
Resource Ownership in C++

Jan Faigl

Department of Computer Science
Faculty of Electrical Engineering

Czech Technical University in Prague

Lecture 13

B3B36PRG – Programming in C

David Valouch, 2022 B3B36PRG – Lecture 13: Ownership in C++ 1 / 48

Overview of the Lecture

■ Part 1 – RAII Principle (in C++)

Acquisition-Release Pattern in C/C++

RAII – Resource Acquisition is Initialization

RAII Threading

Smart Pointers

■ Part 2 – Move and Copy Semantics (in C++)

Assignment of Objects Holding Resources

lvalues & rvalues

Move and Copy Semantics

David Valouch, 2022 B3B36PRG – Lecture 13: Ownership in C++ 2 / 48

Acquisition-Release Pattern in C/C++ RAII – Resource Acquisition is Initialization RAII Threading Smart Pointers

Part I

Part 1 – RAII Principle (in C++)

David Valouch, 2022 B3B36PRG – Lecture 13: Ownership in C++ 3 / 48

Acquisition-Release Pattern in C/C++ RAII – Resource Acquisition is Initialization RAII Threading Smart Pointers

Acquisition-Release Pattern in C

int main(void)
{

int *array = malloc(SIZE * sizeof(int)); /* ACQUISITION */

/* do work */

free(array); /* RELEASE */
return 0;

}

David Valouch, 2022 B3B36PRG – Lecture 13: Ownership in C++ 5 / 48

Acquisition-Release Pattern in C/C++ RAII – Resource Acquisition is Initialization RAII Threading Smart Pointers

Acquisition-Release Pattern in C

int main(void)
{

FILE *in_file = fopen(FILE_NAME, "r"); /* ACQUISITION */

/* do work */

fclose(in_file); /* RELEASE */
return 0;

}

David Valouch, 2022 B3B36PRG – Lecture 13: Ownership in C++ 6 / 48

Acquisition-Release Pattern in C/C++ RAII – Resource Acquisition is Initialization RAII Threading Smart Pointers

Acquisition-Release Pattern in C

int main(void)
{

pthread_mutex_init(&mtx, NULL);
pthread_mutex_lock(&mtx); /* ACQUISITION */

/* do work in critical section */

pthread_mutex_unlock(&mtx); /* RELEASE */
return 0;

}

David Valouch, 2022 B3B36PRG – Lecture 13: Ownership in C++ 7 / 48

Acquisition-Release Pattern in C/C++ RAII – Resource Acquisition is Initialization RAII Threading Smart Pointers

Acquisition-Release Pattern in C

int main(void)
{

pthread_create(&thread, NULL, foo, NULL); /* ACQUISITION */

/* do work */

pthread_join(&thread, NULL); /* RELEASE */
return 0;

}

David Valouch, 2022 B3B36PRG – Lecture 13: Ownership in C++ 8 / 48

Acquisition-Release Pattern in C/C++ RAII – Resource Acquisition is Initialization RAII Threading Smart Pointers

Acquisition-Release Pattern in C++

int main(void)
{

MyClass* c = new MyClass(); /* ACQUISITION */
int* array = new int[SIZE];

/* do work */

delete[] array;
delete c; /* RELEASE */
return 0;

}

David Valouch, 2022 B3B36PRG – Lecture 13: Ownership in C++ 9 / 48

Acquisition-Release Pattern in C/C++ RAII – Resource Acquisition is Initialization RAII Threading Smart Pointers

But what if something goes wrong?

int main(void)
{

int *array = malloc(SIZE * sizeof(int)); /* ACQUISITION */

if(!everithing_ok) {
return 100; /* !!! Resource is not released */

}

free(array); /* RELEASE */
return 0;

}

David Valouch, 2022 B3B36PRG – Lecture 13: Ownership in C++ 10 / 48

Acquisition-Release Pattern in C/C++ RAII – Resource Acquisition is Initialization RAII Threading Smart Pointers

Automatic Destructor Call

■ Destructor is called at the end of life-time!

int main(void)
{

MyClass c; /* Constructor MyClass() is called */

/* do work */

return 0;
// ~MyClass() /* Desctructor is called at the end of scope. */

}

David Valouch, 2022 B3B36PRG – Lecture 13: Ownership in C++ 12 / 48

Acquisition-Release Pattern in C/C++ RAII – Resource Acquisition is Initialization RAII Threading Smart Pointers

Automatic Destructor Call
■ Destructor is called at the end of life-time!

int main(void)
{

MyClass c; /* Constructor MyClass() is called */

if(not everithing_ok) {
return 100;
// ~MyClass() /* EVEN HERE! */

}

return 0;
// ~MyClass() /* Desctructor is called at the end of scope. */

}

David Valouch, 2022 B3B36PRG – Lecture 13: Ownership in C++ 12 / 48

Acquisition-Release Pattern in C/C++ RAII – Resource Acquisition is Initialization RAII Threading Smart Pointers

Resources Acquisition is Initialization

■ Implement resource acquisition in a constructor(initialization).
■ Failure to release resource is handled by throwing an exception.
■ Resource release is handled by the destructor.

■ Resource is bound to lifetime object instance.

David Valouch, 2022 B3B36PRG – Lecture 13: Ownership in C++ 13 / 48

Acquisition-Release Pattern in C/C++ RAII – Resource Acquisition is Initialization RAII Threading Smart Pointers

Example Array Implementation
struct MallocException : std::exception {

const char* what() const noexcept { return "Malloc error"; }
};

class MyArray {
ulong size_p;
int* data_p;

public:
MyArray(ulong size);
~MyArray();

int& operator[](ulong index);
uint size() const;

};

lec13/myarray.cpp
David Valouch, 2022 B3B36PRG – Lecture 13: Ownership in C++ 14 / 48

Acquisition-Release Pattern in C/C++ RAII – Resource Acquisition is Initialization RAII Threading Smart Pointers

Example Array Implementation

MyArray::MyArray(ulong size) : size_p(size) {
data_p = (int*)calloc(size, sizeof(int));
if(data_p == nullptr) {

throw MallocException();
}

}

MyArray::~MyArray() {
free(data_p);

}

David Valouch, 2022 B3B36PRG – Lecture 13: Ownership in C++ 15 / 48

Acquisition-Release Pattern in C/C++ RAII – Resource Acquisition is Initialization RAII Threading Smart Pointers

Implementation of RAII in Standard Library

■ Dynamic array – std::vector
■ File – std::ifstream / std::ofstream
■ Mutex – std::lock_guard
■ Thread – std::jthread
■ Pointer to heap – std::unique_pointer / std::shared_pointer

David Valouch, 2022 B3B36PRG – Lecture 13: Ownership in C++ 16 / 48

Acquisition-Release Pattern in C/C++ RAII – Resource Acquisition is Initialization RAII Threading Smart Pointers

std::vector
■ Generic wrapper for dynamic array.
■ More general version of MyArray.
■ Other useful features:

such as push_back() with dynamic reallocation of the underlying array.

int main()
{

std::vector<int> v = { 7, 5, 16, 8 };

v.push_back(25);
v.push_back(13);

std::cout << "v = { ";
for (int n : v) {

std::cout << n << ", ";
}
std::cout << "}; \n";

}

David Valouch, 2022 B3B36PRG – Lecture 13: Ownership in C++ 17 / 48

Acquisition-Release Pattern in C/C++ RAII – Resource Acquisition is Initialization RAII Threading Smart Pointers

File streams

int main(void)
{

std::ofstream outFile("out.txt");
outFile << "Hello World\n";

std::ifstream inFile("in.txt");
int a;
inFile >> a;

/* Destructor of outFile/inFile automatically closes the files. */
return 0;

}

David Valouch, 2022 B3B36PRG – Lecture 13: Ownership in C++ 18 / 48

Acquisition-Release Pattern in C/C++ RAII – Resource Acquisition is Initialization RAII Threading Smart Pointers

RAII Thread and Mutex
/* jthread not implemented in g++ 9.4.0 */
class my_jthread {

std::thread thread;

public:
template<class Function, class... Args>
my_jthread(Function&& f, Args&&... args) : thread(f, args...) {};

