Object detection outline

Karel Zimmermann
Classical approach to object detection

- Scale-space search with a classifier
- Famous application Viola Jones face detector

Classifier: \(f : \mathcal{R}^{N \times M} \rightarrow \{+1, -1\} \)

\[
f(\text{face}) = +1
\]
\[
f(\text{background}) = -1
\]
Classical approach to object detection

- Scale-space search with a classifier
- Famous application Viola Jones face detector
Classical approach to object detection

- Scale-space search with a classifier
- Famous application Viola Jones face detector
Classical approach to object detection

- Scale-space search with a classifier
- Famous application Viola Jones face detector
Classical approach to object detection

• Scale-space search with a classifier
• Famous application Viola Jones face detector
• http://www.intel.com/technology/computing/opencv
Classical approach to object detection

- Scale-space search with a classifier
- Famous application Viola Jones face detector
Classical approach to object detection

- Scale-space search with a classifier
- Famous application Viola Jones face detector
Classical approach to object detection

- Scale-space search with a classifier
- Famous application Viola Jones face detector
Classical approach to object detection

- Scale-space search with a classifier
- Famous application Viola Jones face detector
Classical approach to object detection

- Scale-space search with a classifier
- Famous application Viola Jones face detector
Classical approach to object detection

- Scale-space search with a classifier
- Famous application Viola Jones face detector
Classical approach to object detection

• Scale-space search with a classifier
• Famous application Viola Jones face detector
• http://www.intel.com/technology/computing/opencv
Classical approach to object detection

- Scale-space search with a classifier
- Famous application Viola Jones face detector
Classical approach to object detection

- Scale-space search with a classifier
- Famous application Viola Jones face detector
Classical approach to object detection

• Scale-space search with a classifier
• Famous application Viola Jones face detector
• [link](http://www.intel.com/technology/computing/opencv)
Classical approach to object detection

- Scale-space search with a classifier
- Famous application Viola Jones face detector

Classifier:

\[
f : \mathcal{R}^{N \times M} \rightarrow \{+1, -1\}
\]

\[
f(\text{face}) = +1
\]

\[
f(\text{background}) = -1
\]
Classical approach to object detection

- Scale-space search with a classifier
- Famous application Viola Jones face detector

Classifier:

\[f : \mathcal{R}^{N \times M} \rightarrow \{+1, -1\} \]

\[f([3.1, -1.8]) = +1 \]

Haar-features use instead of pure pixel intensities
Classical approach to object detection

- Scale-space search with a classifier
- Famous application Viola Jones detector
- Implementation available in OpenCV: http://www.intel.com/technology/computing/opencv

First two selected features for face detection
Classical approach to object detection

- Scale-space search with a classifier
- Famous application Viola Jones detector
- Implementation available in OpenCV: http://www.intel.com/technology/computing/opencv
Classical approach to object detection

- Scale-space search with a classifier
- Famous application Viola Jones detector
- Implementation available in OpenCV: http://www.intel.com/technology/computing/opencv
Classical approach to object detection

- Scale-space search with a classifier
- Famous application Viola Jones detector
- Implementation available in OpenCV: http://www.intel.com/technology/computing/opencv

Profile detector required completely different features
Classical approach to object detection

- Scale-space search with a classifier
- Famous application Viola Jones detector
- Implementation available in OpenCV: http://www.intel.com/technology/computing/opencv

Profile detector required completely different features
Haar feature as 2D convolution

Convolutional kernel corresponding to vertical gradient
Classical approach to object detection

Convolutional kernel

Input

Feature Map
Classical approach to object detection

- Many different feature types manually designed (SIFT, HOG)
- Most of them consists of convolution, spatial pool and norm

Lowe [IJCV 2004]
Classical approach to object detection

Shallow architecture

- Image/Video Pixels
- Hand-designed feature extraction
- Trainable classifier
- Object Class

Deep architecture:

- Image/Video Pixels
- Layer 1
- Layer 2
- Layer 3
- Simple Classifier
Deep convolutional neural network
Deep convolutional neural network

Convolution layer

Max-pooling layer

Features maps

Input for next layer

Input image

Features maps

Czech Technical University in Prague
Faculty of Electrical Engineering, Department of Cybernetics
Imagenet

- 14M labeled images
- Human labels via Amazon Turk

[Deng et al. CVPR 2009]
Pascal VOC object detection challenge

Before the successful application of ConvNets

Mean Average Precision (mAP)

Year

< 2 years 1.8x mAP

~5 years

Precision: higher is better
Layer 1 filters
Filters in different layers

Layer 1

Layer 2

Layer 3
Deep convolutional nets useful links

- Many Python/C++/Matlab frameworks with tutorials:
 - https://www.tensorflow.org
 - http://caffe.berkeleyvision.org
 - http://deeplearning.net/software/theano/
 - http://www.vlfeat.org/matconvnet/

- Many datasets with competitions:
 - http://mscoco.org
 - http://www.image-net.org
 - http://host.robots.ox.ac.uk/pascal/VOC/

- Many ready-to-use applications and pre-trained models: