
Input/Output and Standard C Library. Preprocessor
and Building Programs

Jan Faigl

Department of Computer Science
Faculty of Electrical Engineering

Czech Technical University in Prague

Lecture 06

B3B36PRG – Programming in C

Jan Faigl, 2024 B3B36PRG – Lecture 06: I/O and Standard Library 1 / 69

Overview of the Lecture
■ Part 1 – Input and Output
File Operations
Character Oriented I/O
Text Files
Block Oriented I/O
Non-Blocking I/O
Terminal I/O

K. N. King: chapters 22

■ Part 2 – Selected Standard Libraries
Standard library – Selected Functions
Error Handling K. N. King: chapters 21, 23, 24, 26, and 27

■ Part 3 – Preprocessor and Building Programs
Organization of Source Files
Preprocessor
Building Programs K. N. King: chapters 10, 14, and 15

■ Part 4 – Assignment HW 04 and HW 06.
Jan Faigl, 2024 B3B36PRG – Lecture 06: I/O and Standard Library 2 / 69

File Operations Character Oriented I/O Text Files Block Oriented I/O Non-Blocking I/O Terminal I/O

Part I

Input and Output

Jan Faigl, 2024 B3B36PRG – Lecture 06: I/O and Standard Library 3 / 69

File Operations Character Oriented I/O Text Files Block Oriented I/O Non-Blocking I/O Terminal I/O

Text vs. Binary Files
■ In terms of machine processing, there is no difference between text and binary files.
■ Text files are supposed to be human readable. Without additional specific software tools.

■ Bytes represent characters and the content is (usually) organized into lines.
■ Different markers for the end-of-line are used (1 or 2 bytes).
■ There can be a special marker for the end-of-file (Ctrl-Z).

It is from CP/M and later used in DOS. It is not widely used in Unix like systems.
■ Processing text files can be character, formatted, or line oriented with the functions

from the standard library stdio.h.
■ Character oriented – putc(), getc(). Or for stdout/stdin – putchar(), getchar().

int putc(int c, FILE *stream);
int getc(FILE *stream);

■ Formatted i/o – fprintf() and fscanf(). Or for stdout/stdin – printf(), scanf().
■ Line oriented – fputs(), fgets(). Or for stdout/stdin – puts(), gets().

■ In general, text files are sequences of bytes, but numeric values as text need to be parsed
and formatted in writing.

■ Numbers in binary files may deal with byte ordering. Endianness – ARM vs. x86.

Jan Faigl, 2024 B3B36PRG – Lecture 06: I/O and Standard Library 4 / 69

File Operations Character Oriented I/O Text Files Block Oriented I/O Non-Blocking I/O Terminal I/O

File open
■ Functions for input/output are defined in the standard library <stdio.h>.
■ The file access is through using a pointer to a file (stream) FILE*.
■ File can be opened using fopen().

FILE* fopen(const char * restrict path, const char * restrict mode);

Notice, the restrict keyword
■ File operations are stream oriented – sequential reading/writing.

■ The current position in the file is like a cursor.
■ At the file opening, the cursor is set to the beginning of the file (if not specified otherwise).

■ The mode of the file operations is specified in the mode parameter.
■ "r" – reading from the file – cursor is set to the beginning of the file.

The program (user) needs to have sufficient rights for reading from the file.
■ "w" – writing to the file – cursor is set to the beginning of the file.

A new file is created if it does not exists; otherwise the content of the file is cleared.

■ "a" – append to the file – the cursor is set to the end of the file.
■ The modes can be combined, such as "r+" open the file for reading and writing.

See man fopen.
Jan Faigl, 2024 B3B36PRG – Lecture 06: I/O and Standard Library 6 / 69

File Operations Character Oriented I/O Text Files Block Oriented I/O Non-Blocking I/O Terminal I/O

fopen(), fclose(), and feof()

■ Test if the file has been opened.

1 char *fname = "file.txt";
2

3 if ((f = fopen(fname, "r")) == NULL) {
4 fprintf(stderr, "Error: open file ’%s’\n", fname);
5 }

■ Close file – int fclose(FILE *stream);

1 if (fclose(f) == EOF) {
2 fprintf(stderr, "Error: close file ’%s’\n", fname);
3 }

■ Test of reaching the end-of-file (EOF) – int feof(FILE *stream);

Jan Faigl, 2024 B3B36PRG – Lecture 06: I/O and Standard Library 7 / 69

File Operations Character Oriented I/O Text Files Block Oriented I/O Non-Blocking I/O Terminal I/O

File Positioning

■ Every stream has a cursor that associated to a position in the file.
■ The position can be set using offset relatively to whence.

int fseek(FILE *stream, long offset, int whence);
where whence

■ SEEK_SET – set the position from the beginning of file;
■ SEEK_CUR – relatively to the current file position;
■ SEEK_END – relatively to the end of file.