~my_jthread() {
if(thread.joinable()) {

thread.join();
}

}
};

lec13/thread.cpp
David Valouch, 2022 B3B36PRG – Lecture 13: Ownership in C++ 20 / 48

Acquisition-Release Pattern in C/C++ RAII – Resource Acquisition is Initialization RAII Threading Smart Pointers

RAII Thread and Mutex

class my_lock_guard {
std::mutex* mtx;

public:
my_lock_guard(std::mutex& mtx) : mtx(&mtx) {

mtx.lock();
};

~my_lock_guard() {
mtx->unlock();

};
};

David Valouch, 2022 B3B36PRG – Lecture 13: Ownership in C++ 21 / 48

Acquisition-Release Pattern in C/C++ RAII – Resource Acquisition is Initialization RAII Threading Smart Pointers

RAII Thread and Mutex
void coutnWorker(int n, int* a, std::mutex* mtx) {

for(int i = 0; i < n; ++i) {
my_lock_guard guard(*mtx);
int tmp = *a;
std::this_thread::sleep_for(std::chrono::microseconds(1));
*a = tmp + 1;

}
}

void countTwice2(int* counter, int val) {
std::mutex counterMutex;

my_jthread thrd1(coutnWorker, val, counter, &counterMutex);
my_jthread thrd2(coutnWorker, val, counter, &counterMutex);

}
David Valouch, 2022 B3B36PRG – Lecture 13: Ownership in C++ 22 / 48

Acquisition-Release Pattern in C/C++ RAII – Resource Acquisition is Initialization RAII Threading Smart Pointers

RAII Thread and Mutex

int main(void)
{

int counter = 0;
countTwice2(&counter, 10);

std::cout << "final counter value: " << counter << ’\n’;

return 0;
}

David Valouch, 2022 B3B36PRG – Lecture 13: Ownership in C++ 23 / 48

Acquisition-Release Pattern in C/C++ RAII – Resource Acquisition is Initialization RAII Threading Smart Pointers

Smart Pointers

■ Wrappers around heap pointer.
■ std::unique_ptr

■ Frees the memory on deletion.
■ Only one unique_ptr pointing to a specific address may exist.
■ May not be copied only moved.

■ std::shared_ptr
■ Keeps reference counter.
■ Last shared pointer frees the memory.
■ Multiple shared_ptrs pointing to the same address may exist.

David Valouch, 2022 B3B36PRG – Lecture 13: Ownership in C++ 25 / 48

Acquisition-Release Pattern in C/C++ RAII – Resource Acquisition is Initialization RAII Threading Smart Pointers

Shared Pointer

image source: https://stackoverflow.com/questions/9200664/how-is-the-stdtr1shared-ptr-implemented

David Valouch, 2022 B3B36PRG – Lecture 13: Ownership in C++ 26 / 48

Acquisition-Release Pattern in C/C++ RAII – Resource Acquisition is Initialization RAII Threading Smart Pointers

Shared Pointer

template<class T>
class my_shared_ptr {

T* ptr;
int* ref_counter;

public:
my_shared_ptr(T* ptr);
my_shared_ptr(my_shared_ptr<T>& other);

~my_shared_ptr();

T& operator*();
};

lec13/shared-ptr.cpp

David Valouch, 2022 B3B36PRG – Lecture 13: Ownership in C++ 27 / 48

Acquisition-Release Pattern in C/C++ RAII – Resource Acquisition is Initialization RAII Threading Smart Pointers

Shared Pointer
template<class T> my_shared_ptr<T>::my_shared_ptr(T* ptr)

: ptr(ptr), ref_counter(new int(1)) {}
template<class T> my_shared_ptr<T>::my_shared_ptr(my_shared_ptr<T>&

other)
: ptr(other.ptr), ref_counter(other.ref_counter) {
*ref_counter += 1;

}
template<class T> my_shared_ptr<T>::~my_shared_ptr() {

if (*ref_counter > 1) {
*ref_counter -= 1;

} else {
delete ref_counter;
delete ptr;

}
}

class A {};

David Valouch, 2022 B3B36PRG – Lecture 13: Ownership in C++ 28 / 48

Assignment of Objects Holding Resources lvalues & rvalues Move and Copy Semantics

Part II

Part 2 – Move and Copy Semantics (in C++)

David Valouch, 2022 B3B36PRG – Lecture 13: Ownership in C++ 29 / 48

Assignment of Objects Holding Resources lvalues & rvalues Move and Copy Semantics

Assignment of Objects Holding Resources

■ Recall MyArray
■ What should the following code do?

