
Coding Examples

Jan Faigl

Department of Computer Science
Faculty of Electrical Engineering

Czech Technical University in Prague

Lecture 09

B3B36PRG – Programming in C

Jan Faigl, 2024 B3B36PRG – Lecture 09: Coding Examples 1 / 28

Overview of the Lecture

■ Part 1 – Undefined behaviour and inspecting implementation

Program Compilation

Undefined Behaviour

Comparing C to Machine Code

■ Part 2 – Debugging

Debugging

■ Part 3 – Examples

Named pipes

Multi-thread Appplications – Semestral Project

Jan Faigl, 2024 B3B36PRG – Lecture 09: Coding Examples 2 / 28

Program Compilation Undefined Behaviour Comparing C to Machine Code

Part I

Part 1 – Undefined behaviour and inspecting
implementation

Jan Faigl, 2024 B3B36PRG – Lecture 09: Coding Examples 3 / 28

Program Compilation Undefined Behaviour Comparing C to Machine Code

Arguments of the main() Function
■ During the program execution, the OS passes to the program the number of

arguments (argc) and the arguments (argv).
In the case we are using OS.

■ The first argument is the name of the program.

1 int main(int argc, char *argv[])
2 {
3 int v;
4 v = 10;
5 v = v + 1;
6 return argc;
7 }

lec09/var.c

■ The program is terminated by the return in the main() function.
■ The returned value is passed back to the OS and it can be further use, e.g., to control

the program execution. Reminder
Jan Faigl, 2024 B3B36PRG – Lecture 09: Coding Examples 5 / 28

Program Compilation Undefined Behaviour Comparing C to Machine Code

Example of Compilation and Program Execution
■ Building the program by the clang compiler – it automatically joins the compilation

and linking of the program to the file a.out.
clang var.c

■ The output file can be specified, e.g., program file var.
clang var.c -o var

■ Then, the program can be executed as follows.
./var

■ The compilation and execution can be joined to a single command.
clang var.c -o var; ./var

■ The execution can be conditioned to successful compilation.
clang var.c -o var && ./var

Programs return value — 0 means OK.

Logical operator && depends on the command interpret, e.g., sh, bash, zsh.
Reminder

Jan Faigl, 2024 B3B36PRG – Lecture 09: Coding Examples 6 / 28

Program Compilation Undefined Behaviour Comparing C to Machine Code

Example – Program Execution under Shell
■ The return value of the program is stored in the variable $?.

sh, bash, zsh

■ Example of the program execution with different number of arguments.

./var

./var; echo $?
1

./var 1 2 3; echo $?
4

./var a; echo $?
2

Reminder

Jan Faigl, 2024 B3B36PRG – Lecture 09: Coding Examples 7 / 28

Program Compilation Undefined Behaviour Comparing C to Machine Code

Example – Processing the Source Code by Preprocessor
■ Using the -E flag, we can perform only the preprocessor step.

gcc -E var.c
Alternatively clang -E var.c

1 # 1 "var.c"
2 # 1 "<built-in>"
3 # 1 "<command-line>"
4 # 1 "var.c"
5 int main(int argc, char **argv) {
6 int v;
7 v = 10;
8 v = v + 1;
9 return argc;

10 }
lec09/var.cReminder

Jan Faigl, 2024 B3B36PRG – Lecture 09: Coding Examples 8 / 28

Program Compilation Undefined Behaviour Comparing C to Machine Code

Example – Compilation of the Source Code to Assembler
■ Using the -S flag, the source code can be compiled to Assembler.

clang -S var.c -o var.s
1 .file "var.c"
2 .text
3 .globl main
4 .align 16, 0x90
5 .type main,@function
6 main:

@main
7 .cfi_startproc
8 # BB#0:
9 pushq %rbp

10 .Ltmp2:
11 .cfi_def_cfa_offset 16
12 .Ltmp3:
13 .cfi_offset %rbp, -16
14 movq %rsp, %rbp
15 .Ltmp4:
16 .cfi_def_cfa_register %rbp
17 movl $0, -4(%rbp)
18 movl %edi, -8(%rbp)

