
Parallel Programming

Jan Faigl

Department of Computer Science
Faculty of Electrical Engineering

Czech Technical University in Prague

Lecture 07

PRG – Programming in C

Jan Faigl, 2024 PRG – Lecture 07: Parallel Programming 1 / 63

Overview of the Lecture

■ Part 1 – Introduction to Parallel Programming

Introduction

Parallel Processing

Semaphores

Shared Memory

Messages

Parallel Computing using GPU (optional)

Jan Faigl, 2024 PRG – Lecture 07: Parallel Programming 2 / 63

Introduction Parallel Processing Semaphores Shared Memory Messages Parallel Computing using GPU (optional)

Part I

Part 1 – Introduction to Parallel Programming

Jan Faigl, 2024 PRG – Lecture 07: Parallel Programming 3 / 63

Introduction Parallel Processing Semaphores Shared Memory Messages Parallel Computing using GPU (optional)

Parallel Programming

■ The idea of parallel programming comes from the 60s with the first multi-program and
pseudo-parallel systems.

■ Parallelism can be hardware or software based.
■ Hardware based – true hardware parallelism of multiprocessor systems.
■ Software based – pseudo-parallelism.

■ Pseudo-parallelism – A program with parallel constructions may run in pseudo-parallel
environment on single or multi-processor systems.

Jan Faigl, 2024 PRG – Lecture 07: Parallel Programming 5 / 63

Introduction Parallel Processing Semaphores Shared Memory Messages Parallel Computing using GPU (optional)

Motivation Why to Deal with Parallel Programming

■ Increase computational power.
■ Having multi-processor system we can solve the computational problem faster.

■ Efficient usage of the computational power.
■ Even a running program may wait for data.
■ E.g., a usual program with user-interaction typically waits for the user input.

■ Simultaneous processing of many requests.
■ Handling requests from individual clients in client/server architecture.

Jan Faigl, 2024 PRG – Lecture 07: Parallel Programming 6 / 63

Introduction Parallel Processing Semaphores Shared Memory Messages Parallel Computing using GPU (optional)

Process – Executed Program

■ Process is executed program running in a dedicated memory space.
■ Process is an entity of the Operating System (OS) that is schedule for independent

execution.
■ Process is usually in one of three basic states:

■ Executing – currently running on the processor (CPU);
■ Blocked – waiting for the periphery;
■ Waiting – waiting for the processor .

■ A process is identified in the OS by its identifier, e.g., Process IDentificator PID.
■ Scheduler of the OS manage running processes to be allocated to the available proces-

sors.

Jan Faigl, 2024 PRG – Lecture 07: Parallel Programming 7 / 63

Introduction Parallel Processing Semaphores Shared Memory Messages Parallel Computing using GPU (optional)

Process States

Running
process

processes

processes
Blocked

Ready
External event
to run the process

Scheduler picks
another process

Process asked for termination

System call that cannot
be handled immediatelly

System call that can be
performed immediatelly

Transition

Data become ready

to the head
queue with
ready processes

Jan Faigl, 2024 PRG – Lecture 07: Parallel Programming 8 / 63

Introduction Parallel Processing Semaphores Shared Memory Messages Parallel Computing using GPU (optional)

Multi-processor Systems

■ Multi-processor systems allow true parallelism.
■ It is necessary to synchronize processors and support data communication.

■ Resources for activity synchronization.
■ Resources for communication between processors (processes).

Jan Faigl, 2024 PRG – Lecture 07: Parallel Programming 9 / 63

Introduction Parallel Processing Semaphores Shared Memory Messages Parallel Computing using GPU (optional)

Possible Architectures for Parallel Executions

■ Control of individual instructions.
■ SIMD – Single-Instruction, Multiple-Data – same instructions are simultaneously

performed on different data.
■ “Processors” are identical and run synchronously.
■ E.g., “Vectorization” such as MMX, SSE, 3Dnow!, and AVX, AVX2, etc.

■ MIMD – Multiple-Instruction, Multiple-Data – processors run independently and
asynchronously.

■ Memory Control Access.
■ Systems with shared memory – central shared memory.

E.g., multi-core CPUs.
■ Systems with distributed memory – each processor has its memory.

E.g., computational grids.

Jan Faigl, 2024 PRG – Lecture 07: Parallel Programming 10 / 63

Introduction Parallel Processing Semaphores Shared Memory Messages Parallel Computing using GPU (optional)

SIMD – Single-Instruction, Multiple-Data

Control Processor

Program

Memory

Processor Processor Processor

SIMD

Jan Faigl, 2024 PRG – Lecture 07: Parallel Programming 11 / 63

Introduction Parallel Processing Semaphores Shared Memory Messages Parallel Computing using GPU (optional)

MIMD – Multiple-Instruction, Multiple-Data

Processor ProcessorProcessor

Program Program Program

MIMD

Memory

Jan Faigl, 2024 PRG – Lecture 07: Parallel Programming 12 / 63

Introduction Parallel Processing Semaphores Shared Memory Messages Parallel Computing using GPU (optional)

Systems with Shared Memory

Processor ProcessorProcessor

Memory

■ Processors communicate using shared memory space.
■ Processors may also synchronize their activities, i.e., granting exclusive access to the

memory.

Jan Faigl, 2024 PRG – Lecture 07: Parallel Programming 13 / 63

Introduction Parallel Processing Semaphores Shared Memory Messages Parallel Computing using GPU (optional)

Systems with Distributive Memory

Processor

Memory

Processor

Memory

Processor

Memory

Processor

Memory

■ There is not a problem with exclusive access to the memory.
■ It is necessary to address communication between the processors.

