg min
R∈SO(3),t∈R3

∑
i

‖R(p′i+p̃)+t−q′i−q̃‖22 =

= arg min
R∈SO(3),t∈R3

∑
i

‖Rp′i − q′i + Rp̃ + t− q̃︸ ︷︷ ︸
t′

‖22 =

= arg min
R∈SO(3),t∈R3

∑
i

(Rp′i − q′i + t′)>(Rp′i − q′i + t′) =

= arg min
R∈SO(3),t∈R3

∑
i

‖Rp′i − q′i‖22 +
∑
i

2(Rp′i − q′i)t
′

︸ ︷︷ ︸
=0

+‖t′‖22 =

= arg min
R∈SO(3),t∈R3

∑
i

‖Rp′i − q′i‖22 + ‖t′‖22 (2)

Minimum of ‖t′‖22 is zero. We can achieve this minimum by choosing

t = q̃−Rp̃.

Since the first term does not depend on t, this choice is the optimal translation
t∗. Substituting this into Eq. (2), problem reduces to

arg min
R∈SO(3)

∑
i

‖Rp′i − q′i‖22 = arg min
R∈SO(3)

∑
i

p′>i p′i − 2q′>i Rp′i + q′>i q′i =

= arg max
R∈SO(3)

∑
i

q′>i Rp′i = arg max
R∈SO(3)

trace{
∑
i

Rp′iq
′>
i } = arg max

R∈SO(3)

trace{RH} = VU>,

where USV> = H is SVD decomposition of H. Proof of the last equality
follows from showing, that substitution of R = VU> yields value of criterion
function, which is better than any other rotation.

trace{RH} = trace{VU>USV>} = trace{VSV>}

= trace{(V
√
S)︸ ︷︷ ︸

A

(
√
SV)>︸ ︷︷ ︸
A>

} ≥ trace(RA)A
>

�

Publishing static transformation between two coordinate frames in
ROS/python:
broadcaster = tf2 ros.StaticTransformBroadcaster()

transformation = geometry msgs.msg.TransformStamped()

2

fill translation and rotation into transform
broadcaster.sendTransform(transformation)

See detailed description here:
http://wiki.ros.org/action/fullsearch/tf2/Tutorials

1.2 Camera-lidar calibration

Camera is sensor, which repeatedly record visual images in its field of view.
Projection of 3D point p ∈ R3 in the camera coordinate frame on 2D point
u ∈ R2 in the image plane is estimated as follows:

λu =

sx so ox
0 sy oy
0 0 1

f 0 0
0 f 0
0 0 1

p = Kp,

where f is the focal length, ox, oy is a center of image plane and sx, sy, so are
scalings, K ∈ R3×3 is regular matrix. All these scalar variables are called
intrinsic parameters of the camera. u are homogeneous coordinates of point u.
Set of 3D points {λK−1u | λ ∈ R} , which all project to the same pixel u is
called a ray.
Let us have a 3D point q in the coordinate frame of other sensor (e.g. lidar).
Projection of this point to the camera image plane consists of two steps: (i)
transformation from the lidar coordinate frame to the camera coordinate
frame and (ii) projection of the point in camera coordinate frame on the image
plane. Resulting concatenated transformation is

λu = K(Rq + t) = K[R t]q

Pairs of 2D point from camera image plane ui = (ux, uy)> and 3D points from
lidar coordinate frame qi = (qx, qy, qz)

>, which corresponds to the same point
in the real world are called 2D-3D correspondences.
Camera calibration from 2D-3D correspondences is the search for matrix
P = K[R t], which aligns 2D-3D correspondences on each other λui = Pqi.
Scalar value λ can be eliminated and the expression translates to homogeneous
set of linear equations.