19 movq %rsi, -16(%rbp)
20 movl $10, -20(%rbp)
21 movl -20(%rbp), %edi
22 addl $1, %edi
23 movl %edi, -20(%rbp)
24 movl -8(%rbp), %eax
25 popq %rbp
26 ret
27 .Ltmp5:
28 .size main, .Ltmp5-main
29 .cfi_endproc
30
31
32 .ident "FreeBSD clang version 3.4.1 (

tags/RELEASE_34/dot1-final 208032)
20140512"

33 .section ".note.GNU-stack","",
@progbits

Jan Faigl, 2024 B3B36PRG – Lecture 09: Coding Examples 9 / 28

Program Compilation Undefined Behaviour Comparing C to Machine Code

Undefined Behaviour

■ There are some statements that can cause undefined behavior according to the C
standard.

■ c = (b = a + 2) - (b - 1);
■ j = i * i++;

■ The program may behaves differently according to the used compiler, but may also
not compile or may not run; or it may even crash and behave erratically or produce
meaningless results.

■ It may also happened if variables are used without initialization.

■ Avoid statements that may produce undefined behavior!

Jan Faigl, 2024 B3B36PRG – Lecture 09: Coding Examples 11 / 28

Program Compilation Undefined Behaviour Comparing C to Machine Code

Example of Undefined Behaviour
■ C standard does not define the behaviour for the overflow of the integer value (signed)

■ E.g., for the complement representation, the expression can be
127 + 1 of the char equal to -128 (see lec09/demo-loop_byte.c).

■ Representation of integer values may depend on the architecture and can be different,
e.g., when binary or inverse code is used.

■ Implementation of the defined behaviour can be computationally expensive, and thus
the behaviour is not defined by the standard.

■ Behaviour is not defined and depends on the compiler, e.g. clang and gcc without/with
the optimization -O2.

■ for (int i = 2147483640; i >= 0; ++i) {
printf("%i %x\n", i, i);

} lec09/int_overflow-1.c
Without the optimization, the program prints 8 lines, for -O2, the program compiled by clang
prints 9 lines and gcc produces infinite loop.

■ for (int i = 2147483640; i >= 0; i += 4) {
printf("%i %x\n", i, i);

} lec09/int_overflow-2.c
Program compiled by gcc and -O2 crashed. Take a look to the asm code using the compiler parameter-S.

Jan Faigl, 2024 B3B36PRG – Lecture 09: Coding Examples 12 / 28

Program Compilation Undefined Behaviour Comparing C to Machine Code

Compiler Explorer

https://godbolt.org/z/K9r1eWqcd

Jan Faigl, 2024 B3B36PRG – Lecture 09: Coding Examples 13 / 28

Program Compilation Undefined Behaviour Comparing C to Machine Code

Compiler Explorer – Analysis of the Optimized Code
■ Effect of the code optimization -O2 on the resulting code that contains undefined behavior (integer overflow).

https://godbolt.org/z/G3GEz4vbv

Jan Faigl, 2024 B3B36PRG – Lecture 09: Coding Examples 14 / 28

Program Compilation Undefined Behaviour Comparing C to Machine Code

Comparing C to Machine Code

https://www.youtube.com/watch?v=yOyaJXpAYZQ

Jan Faigl, 2024 B3B36PRG – Lecture 09: Coding Examples 16 / 28

Debugging

Part II

Part 2 – Debugging

Jan Faigl, 2024 B3B36PRG – Lecture 09: Coding Examples 17 / 28

Debugging

Debugging the Code

■ Principally there are two ways of debugging: stepping (program animation) and log-
ging.

■ Stepping is interactive debugging that might be suitable for relatively small, less com-
plex codes, and non real-time applications.

■ In stepping, we use breakpoints, watches to stop the program execution at certain
conditions and then inspect variables and stepping next instructions.

■ In C, most of the visual interfaces uses gdb.
■ It might be suitable to compile the program with debugging information, e.g., using -g

flag. clang -g main.c -o main

■ Logging can range from simple print messages to stderr to sophisticated loggers,
such as log4c.