Jan Faigl, 2024 PRG – Lecture 07: Parallel Programming 14 / 63

Introduction Parallel Processing Semaphores Shared Memory Messages Parallel Computing using GPU (optional)

The Role of the Operating System (OS)

■ OS provides hardware abstraction layer – encapsulate HW and separate the user from
the particular hardware architecture (true/pseudo parallelism).

■ OS is responsible for synchronization of running processes.
■ OS provides user interfaces (system calls).

■ To create and destroy processes.
■ To manage processes and processors.
■ To schedule processors on available processors.
■ To control access to shared memory.
■ Mechanisms for inter-process communication (IPC).
■ Mechanisms for processes synchronization.

Jan Faigl, 2024 PRG – Lecture 07: Parallel Programming 15 / 63

Introduction Parallel Processing Semaphores Shared Memory Messages Parallel Computing using GPU (optional)

Parallel Processing and Programming Languages

■ Regarding parallel processing programming languages can be divided into languages w/o
and with explicit support for the parallelism.

■ Without explicit support for parallelism – possible mechanisms of parallel processing.
1. Parallel processing is realized by compiler and operating system.
2. Parallel constructions are explicitly marked for the compiler.
3. Parallel processing is performed by OS system calls.

■ With explicit support for parallelism.

Jan Faigl, 2024 PRG – Lecture 07: Parallel Programming 17 / 63

Introduction Parallel Processing Semaphores Shared Memory Messages Parallel Computing using GPU (optional)

Example of Parallel Processing Realized by Compiler 1/2
Example – Array Multiplication

1 #include <stdlib.h>2
3 #define SIZE 300000004

5 int main(int argc, char *argv[])
6 {
7 int i;
8 int *in1 = (int*)malloc(SIZE*sizeof(int));
9 int *in2 = (int*)malloc(SIZE*sizeof(int));

10 int *out = (int*)malloc(SIZE*sizeof(int));
11 for (i = 0; i < SIZE; ++i) {
12 in1[i] = i;
13 in2[i] = 2 * i;
14 }
15 for (i = 0; i < SIZE; ++i) {
16 out[i] = in1[i] * in2[i];
17 out[i] = out[i] - (in1[i] + in2[i]);
18 }
19 return 0;
20 }

Jan Faigl, 2024 PRG – Lecture 07: Parallel Programming 18 / 63

Introduction Parallel Processing Semaphores Shared Memory Messages Parallel Computing using GPU (optional)

Example of Parallel Processing Realized by Compiler 2/2

Example 1
1 icc compute.c
2 time ./a.out3
4 real 0m0.562s
5 user 0m0.180s
6 sys 0m0.384s

Example 2
1 icc -msse compute.c; time ./a.out
2 compute.c(8) : (col. 2) remark: LOOP WAS VECTORIZED.3
4 real 0m0.542s
5 user 0m0.136s
6 sys 0m0.408s

Example 3
1 icc -parallel compute.c; time ./a.out
2 compute.c(12) : (col. 2) remark: LOOP WAS AUTO-PARALLELIZED.3
4 real 0m0.702s
5 user 0m0.484s
6 sys 0m0.396s

Jan Faigl, 2024 PRG – Lecture 07: Parallel Programming 19 / 63

Introduction Parallel Processing Semaphores Shared Memory Messages Parallel Computing using GPU (optional)

Example – Open MP – Matrix Multiplication 1/2
■ Open Multi-Processing (OpenMP) - application programming interface for multi-platform

shared memory multiprocessing. http://www.openmp.org

■ We can instruct the compiler by macros for parallel constructions.
■ E.g., parallelization over the outside loop for the i variable.

1 void multiply(int n, int a[n][n], int b[n][n], int c[n][n])
2 {
3 int i;
4 #pragma omp parallel private(i)
5 #pragma omp for schedule (dynamic, 1)
6 for (i = 0; i < n; ++i) {
7 for (int j = 0; j < n; ++j) {
8 c[i][j] = 0;
9 for (int k = 0; k < n; ++k) {

10 c[i][j] += a[i][k] * b[k][j];
11 }
12 }
13 }
14 }

lec07/demo-omp-matrix.c

Squared matrices of the same dimensions are used for simplicity.

Jan Faigl, 2024 PRG – Lecture 07: Parallel Programming 20 / 63

http://www.openmp.org

Introduction Parallel Processing Semaphores Shared Memory Messages Parallel Computing using GPU (optional)

Example – Open MP – Matrix Multiplication 2/2

■ Comparison of matrix multiplication with 1000× 1000 matrices using OpenMP on
iCore5 (2 cores with HT).

1 gcc -std=c99 -O2 -o demo-omp demo-omp-matrix.c -fopenmp
2 ./demo-omp 1000
3 Size of matrices 1000 x 1000 naive
4 multiplication with O(n^3)
5 c1 == c2: 1
6 Multiplication single core 9.33 sec
7 Multiplication multi-core 4.73 sec8
9 export OMP_NUM_THREADS=2

10 ./demo-omp 1000
11 Size of matrices 1000 x 1000 naive
12 multiplication with O(n^3)
13 c1 == c2: 1
14 Multiplication single core 9.48 sec
15 Multiplication multi-core 6.23 sec

Use, e.g., top program for a list of running
processes/threads.

lec07/demo-omp-matrix.c

Jan Faigl, 2024 PRG – Lecture 07: Parallel Programming 21 / 63

Introduction Parallel Processing Semaphores Shared Memory Messages Parallel Computing using GPU (optional)

Languages with Explicit Support for Parallelism

■ It has support for creation of new processes.
■ Running process create a copy of itself.

■ Both processes execute the identical code (copied).
■ The parent process and child process are distinguished by the process identifier (PID).