[
−q>i 0> uxiq

>
i

0> −q>i uyiq
>
i

]
︸ ︷︷ ︸

A[2×12]

 p1

p2

p3

︸ ︷︷ ︸
p[12×1]

= 0[2×1]

Since measurements contains noise, the set of equations does not have an
exact nontrivial solution with respect to p ∈ R12. Assuming i.i.d.
measurements and Gaussian noise on the right-hand side of the homogeneous
system (which is typically wrong and value normalization have to be done
prior to the calibration), the ML estimate is as follows:

3

p∗ = argmin‖Ap‖ subject to ‖p‖ = 1 (3)

This problem has closed-form solution, which is equal to the eigen-vector of
A>A with the smallest corresponding eigen-value (MATLAB tip: [W
D]=EIG(A’*A); p=W(:,1), Python tip: numpy.linalg.eig). It is the same as
the singular-vector of A which corresponds to the smallest singular-value
(MATLAB tip: [U S V]=SVD(A); p=V(:,end), Python tip:
numpy.linalg.svd). For the sake of completeness, derivation of this solution
is provided in the next paragraph.
Solution p∗ is reshaped into matrix P. Since scale does not matter, we choose
normalize matrix P as follows P := P/‖[p31, p32, p33]‖. Eventually, matrix

P = [KR︸︷︷︸
B

Kt︸︷︷︸
c

] = [B c],

is decomposed on K,R, t using QR decomposition of B as follows:

KR = B (4)

t = K−1c (5)

Proof:
We solve problem (3) by introducing Lagrange function

L(p, λ) = ‖Ap‖+ λ(1− ‖p‖) = (6)

= p>A>Ap + λ(1− p>p). (7)

Critical points (i.e. points in which local extrema can be achieved) of the
Lagrange function are found by equaling derivatives to zero

∂L(p, λ)

∂p
= 2A>Ap− 2λp = 0 (8)

∂L(p, λ)

∂λ
= 1− p>p = 0. (9)

Equation (8) is simply rewritten as the characteristic equation

(A>A− λI)p = 0, (10)

of A>A. Therefore, every eigen-vector p of A>A with corresponding eigen-values
λ is critical point and the one which yields the smallest criterion value ‖Ap‖ of
problem (3) is chosen. Using equation (10) and the constraint (9), it is shown
that the criterion values in critical points are equal to corresponding
eigen-values:

‖Ap‖ = p>A>Ap = p>λp = λp>p = λ‖p‖ = λ.

Therefore the solution of problem (3) is the eigen-vector of A>A with the
smallest eigen-value.
TF message:

4

2 Motion estimation from camera and lidar
measurements

Many robots are equipped by the camera and the lidar. We assume that
camera and lidar are calibrated and depth measurements are transformed to
the camera coordinate frame. Consequently, depth of some pixels in image
plane is also known.
The robot moved between two consecutive time instances time 1 and time 2,
which caused change of the camera coordinate frame. The task is to estimate
the relative motion of the robot between these two time instances.
Let us assume that in both of these times, camera images were captured and a
feature detector such as ORB, SIFT, LIFT estimated 2D-2D correspondences
(i.e. pixel coordinates of the same scene point in these two images). If also
lidar measurements are available for the 2D-2D correspondence, the 3D
position x2 = (x2, y2, z2)> of 3D point in time 2 and 3D position
x1 = (x1, y1, z1)> of 3D point in time 1 are known.
Since the scene is assumed to be rigid, the motion corresponds to the
transformation from Special Euclidean group SE(3). This transformation is
uniquely determined by rotation R ∈ SO(3) and translation t ∈ R3, which
aligns corresponding points on each other:

x1 = Rx2 + t

2.1 3D-3D correspondences

If depth of both points x1 and x2 is known, we have 3D-3D correspondence,
which implies the three following constraints on the motion:

f33(R, t) = x1 − (Rx2 + t) = 0

2.2 2D-3D correspondences

If depth of x1 is unknown, we have 2D-3D correspondence. The unknown
depth d1, is eliminated from the three equations as follows:

d1x̂1 = Rx2 + t

d1x̂1 = R>1 x2 + t1

d1ŷ1 = R>2 y2 + t2

d1ẑ1 = R>3 z2 + t3

x̂1(R>3 z2 + t3)− ẑ1(R>1 x2 + t1) = 0

ŷ1(R>3 z2 + t3)− ẑ1(R>2 x2 + t2) = 0

5

Consequently, each 2D-3D correspondences yields two motion constraints

f23(R, t) = 0

2.3 2D-2D correspondences

If depth of both points from the 2D-2D correspondence is unknown, we have
only the 2D-2D correspondence. The unknown depths d1, d2 are eliminated
from the three motion equations

d1x̂1 = R>1 d2x̂2 + t1 (11)

d1ŷ1 = R>2 d2ŷ2 + t2 (12)

d1ẑ1 = R>3 d2ẑ2 + t3 (13)