■ We can further enjoy tools such as valgrind for dynamic analysis, specifically for bugs
in memory access. For more than 20 years, see https://valgrind.org/.

Jan Faigl, 2024 B3B36PRG – Lecture 09: Coding Examples 19 / 28

Debugging

Debugging using gdb (or VS Code)
■ Interactive example of debugging or watch the available examples and tutorials.

■ CppCon 2015: Greg Law " Give me 15 minutes & I’ll change your view of GDB."

https://www.youtube.com/watch?v=PorfLSr3DDI
Jan Faigl, 2024 B3B36PRG – Lecture 09: Coding Examples 20 / 28

Debugging

Example of using valgrind

#include <stdio.h>
#include <stdlib.h>

int main(void)
{

int *a = malloc(2 * sizeof *a);

for (int i = 0; i < 3; ++i) {
a[i] = i;

}
for (int i = 0; i < 3; ++i) {

printf("%d\n", a[i]);
}
//free(a);
return 0;

}

$ clang -g mem_val.c -o mem_val
$ valgrind ./mem_val
....
==87826== Invalid write of size 4
==87826== at 0x201999: main (mem_val.c:9)
==87826== Address 0x5400048 is 0 bytes after

a block of size 8 alloc'd
==87826== at 0x4853B74: malloc (in /usr/

local/libexec/valgrind/vgpreload_memcheck-
amd64-freebsd.so)

==87826== by 0x201978: main (mem_val.c:6)
==87826==
....
0

lec09/mem_val.c

■ Try to compile the program with and w/o -g.
■ See the valgrind output with and w/o calling free().

Jan Faigl, 2024 B3B36PRG – Lecture 09: Coding Examples 21 / 28

Named pipes Multi-thread Appplications – Semestral Project

Part III

Part 3 – Examples

Jan Faigl, 2024 B3B36PRG – Lecture 09: Coding Examples 22 / 28

Named pipes Multi-thread Appplications – Semestral Project

Communication using Named Pipes

■ Implement two applications main and module that communicates through named
pipes. lec09/pipes/create_pipes.sh

lec09/pipes/prg_lec09_main.c, lec09/pipes/prg-lec09-module.c

■ module opens pipe /tmp/prg-lec09.pipe for reading.
■ main opens pipe /tmp/prg-lec09.pipe for writting.
■ The applications communicate using simple character orienter protocol.

■ ’s’ – stop.
■ ’e’ – enable (start).
■ ’b’ – bye.
■ ’1’–’5’ – set sleep period to 50 ms, 100 ms, 200 ms, 500ms, 1000ms.

■ The pipe can be opened using functions from the prg_io_nonblock library.
lec09/pipes/prg_io_nonblock.h, lec09/pipes/prg_io_nonblock.c

■ Examine the provide code and test it. The example is without threads.

Jan Faigl, 2024 B3B36PRG – Lecture 09: Coding Examples 24 / 28

Named pipes Multi-thread Appplications – Semestral Project

Remote Control of Computational Application (Module) – Semetral Project
■ Implement multi-thread application with sepa-

rate threads for sources of asynchronous events.
■ User input from stdin (keyboard).
■ Pipe reading from the computational module.

■ Use simple visualization using sdl.
■ Implement the main program logic in the main

(boss) thread using event queue.
■ The main thread reads from the queue.
■ The secondary threads (keyboard and

pipe) write to the queue.
■ The main thread manages output resources

(visualization, write to pipe).
Eventually also stdout or even stderr, which
is, however, not required.

■ Use the example of multi-thread application
from Lecture 8. https://cw.fel.cvut.cz/wiki/courses/b3b36prg/semestral-project/start

Jan Faigl, 2024 B3B36PRG – Lecture 09: Coding Examples 26 / 28

Topics Discussed

Summary of the Lecture

Jan Faigl, 2024 B3B36PRG – Lecture 09: Coding Examples 27 / 28

Topics Discussed

Topics Discussed

■ Program compilation.
■ Undefined behaviour.
■ Comments on debugging.
■ Named pipes.
■ Semetral project.

Jan Faigl, 2024 B3B36PRG – Lecture 09: Coding Examples 28 / 28