■ The code segment is explicitly linked with the new process.
■ Regardless how a new process is created, the most important is the relation to the

parent process execution and memory access.
■ Does the parent process stops its execution till the end of the child process?
■ Is the memory shared by the child and parent processes?

■ Granularity of the processes – parallelism ranging from the level of the instructions to
the parallelism of programs.

Jan Faigl, 2024 PRG – Lecture 07: Parallel Programming 22 / 63

Introduction Parallel Processing Semaphores Shared Memory Messages Parallel Computing using GPU (optional)

Parallelism – Statement Level
Example – parbegin-parend block
parbegin
S1;
S2;. . .
Sn

parend
■ Statement S1 are Sn executed in parallel.
■ Execution of the main program is interrupted until all statements S1 to Sn are terminated.
■ Statement S1 are Sn executed in parallel.
Example – doparallel

1 for i = 1 to n doparalel {
2 for j = 1 to n do {
3 c[i,j] = 0;
4 for k = 1 to n do {
5 c[i,j] = c[i,j] + a[i,k]*b[k,j];
6 } } }

Parallel execution of the outer loop over all i .
E.g., OpenMP in C.

Jan Faigl, 2024 PRG – Lecture 07: Parallel Programming 23 / 63

Introduction Parallel Processing Semaphores Shared Memory Messages Parallel Computing using GPU (optional)

Parallelism – Procedure Level

■ A procedure is coupled with the execution process.
. . .

procedure P;
. . .
PID xpid = newprocess(P);
. . .

killprocess(xpid);
■ P is a procedure and xpid is a process identifier.

■ Assignment of the procedure/function to the process at the declaration
PID xpid process(P).

■ The process is created at the creation of the variable x .
■ The process is terminated at the end of x or sooner.

E.g., Threads (pthreads) in C.

Jan Faigl, 2024 PRG – Lecture 07: Parallel Programming 24 / 63

Introduction Parallel Processing Semaphores Shared Memory Messages Parallel Computing using GPU (optional)

Parallelism – Program (Process) Level

■ A new process can be only a whole program.
■ A new program is created by a system call, which creates a complete copy of itself

including all variable and data at the moment of the call.

Example - Creating a copy of the process by fork system call
1 if (fork() == 0) {
2 /* code executed by the child process */
3 } else {
4 /* code executed by the parent process */
5 }

E.g., fork() in C

Jan Faigl, 2024 PRG – Lecture 07: Parallel Programming 25 / 63

Introduction Parallel Processing Semaphores Shared Memory Messages Parallel Computing using GPU (optional)

Example – fork()
1 #define NUMPROCS 4
2 for (int i = 0; i < NUMPROCS; ++i) {
3 pid_t pid = fork();
4 if (pid == 0) {
5 compute(i, n);
6 exit(0);
7 } else {
8 printf("Child %d created\n", pid);
9 }

10 }
11 printf("All processes created\n");
12 for (int i = 0; i < NUMPROCS; ++i) {
13 pid_t pid = wait(&r);
14 printf("Wait for pid %d return: %d\n", pid, r);
15 }
16 void compute(int myid, int n)
17 {
18 printf("Process myid %d start computing\n", myid);
19 ...
20 printf("Process myid %d finished\n", myid);
21 } lec07/demo-fork.c

clang demo-fork.c && ./a.out
Child 2049 created
Process myid 0 start computing
Child 2050 created
Process myid 1 start computing
Process myid 2 start computing
Child 2051 created
Child 2052 created
Process myid 3 start computing
All processes created
Process myid 1 finished
Process myid 0 finished
Wait for pid 2050 return: 0
Process myid 3 finished
Process myid 2 finished
Wait for pid 2049 return: 0
Wait for pid 2051 return: 0
Wait for pid 2052 return: 0

Jan Faigl, 2024 PRG – Lecture 07: Parallel Programming 26 / 63

Introduction Parallel Processing Semaphores Shared Memory Messages Parallel Computing using GPU (optional)

Semaphore
■ E. W. Dijkstra – semaphore is a mechanism to synchronize parallel processes with

shared memory.
■ Semaphore is an integer variable with the following operations.

■ InitSem - initialization.

■ Wait{
If S > 0 then S ← S − 1 (resources are available, in this case, acquire one).
Otherwise suspend execution of the calling process (wait for S become S > 0).

■ Signal
{

If there is a waiting process, awake it (let the process acquire one resource).
Otherwise increase value of S by one, i.e., S ← S + 1 (release one resource).

■ Semaphores can be used to control access to shared resource.
■ S < 0 – shared resource is in use. The process asks for the access to the resources and

waits for its release.
■ S > 0 - shared resource is available. The process releases the resource.

The value of the semaphore can represent the number of available resources. Then, we
can acquire (or wait for) k resources – wait(k): S ← S − k for S > k, and also releases
k resources – signal(k): S ← S + k.

Jan Faigl, 2024 PRG – Lecture 07: Parallel Programming 28 / 63

Introduction Parallel Processing Semaphores Shared Memory Messages Parallel Computing using GPU (optional)

Semaphores Implementation

■ Operations with a semaphore must be atomic.
The processor cannot be interrupted during execution of the operation.

■ Machine instruction TestAndSet reads and stores a content of the addressed memory
space and set the memory to a non-zero value.

■ During execution of the TestAndSet instructions the processor holds the system bus
and access to the memory is not allowed for any other processor.

Jan Faigl, 2024 PRG – Lecture 07: Parallel Programming 29 / 63

Introduction Parallel Processing Semaphores Shared Memory Messages Parallel Computing using GPU (optional)

Usage of Semaphores
■ Semaphores can be utilized for defining a critical sections.
■ Critical sections is a part of the program where exclusive access to the shared memory

(resources) must be guaranteed.