Consequently, each 2D-2D correspondences yields only one motion constraint:

f22(R, t) =

−ŷ1t3 + ẑ1t2
x̂1t3 + ẑ1t1
−x̂1t2 + ŷ1t1

Rx2 = 0

Usually mixed correspondences are available due to different framerates of
sensors and missing 3D measurements on reflective surfaces. Consequently, all
four types of motion constraints f33, f23, f32, f22 appears in the motion
estimation process.
Since measurements are noisy, the set of equations is overdetermined.
Assuming the Gaussian noise and i.i.d. samples (which is typically not the
case in reality), we search for the maximum likelihood estimate of rotation and
translation which minimize L2 norm between correspondences.

(R∗, t∗) = arg min
R∈SO(3),t∈R3

∥∥∥∥∥∥∥∥
∑
i f

i
33(R, t)∑

i f
i
23(R, t)∑

i f
i
32(R, t)∑

i f
i
22(R, t)

∥∥∥∥∥∥∥∥
2

2

,

where i denotes correspondence index. There is no closed-form solution to this
problem, therefore Levenberg-Marquardt method for nonlinear least-squares
optimization is typically used.

Appendix A: MAP and ML estimate

We are given model y = p(y|x,w) with parameters w, which estimates
dependent variable y from a given i.i.d. measured data D = {x1, y1 . . .xN , yN}
searches for the most probable parameters w given the measured data D. We
search for the most probable parameters w of the probability distribution,
given measured data D.

6

arg max
w

p(w|D) = arg max
w

p(D|w)p(w)

p(D)
=

= arg max
w

p(D|w)p(w) = arg max
w

p(x1, y1 . . .xN , yN |w)p(w) =

= arg max
w

(∏
i

p(xi, yi|w)

)
p(w) = arg max

w

(∏
i

p(yi|xi,w)p(xi)

)
p(w) =

= arg max
w

(∑
i

log(p(yi|xi,w)) + log p(xi)

)
+ log p(w)

= arg max
w

(∑
i

log(p(yi|xi,w))

)
+ log p(w) =

= arg min
w

(∑
i

− log(p(yi|xi,w))︸ ︷︷ ︸
loss

)
+
(
− log p(w)︸ ︷︷ ︸

regularizer R(w)

)
This is called Maximum A Posteriori (MAP) estimate of parameters w.
Especially for no aprior knowledge p(w) = const., regularizer equals to zero
and the we obtain Maximum Likelyhood (ML) estimate of parameters w.

L2-loss:

For Gaussian likelihood p(yi|xi,w) = 1√
2πσ2

exp
(
− (f(xi,w)−yi)2

2σ2

)
, the ML

estimate of w is minimization of L2 regression loss

w∗ = arg min
w

∑
i

(f(xi,w)− yi)2

Logistic loss:
For dichotomy classification problem with

p(y|x,w) =

{
σ(f(x,w)) y = +1

1− σ(f(x,w)) y = −1
,

the ML estimate of w is minimization of logistic loss

w∗ = arg min
w

∑
i

log [1 + exp(−yi f(xi,w))]

Cross-entropy loss:
For multi-class classification problem with

p(yi|xi,W) =

 exp(f(xi,w1))
exp(f(xi,w2))
exp(f(xi,w3))

 /
∑
k

exp(f(xi,wk) = s(f(xi,W)),

7

the ML estimate of w is minimization of the cross-entropy loss:

W∗ = arg min
W

∑
i

− log syi(f(xi, W)),

where s is called soft-max function.
Common regularizers:
For Gaussian prior on parameter distribution (we assume that parameters a
normally, independently distributed around zero), we obtain L2 regularizer:

p(w) = Nw(0, λI) ⇒ R(w) = w>w

.

8

	Lidar, camera and their mutual calibration
	Lidar-lidar calibration
	Camera-lidar calibration

	Motion estimation from camera and lidar measurements
	3D-3D correspondences
	2D-3D correspondences
	2D-2D correspondences