MyArray array1(10);

MyArray array2 = array1;

■ Remember MyArray structure

class MyArray {
ulong size_p;
int* data_p;

};

David Valouch, 2022 B3B36PRG – Lecture 13: Ownership in C++ 31 / 48

Assignment of Objects Holding Resources lvalues & rvalues Move and Copy Semantics

Assignment of Objects Holding Resources

class MyArray {
ulong size_p;
int* data_p;

};

■ More specifically:
What should happen to data_p?

■ Multiple options:
■ Copy the pointer.
■ Allocate new array and copy data.
■ Copy the pointer, but invalidate original data.

David Valouch, 2022 B3B36PRG – Lecture 13: Ownership in C++ 32 / 48

Assignment of Objects Holding Resources lvalues & rvalues Move and Copy Semantics

Assignment of Objects Holding Resources

■ Copy the pointer.

array1

array2

. . .

■ PROBLEM: Which object handles deletion of the array.
■ This is simmilar to the behavior of shared_ptr.

David Valouch, 2022 B3B36PRG – Lecture 13: Ownership in C++ 33 / 48

Assignment of Objects Holding Resources lvalues & rvalues Move and Copy Semantics

Assignment of Objects Holding Resources

■ Allocate new array and copy data.

array1

array2

. . .

. . .

■ PROBLEM: Possible redundancy if array1 is about do be deleted
(e.g. returning from function).

David Valouch, 2022 B3B36PRG – Lecture 13: Ownership in C++ 34 / 48

Assignment of Objects Holding Resources lvalues & rvalues Move and Copy Semantics

Assignment of Objects Holding Resources

■ Copy the pointer, but invalidate original data.

array1

array2

. . .NULL

■ PROBLEM: Original array becomes invalid.
■ Similar to the behavior of unique_ptr.

David Valouch, 2022 B3B36PRG – Lecture 13: Ownership in C++ 35 / 48

Assignment of Objects Holding Resources lvalues & rvalues Move and Copy Semantics

Move and Copy Semantics
■ Copy:

array1

array2

. . .

. . .

■ Move:

array1

array2

. . .NULL

David Valouch, 2022 B3B36PRG – Lecture 13: Ownership in C++ 36 / 48

Assignment of Objects Holding Resources lvalues & rvalues Move and Copy Semantics

Value Categories

■ Each expression in C++ has a type and value category.
■ lvalue – ‘left value’ (L = r)

■ An expression whose evaluation determines the identity of an object or function 1 –
glvalue

■ Is not xvalue.

■ rvalue – ‘right value’ (l = R)
■ An expression whose evaluation computes the value of an operand of a built-in operator

(such prvalue has no result object), or initializes an object.1 – prvalue
■ Object whose resources can be reused.1 – xvalue

1en.cppreference.com/w/cpp/language/value_category
David Valouch, 2022 B3B36PRG – Lecture 13: Ownership in C++ 38 / 48

Assignment of Objects Holding Resources lvalues & rvalues Move and Copy Semantics

lvalue

■ lvalue – ‘left value’ (L = r)
■ Can be assigned to.

■ Variable name
■ Function/operator call whose value is a (lvalue) reference, such as the asignment

operator a = b.
■ Pre-increment/decrement ++i, −−i.
■ Indirection *p.
■ Subscript a[i].
■ and more1

1en.cppreference.com/w/cpp/language/value_category
David Valouch, 2022 B3B36PRG – Lecture 13: Ownership in C++ 39 / 48

Assignment of Objects Holding Resources lvalues & rvalues Move and Copy Semantics

rvalue

■ rvalue – ‘right value’ (l = R)
■ Cannot be assigned to.