Example of critical section protected by a semaphore
InitSem(S,1);
Wait(S);
/* Code of the critical section */
Signal(S);

■ Synchronization of the processes using semaphores.

Example of synchronization of processes.
/* process p */
. . .
InitSem(S,0)
Wait(S); . . .
exit();

/* process q */
. . .
Signal(S);
exit();

Process p waits for termination of the process q.
Jan Faigl, 2024 PRG – Lecture 07: Parallel Programming 30 / 63

Introduction Parallel Processing Semaphores Shared Memory Messages Parallel Computing using GPU (optional)

Example – Semaphore 1/4 (System Calls)

■ Semaphore is an entity of the Operating System (OS).

1 #include <sys/types.h>
2 #include <sys/ipc.h>
3 #include <sys/sem.h>
4

5 /* create or get existing set of semphores */
6 int semget(key_t key, int nsems, int flag);
7

8 /* atomic array of operations on a set of semphores */
9 int semop(int semid, struct sembuf *array, size_t nops);

10

11 /* control operations on a st of semaphores */
12 int semctl(int semid, int semnum, int cmd, ...);

Jan Faigl, 2024 PRG – Lecture 07: Parallel Programming 31 / 63

Introduction Parallel Processing Semaphores Shared Memory Messages Parallel Computing using GPU (optional)

Example – Semaphore 2/4 (Synchronization Protocol)
■ Example when the main (primary) process waits for two other processes (secondary)

become ready.
1. Primary process suspend the execution and waits for two other secondary processes become

ready.
2. Secondary processes then wait to be released by the primary process.

■ Proposed synchronization “protocol”.
■ Define our way to synchronize the processes using the system semaphores.
■ Secondary process increments semaphore by 1.
■ Secondary process waits the semaphore become 0 and then it is terminated.
■ Primary process waits for two secondary processes and decrements the semaphore about

2.
■ It must also ensure the semaphore value is not 0; otherwise secondary processes would be

terminated prematurely.
■ We need to use the atomic operations with the semaphore.

lec07/sem-primary.c lec07/sem-secondary.c

Jan Faigl, 2024 PRG – Lecture 07: Parallel Programming 32 / 63

Introduction Parallel Processing Semaphores Shared Memory Messages Parallel Computing using GPU (optional)

Example – Semaphore 3/4 (Primary Process)
1 int main(int argc, char* argv[])
2 {
3 struct sembuf sem[2]; // structure for semaphore atomic operations
4 int id = semget(1000, 1, IPC_CREAT | 0666); // create semaphore
5 if (id != -1) {
6 int r = semctl(id, 0, SETVAL, 0) == 0;7
8 sem[0].sem_num = 0; // operation to acquire semaphore
9 sem[0].sem_op = -2; // once its value will be >= 2

10 sem[0].sem_flg = 0; // representing two secondary processses are ready11
12 sem[1].sem_num = 0; // the next operation in the atomic set
13 sem[1].sem_op = 2; // of operations increases the value of
14 sem[1].sem_flg = 0; // the semaphore about 215
16 printf("Wait for semvalue >= 2\n");
17 r = semop(id, sem, 2); // perform all operations atomically
18 printf("Press ENTER to set semaphore to 0\n");
19 getchar();
20 r = semctl(id, 0, SETVAL, 0) == 0; // set the value of semaphore
21 r = semctl(id, 0, IPC_RMID, 0) == 0; // remove the semaphore
22 }
23 return 0;
24 } lec07/sem-primary.c

Jan Faigl, 2024 PRG – Lecture 07: Parallel Programming 33 / 63

Introduction Parallel Processing Semaphores Shared Memory Messages Parallel Computing using GPU (optional)

Example – Semaphore 4/4 (Secondary Process)
1 int main(int argc, char* argv[])
2 {
3 struct sembuf sem;
4 int id = semget(1000, 1, 0);
5 int r;
6 if (id != -1) {
7 sem.sem_num = 0; // add the secondary process
8 sem.sem_op = 1; // to the "pool" of resources
9 sem.sem_flg = 0;

10 printf("Increase semafore value (add resource)\n");
11 r = semop(id, &sem, 1);
12 sem.sem_op = 0;
13 printf("Semaphore value is %d\n", semctl(id, 0, GETVAL, 0));
14 printf("Wait for semaphore value 0\n");
15 r = semop(id, &sem, 1);
16 printf("Done\n");
17 }
18 return 0;
19 } lec07/sem-secondary.c

■ The IPC entities can be listed by ipcs.
clang sem-primary.c -o sem-primary
clang sem-secondary.c -o sem-secondary

Jan Faigl, 2024 PRG – Lecture 07: Parallel Programming 34 / 63

Introduction Parallel Processing Semaphores Shared Memory Messages Parallel Computing using GPU (optional)

Issues with Semaphores

■ The main issues are arising from a wrong usage.
■ Typical mistakes are as follows.

■ Wrongly identified a critical section.
■ Process may block by multiple calls of Wait(S).
■ E.g., the deadlock issues may arise from situations like.

Example – Deadlock
/* process 1*/
. . .
Wait(S1);
Wait(S2);
. . .
Signal(S2);
Signal(S1);
. . .

/* process 2*/
. . .
Wait(S2);
Wait(S1);
. . .
Signal(S1);
Signal(S2);
. . .

Jan Faigl, 2024 PRG – Lecture 07: Parallel Programming 35 / 63

Introduction Parallel Processing Semaphores Shared Memory Messages Parallel Computing using GPU (optional)

Shared Memory

■ Labeled part of the memory accessible from different processes.
■ OS service provided by system calls.

Example of System Calls
1 /* obtain a shared memory identifier */
2 int shmget(key_t key, size_t size, int flag);3

4 /* attach shared memory */
5 void* shmat(int shmid, const void *addr, int flag);6

7 /* detach shared memory */
8 int shmdt(const void *addr);9

10 /* shared memory control */
11 int shmctl(int shmid, int cmd, struct shmid_ds *buf);

■ OS manages information about usage of shared memory.
■ OS also manages permissions and access rights.

Jan Faigl, 2024 PRG – Lecture 07: Parallel Programming 37 / 63

Introduction Parallel Processing Semaphores Shared Memory Messages Parallel Computing using GPU (optional)

Example – Shared Memory 1/4 (Write)
■ Write a line read from stdin to the shared memory.

1 #include <sys/types.h>
2 #include <sys/ipc.h>
3 #include <sys/shm.h>
4 #include <stdio.h>5
6 #define SIZE 5127

8 int main(int argc, char *argv[])
9 {

10 char *buf;
11 int id;
12 if ((id = shmget(1000, SIZE, IPC_CREAT | 0666)) != -1) {
13 if ((buf = (char*)shmat(id, 0, 0))) {
14 fgets(buf, SIZE, stdin);
15 shmdt(buf);
16 }
17 }
18 return 0;
19 } lec07/shm-write.c

Jan Faigl, 2024 PRG – Lecture 07: Parallel Programming 38 / 63

Introduction Parallel Processing Semaphores Shared Memory Messages Parallel Computing using GPU (optional)

Example – Shared Memory 2/4 (Read)
■ Read a line from the shared memory and put it to the stdout.

1 #include <sys/types.h>
2 #include <sys/shm.h>
3 #include <stdio.h>4
5 #define SIZE 5126

7 int main(int argc, char *argv[])
8 {
9 int id;

10 char *buf;
11 if ((id = shmget(1000, 512, 0)) != -1) {
12 if ((buf = (char*)shmat(id, 0, 0))) {
13 printf("mem:%s\n", buf);
14 }
15 shmdt(buf);
16 } else {
17 fprintf(stderr, "Cannot access to shared memory!\n");
18 }
19 return 0;
20 } lec07/shm-read.c

Jan Faigl, 2024 PRG – Lecture 07: Parallel Programming 39 / 63

Introduction Parallel Processing Semaphores Shared Memory Messages Parallel Computing using GPU (optional)

Example – Shared Memory 3/4 (Demo)

1. Use shm-write to write a text string to the shared memory.
2. Use shm-read to read data (string) from the shared memory.
3. Remove shared memory segment.

ipcrm -M 1000
4. Try to read data from the shared memory.

1 % clang -o shm-write shm-write.c
2 % ./shm-write
3 Hello! I like programming in C!

1 % clang -o shm-read shm-read.c
2 % ./shm-read
3 mem:Hello! I like programming in C!4
5 % ./shm-read
6 mem:Hello! I like programming in C!7
8 % ipcrm -M 1000
9 % ./shm-read

10 Cannot access to shared memory!

lec07/shm-write.c lec07/shm-read.c

Jan Faigl, 2024 PRG – Lecture 07: Parallel Programming 40 / 63

Introduction Parallel Processing Semaphores Shared Memory Messages Parallel Computing using GPU (optional)

Example – Shared Memory 4/4 (Status)

■ A list of accesses to the shared memory using ipcs command.

1 after creating shared memory segment and before writing the text
2 m 65539 1000 --rw-rw-rw- jf jf jf jf 1

512 1239 1239 22:18:48 no-entry 22:18:483
4 after writing the text to the shared memory
5 m 65539 1000 --rw-rw-rw- jf jf jf jf 0

512 1239 1239 22:18:48 22:19:37 22:18:486
7 after reading the text
8 m 65539 1000 --rw-rw-rw- jf jf jf jf 0

512 1239 1260 22:20:07 22:20:07 22:18:48

Jan Faigl, 2024 PRG – Lecture 07: Parallel Programming 41 / 63

Introduction Parallel Processing Semaphores Shared Memory Messages Parallel Computing using GPU (optional)

Sensing Messages and Queues of Messages
■ Processes can communicate via messages send/received to/from system messages queues.
■ Queues are entities of the OS with defined system calls.

Example of System Calls
1 #include <sys/types.h>
2 #include <sys/ipc.h>
3 #include <sys/msg.h>4
5 /* Create a new message queue */
6 int msgget(key_t key, int msgflg);7
8 /* Send a message to the queue -- block/non-block (IPC_NOWAIT) */
9 int msgsnd(int msqid, const void *msgp, size_t msgsz, int msgflg);

10
11 /* Receive message from the queue -- block/non-block (IPC_NOWAIT) */
12 int msgrcv(int msqid, void *msgp, size_t msgsz, long msgtyp, int msgflg);
13
14 /* Control operations (e.g., destroy) the message queue */
15 int msgctl(int msqid, int cmd, struct msqid_ds *buf);

Another message passing system can be implemented by a user library, e.g., using network
communication.

Jan Faigl, 2024 PRG – Lecture 07: Parallel Programming 43 / 63

Introduction Parallel Processing Semaphores Shared Memory Messages Parallel Computing using GPU (optional)

Example – Messages Passing 1/4 (Synchronization, Primary)
■ Two processes are synchronized using messages.

1. The primary process waits for the message from the secondary process
2. The primary process informs secondary to solve the task.
3. The secondary process informs primary about the solution.
4. The primary process sends message about termination.