■ Function/operator call whose value is non-reference.
■ Post-increment/decrement i++, i−−.
■ All built in arithmetic operators a + b, a % b, . . .
■ Addres-of expression &a;
■ std::move(T)
■ And more1

1en.cppreference.com/w/cpp/language/value_category
David Valouch, 2022 B3B36PRG – Lecture 13: Ownership in C++ 40 / 48

Assignment of Objects Holding Resources lvalues & rvalues Move and Copy Semantics

rvalue / lvalue reference

■ lvalue reference T&
■ Alias to an existing object.
■ Can be initialized by an lvalue.

■ rvalue reference T&&
■ Extend lifetime of temporary object.1 e.g. result of an operator

std::string s = "hello";
std::string&& r = s + s;

■ Can be initialized by an rvalue.

1en.cppreference.com/w/cpp/language/value_category
David Valouch, 2022 B3B36PRG – Lecture 13: Ownership in C++ 41 / 48

Assignment of Objects Holding Resources lvalues & rvalues Move and Copy Semantics

Copy Semantics

■ Copy constructor: T(const T&)
■ Constructs object as a copy of another object.

■ Copy assignment: T& operator=(const T&)
■ Copies an object in another object
■ Frees resources previously owned by the modified object.

■ Any resources required by an object fo a given instance must be acquired.

David Valouch, 2022 B3B36PRG – Lecture 13: Ownership in C++ 43 / 48

Assignment of Objects Holding Resources lvalues & rvalues Move and Copy Semantics

Move Semantics

■ Move constructor: T(const T&&)
■ Constructs an object using resources of another object.

■ Move assignment: T& operator=(T&&)
■ Moves an object into another.
■ Ownership of resources is transferred.
■ Frees resources previously owned by the modified object.

■ No new resources are allocated.
■ It is assumed the source object will be destroyed after the move.

David Valouch, 2022 B3B36PRG – Lecture 13: Ownership in C++ 44 / 48

Assignment of Objects Holding Resources lvalues & rvalues Move and Copy Semantics

Copy Semantics of MyArray
MyArray::MyArray(const MyArray& other)

: size_p(other.size_p), data_p(new int[size_p])
{

std::cout << "MyArray(&)" << ’\n’;
for(int i = 0; i < size_p; ++i) {

data_p[i] = other.data_p[i];
}

}
MyArray& MyArray::operator=(const MyArray& other) {

std::cout << "MyArray operator=(&)" << ’\n’;
delete[] data_p;
size_p = other.size_p;
data_p = new int[size_p];
for(int i = 0; i < size_p; ++i) {

data_p[i] = other.data_p[i];
}
return *this;

}

David Valouch, 2022 B3B36PRG – Lecture 13: Ownership in C++ 45 / 48

Assignment of Objects Holding Resources lvalues & rvalues Move and Copy Semantics

Move Semantics of MyArray

MyArray::MyArray(MyArray&& other)
: size_p(other.size_p), data_p(other.data_p)

{
std::cout << "MyArray(&&)" << ’\n’;
other.size_p = 0;
other.data_p = nullptr;

}
MyArray& MyArray::operator=(MyArray&& other) {

std::cout << "MyArray operator=(&&)" << ’\n’;
delete[] data_p;
size_p = other.size_p;
data_p = other.data_p;
other.size_p = 0;
other.data_p = nullptr;
return *this;

}

David Valouch, 2022 B3B36PRG – Lecture 13: Ownership in C++ 46 / 48

Topics Discussed

Summary of the Lecture

David Valouch, 2022 B3B36PRG – Lecture 13: Ownership in C++ 47 / 48

Topics Discussed

Topics Discussed

■ Resouce Acquision-Release pattern.
■ RAII using automatic destructor call
■ Example RAII array wrapper
■ RAII handlig of other resources

■ Files
■ Mutexes
■ Threads
■ Smart pointers

■ Assignment of object with resources.
■ lvalue and rvalue
■ lvalue reference and rvalue reference
■ Move and copy semantics

David Valouch, 2022 B3B36PRG – Lecture 13: Ownership in C++ 48 / 48