Example of Master Process 1/2
1 struct msgbuf {
2 long mtype;
3 char mtext[SIZE];
4 };5
6 int main(int argc, char *argv[])
7 {
8 struct msgbuf msg;
9 int id = msgget(KEY, IPC_CREAT | 0666);

10 int r;
11 if (id != -1) {

Jan Faigl, 2024 PRG – Lecture 07: Parallel Programming 44 / 63

Introduction Parallel Processing Semaphores Shared Memory Messages Parallel Computing using GPU (optional)

Example – Messages Passing 2/4 (Primary)
Example of Primary Process 2/2

1 msg.mtype = 3; //type must be > 0
2 printf("Wait for other process \n");
3 r = msgrcv(id, &msg, SIZE, 3, 0);
4 printf("Press ENTER to send work\n");
5 getchar();
6 strcpy(msg.mtext, "Do work");
7 msg.mtype = 4; //work msg is type 4
8 r = msgsnd(id, &msg, sizeof(msg.mtext), 0);
9 fprintf(stderr, "msgsnd r:%d\n",r);

10 printf("Wait for receive work results\n",r);
11 msg.mtype = 5;
12 r = msgrcv(id, &msg, sizeof(msg.mtext), 5, 0);
13 printf("Received message:%s\n", msg.mtext);
14 printf("Press ENTER to send exit msg\n");
15 getchar();
16 msg.mtype = EXIT_MSG; //I choose type 10 as exit msg
17 r = msgsnd(id, &msg, 0, 0);
18 }
19 return 0;
20 } lec07/msg-primary.c

Jan Faigl, 2024 PRG – Lecture 07: Parallel Programming 45 / 63

Introduction Parallel Processing Semaphores Shared Memory Messages Parallel Computing using GPU (optional)

Example – Messages Passing 3/4 (Secondary)
1 int main(int argc, char *argv[])
2 {
3 ...
4 msg.mtype = 3;
5 printf("Inform main process\n");
6 strcpy(msg.mtext, "I’m here, ready to work");
7 r = msgsnd(id, &msg, sizeof(msg.mtext), 0);
8 printf("Wait for work\n");
9 r = msgrcv(id, &msg, sizeof(msg.mtext), 4, 0);

10 printf("Received message:%s\n", msg.mtext);
11 for (i = 0; i < 4; i++) {
12 sleep(1);
13 printf(".");
14 fflush(stdout);
15 } //do something useful
16 printf("Work done, send wait for exit\n");
17 strcpy(msg.mtext, "Work done, wait for exit");
18 msg.mtype = 5;
19 r = msgsnd(id, &msg, sizeof(msg.mtext), 0);
20 msg.mtype = 10;
21 printf("Wait for exit msg\n");
22 r = msgrcv(id, &msg, SIZE, EXIT_MSG, 0);
23 printf("Exit message has been received\n"); lec07/msg-secondary.c

Jan Faigl, 2024 PRG – Lecture 07: Parallel Programming 46 / 63

Introduction Parallel Processing Semaphores Shared Memory Messages Parallel Computing using GPU (optional)

Example – Messages Passing 4/4 (Demo)
1. Execute the primary process.
2. Execute the secondary process.
3. Perform the computation.
4. Remove the created message queue identified by the msgid. #define KEY 1000

ipcrm -Q 1000
1 % clang msg-primary.c -o primary
2 % ./primary
3 Wait for other process
4 Worker msg received, press ENTER to send

work msg5
6 msgsnd r:0
7 Wait for receive work results
8 Received message:I’m going to wait for

exit msg
9 Press ENTER to send exit msg10

11 %ipcrm -Q 1000
12 %ipcrm -Q 1000
13 ipcrm: msqs(1000): : No such file or

directory
14 %

1 % clang msg-secondary.c -o secondary
2 % ./secondary
3 Inform main process
4 Wait for work
5 Received message:Do work
6done
7 Work done, send wait for exit
8 Wait for exit msg
9 Exit message has been received

10 %ipcs -q
11 Message Queues:
12 T ID KEY MODE OWNER GROUP
13 q 65536 1000 -rw-rw- jf jf
14 %

lec07/msg-primary.c lec07/msg-secondary.c

Jan Faigl, 2024 PRG – Lecture 07: Parallel Programming 47 / 63

Introduction Parallel Processing Semaphores Shared Memory Messages Parallel Computing using GPU (optional)

Massive parallelism using graphics cards

■ Image rendering performed pixel-by-pixel can be easily parallelized.
■ Graphics Processing Units (GPU) has similar (or even higher) degree of integration

with the main processors (CPU).
■ They have huge number of parallel processors.

E.g., GeForce GTX 1060 ∼ 1280 cores.
■ The computational power can also be used in another applications.

■ Processing stream of data (SIMD instructions - processors).
■ GPGPU - General Purpose computation on GPU. http://www.gpgpu.org
■ OpenCL (Open Computing Language) – GPGPU abstract interface.
■ CUDA - Parallel programming interface for NVIDIA graphics cards.

http://www.nvidia.com/object/cuda_home.html

Jan Faigl, 2024 PRG – Lecture 07: Parallel Programming 49 / 63

http://www.gpgpu.org
http://www.nvidia.com/object/cuda_home.html

Introduction Parallel Processing Semaphores Shared Memory Messages Parallel Computing using GPU (optional)

Computational Power (2008)
■ What is the reported processor computational power?
■ Graphics (stream) processors.

CSX700 96 GigaFLOPs
Cell 102 GigaFLOPs
GeForce 8800 GTX 518 GigaFLOPs
Radeon HD 4670 480 GigaFLOPs

Peak catalogue values.

■ Main processors :
Phenom X4 9950 (@2.6 GHz) 21 GigaFLOPs
Core 2 Duo E8600 (@3.3 GHz) 22 GigaFLOPs
Cure 2 Quad QX9650 (@3.3 GHz) 35 GigaFLOPs
Cure 2 Quad QX9650 (@3.3 GHz) 35 GigaFLOPs
Core i7 970 (@3.2 GHz) 42 GigaFLOPs

Test linpack 32-bit.

■ Is the reported power really achievable?
(float vs double)

■ How about other indicators?
E.g., computational power / power consumption.

■ CSX700 has typical power consumption around 9W.
Jan Faigl, 2024 PRG – Lecture 07: Parallel Programming 50 / 63

Introduction Parallel Processing Semaphores Shared Memory Messages Parallel Computing using GPU (optional)

CUDA

■ NVIDIA Compute Unified Device Architecture.
■ Extension of the C to access to the parallel computational units of the GPU.
■ Computation (kernel) is executed by the GPU.
■ Kernel is performed in parallel using available computational units.
■ Host - Main processor (process).
■ Device - GPU.
■ Data must be in the memory accessible by the GPU.

Host memory → Device memory
■ The result (of the computation) is stored in the GPU memory.

Host memory ← Device memory

Jan Faigl, 2024 PRG – Lecture 07: Parallel Programming 51 / 63

Introduction Parallel Processing Semaphores Shared Memory Messages Parallel Computing using GPU (optional)

CUDA – Computational Model

■ Kernel (computation) is divided into blocks.
■ Each block represent a parallel computation of the part of the result.

E.g., a part of the matrix multiplication.
■ Each block consists of computational threads.
■ Parallel computations are synchronization within the block.
■ Blocks are organized into the grid.
■ Scalability is realized by dividing the computation into blocks.

Blocks may not be necessarily computed in parallel. Based on the available number of
parallel units, particular blocks can be computed sequentially.

Jan Faigl, 2024 PRG – Lecture 07: Parallel Programming 52 / 63

Introduction Parallel Processing Semaphores Shared Memory Messages Parallel Computing using GPU (optional)

CUDA – Grid, Blocks, Threads, and Memory Access

Block

(1, 0)

Block

(2, 1)

Block

(2, 0)

Block

Grid 2

Block

(1, 1)

Block

(0, 1)

Block

(0, 0)

Block

(1, 0)

Block

Grid 1

(1, 1)(0, 1)

Block

(0, 0)

Device − GPUHost − CPU

Kernel 1

Kernel 2

Block (1, 1)

(0, 0)

Thread

(0, 1)

Thread

(1, 2)

Thread

Thread

(2, 0)

(1, 1)

Thread

(1, 0)

Thread

Grid

Block (0, 0) Block (1, 0)

Local

Memory

RegistersRegisters

Shared Memory

Thread

(1, 0)

Constant Memory

Texture Memory

Local

Memory

Shared Memory

Registers

Local

Memory

Thread Thread

Local

Memory

Global Memory

(1, 0) (0, 0)

Registers

Thread

(0, 0)

■ Access time to the memory.
■ Collisions for simultaneous access of

several threads.
Jan Faigl, 2024 PRG – Lecture 07: Parallel Programming 53 / 63

Introduction Parallel Processing Semaphores Shared Memory Messages Parallel Computing using GPU (optional)

CUDA – Example – Matrix Multiplication 1/8

■ NVIDIA CUDA SDK - Version 2.0, matrixMul.
■ Simple matrix multiplication.

■ C = A · B,
■ Matrices have identical dimensions n × n,
■ where n is the multiple of the block size.

■ Comparison
■ naive implementation in C (3× for loop),
■ naive implementation in C with matrix transpose.
■ CUDA implementation.

■ Hardware
■ CPU - Intel Core 2 Duo @ 3 GHz, 4 GB RAM,
■ GPU - NVIDIA G84 (GeForce 8600 GT), 512 MB RAM.

Jan Faigl, 2024 PRG – Lecture 07: Parallel Programming 54 / 63

Introduction Parallel Processing Semaphores Shared Memory Messages Parallel Computing using GPU (optional)

CUDA – Example – Matrix Multiplication 2/8

Naive implementation
1 void simple_multiply(const int n,
2 const float *A, const float *B, float *C)
3 {
4 for (int i = 0; i < n; ++i) {
5 for (int j = 0; j < n; ++j) {
6 float prod = 0;
7 for (int k = 0; k < n; ++k) {
8 prod += A[i * n + k] * B[k * n + j];
9 }

10 C[i * n + j] = prod;
11 }
12 }
13 }

Jan Faigl, 2024 PRG – Lecture 07: Parallel Programming 55 / 63

Introduction Parallel Processing Semaphores Shared Memory Messages Parallel Computing using GPU (optional)

CUDA – Example – Matrix Multiplication 3/8
Naive implementation with transpose

1 void simple_multiply_trans(const int n,
2 const float *a, const float *b, float *c)
3 {
4 float * bT = create_matrix(n);
5 for (int i = 0; i < n; ++i) {
6 bT[i*n + i] = b[i*n + i];
7 for (int j = i + 1; j < n; ++j) {
8 bT[i*n + j] = b[j*n + i];
9 bT[j*n + i] = b[i*n + j];

10 }
11 }
12 for (int i = 0; i < n; ++i) {
13 for (int j = 0; j < n; ++j) {
14 float tmp = 0;
15 for (int k = 0; k < n; ++k) {
16 tmp += a[i*n + k] * bT[j*n + k];
17 }
18 c[i*n + j] = tmp;
19 }
20 }
21 free(bT);
22 }

Jan Faigl, 2024 PRG – Lecture 07: Parallel Programming 56 / 63

Introduction Parallel Processing Semaphores Shared Memory Messages Parallel Computing using GPU (optional)

CUDA – Example – Matrix Multiplication 4/8

■ CUDA – computation strategy
■ Divide matrices into blocks.
■ Each block computes a single

sub-matrix Csub.
■ Each thread of the individual blocks

computes a single element of Csub.

BLOCK_SIZE

B

B
L
O

C
K

_
S

IZ
E

C

sub

A

C

Jan Faigl, 2024 PRG – Lecture 07: Parallel Programming 57 / 63

Introduction Parallel Processing Semaphores Shared Memory Messages Parallel Computing using GPU (optional)

CUDA – Example – Matrix Multiplication 5/8
CUDA – Implementation – main function

1 void cuda_multiply(const int n,
2 const float *hostA, const float *hostB, float *hostC)
3 {
4 const int size = n * n * sizeof(float);
5 float *devA, *devB, *devC;6
7 cudaMalloc((void**)&devA, size);
8 cudaMalloc((void**)&devB, size);
9 cudaMalloc((void**)&devC, size);10

11 cudaMemcpy(devA, hostA, size, cudaMemcpyHostToDevice);
12 cudaMemcpy(devB, hostB, size, cudaMemcpyHostToDevice);13
14 dim3 threads(BLOCK_SIZE, BLOCK_SIZE); // BLOCK_SIZE == 16
15 dim3 grid(n / threads.x, n /threads.y);16
17 // Call kernel function matrixMul
18 matrixMul<<<grid, threads>>>(n, devA, devB, devC);19
20 cudaMemcpy(hostC, devC, size, cudaMemcpyDeviceToHost);21
22 cudaFree(devA);
23 cudaFree(devB);
24 cudaFree(devC);
25 }

Jan Faigl, 2024 PRG – Lecture 07: Parallel Programming 58 / 63

Introduction Parallel Processing Semaphores Shared Memory Messages Parallel Computing using GPU (optional)

CUDA – Example – Matrix Multiplication 6/8
CUDA implementation – kernel function

1 __global__ void matrixMul(int n, float* A, float* B, float* C) {
2 int bx = blockIdx.x; int by = blockIdx.y;
3 int tx = threadIdx.x; int ty = threadIdx.y;
4 int aBegin = n * BLOCK_SIZE * by; //beginning of sub-matrix in the block
5 int aEnd = aBegin + n - 1; //end of sub-matrix in the block
6 float Csub = 0;
7 for (
8 int a = aBegin, b = BLOCK_SIZE * bx;
9 a <= aEnd;

10 a += BLOCK_SIZE, b += BLOCK_SIZE * n
11) {
12 __shared__ float As[BLOCK_SIZE][BLOCK_SIZE]; // shared memory within
13 __shared__ float Bs[BLOCK_SIZE][BLOCK_SIZE]; // the block
14 As[ty][tx] = A[a + n * ty + tx]; // each thread reads a single element
15 Bs[ty][tx] = B[b + n * ty + tx]; // of the matrix to the memory
16 __syncthreads(); // synchronization, sub-matrix in the shared memory17
18 for (int k = 0; k < BLOCK_SIZE; ++k) { // each thread computes
19 Csub += As[ty][k] * Bs[k][tx]; // the element in the sub-matrix
20 }
21 __syncthreads();
22 }
23 int c = n * BLOCK_SIZE * by + BLOCK_SIZE * bx;
24 C[c + n * ty + tx] = Csub; // write the results to memory
25 }

Jan Faigl, 2024 PRG – Lecture 07: Parallel Programming 59 / 63

Introduction Parallel Processing Semaphores Shared Memory Messages Parallel Computing using GPU (optional)

CUDA – Example – Matrix Multiplication 7/8

■ CUDA source codes.

Example – Dedicated source file cuda_func.cu

1. Declaration of the external function.
extern "C" { // declaration of the external function (cuda kernel)
void cuda_multiply(const int n, const float *A, const float *B, float *C);

}

2. Compile the CUDA code to the C++ code.
1 nvcc --cuda cuda_func.cu -o cuda_func.cu.cc

3. Compilation of the cuda_func.cu.cc file using standard compiler.

Jan Faigl, 2024 PRG – Lecture 07: Parallel Programming 60 / 63

Introduction Parallel Processing Semaphores Shared Memory Messages Parallel Computing using GPU (optional)

CUDA – Example – Matrix Multiplication 8/8
Computational time (in milliseconds)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 200 400 600 800 1000 1200 1400

C
om

pu
ta

tio
n

tim
e

[m
s]

Matrix size

naive
naive transposition

cuda

N Naive Transp. CUDA
112 2 1 81
208 11 11 82
304 35 33 84

N Naive Transp. CUDA
704 1083 405 122

1104 6360 1628 235
1264 9763 2485 308

■ Matlab 7.6.0 (R2008a):
n=1104; A=rand(n,n); B=rand(n,n); tic; C=A*B; toc
Elapsed time is 0.224183 seconds.

Jan Faigl, 2024 PRG – Lecture 07: Parallel Programming 61 / 63

Topics Discussed

Summary of the Lecture

Jan Faigl, 2024 PRG – Lecture 07: Parallel Programming 62 / 63

Topics Discussed

Topics Discussed

■ Introduction to Parallel Programming
■ Ideas and main architectures
■ Program and process in OS

■ Parallel processing
■ Sychronization and Inter-Process Communication (IPC)

■ Semaphores
■ Messages
■ Shared memory

■ Parallel processing on graphics card (optional).

■ Next: Multithreading programming

Jan Faigl, 2024 PRG – Lecture 07: Parallel Programming 63 / 63

	1
	Introduction
	Parallel Processing
	Semaphores
	Shared Memory
	Messages
	Parallel Computing using GPU (optional)

	Summary
	Topics Discussed