If the position is successfully set, fseek() returns 0.
■ void rewind(FILE *stream); sets the position to the beginning of file.
■ The position can be stored and set by the functions using structure fpos_t.

int fgetpos(FILE * restrict stream, fpos_t * restrict pos);
int fsetpos(FILE *stream, const fpos_t *pos);

See man fseek, man rewind.

Jan Faigl, 2024 B3B36PRG – Lecture 06: I/O and Standard Library 8 / 69

File Operations Character Oriented I/O Text Files Block Oriented I/O Non-Blocking I/O Terminal I/O

File Stream Modes

■ Modes in the fopen() can be combined.
FILE* fopen(const char * restrict path, const char * restrict mode);

■ "r" open for reading.
■ "w" Open for writing (file is created if it does not exist).
■ "a" open for appending (set cursor to the end of file or create a new file if it does not

exists).
■ "r+" open for reading and writing (starts at beginning).
■ "w+" open for reading and writing (truncate if file exists).
■ "a+" open for reading and writing (append if file exists).

■ There are restrictions for the combined modes with "+".
■ We cannot switch from reading to writing without calling a file-positioning function or

reaching the end of file.
■ We cannot switch from writing to reading without calling fflush() or calling a file-

positioning function.

Jan Faigl, 2024 B3B36PRG – Lecture 06: I/O and Standard Library 9 / 69

File Operations Character Oriented I/O Text Files Block Oriented I/O Non-Blocking I/O Terminal I/O

Temporary Files
■ FILE* tmpfile(void); – creates a temporary file that exists until it is closed or the

program exists.
■ char* tmpnam(char *str); – generates a name for a temporary file in P_tmpdir

directory that is defined in stdio.h.
■ If str is NULL, the function creates a name and store it in a static variable and return

a pointer to it; otherwise the name is copied into the buffer str.
The buffer str is expected to be at least L_tmpnam bytes in length (defined in stdio.h).

const char *fname1 = tmpnam(NULL);
printf("Temp fname1: \"%s\".\n",

fname1);
const char *fname2 = tmpnam(NULL);
printf("Temp fname2: \"%s\".\n",

fname2);
...
printf("Temp fname1: \"%s\".\n",

fname1);

!clang demo-tmpnam.c -o demo && ./demo
Temp fname1: "/tmp/tmp.0.0dWD5H".
Temp fname2: "/tmp/tmp.1.R90LiP".
The name is stored in the static variable.
The pointer fname1 points to the static

variable.
Thus, its content is changed by the tmpnam

() call.
Temp fname1: "/tmp/tmp.1.R90LiP".

lec06/demo-tmpnam.c
Jan Faigl, 2024 B3B36PRG – Lecture 06: I/O and Standard Library 10 / 69

File Operations Character Oriented I/O Text Files Block Oriented I/O Non-Blocking I/O Terminal I/O

File Buffering
■ int fflush(FILE *stream); – flushes buffer for the given stream.

■ fflush(NULL); – flushes all buffers (all output streams).
■ Change the buffering mode, size, and location of the buffer.
int setvbuf(FILE * restrict stream, char * restrict buf, int mode,
size_t size);
The mode can be one of the following macros.

_IOFBF – full buffering. Data are read from the stream when buffer is empty and written
to the stream when it is full.
_IOLBF – line buffering. Data are read or written from/to the stream one line at a time.
_IONBF – no buffer. Direct reading and writing without buffer.
#define BUFFER_SIZE 512
char buffer[BUFFER_SIZE];

setvbuf(stream, buffer, _IOFBF, BUFFER_SIZE); See man setvbuf.

■ void setbuf(FILE * restrict stream, char * restrict buf);
is equivalent to setvbuf(stream, buf, buf ? _IOFBF : _IONBF, BUFSIZ);

Jan Faigl, 2024 B3B36PRG – Lecture 06: I/O and Standard Library 11 / 69

File Operations Character Oriented I/O Text Files Block Oriented I/O Non-Blocking I/O Terminal I/O

Detecting End-of-File and Error Conditions

■ Three possible “errors” can occur during reading data, such as using fscanf.
■ End-of-file – we reach the end of file.

Or, the stdin stream is closed.
■ Read error – the read function is unable to read data from the stream.
■ Matching failure – the read data does not match the requested format.

■ Each stream FILE* has two indicators.
■ Error indicator – indicates that a read or write error occurs.
■ End-of-file (EOF) indicator – is set when the end of file is reached.

The EOF is set when the attempt to read beyond the end-of-file, not when the last byte is read.

■ The indicators can be read (tested if the indicator is set or not) and cleared.
■ int ferror(FILE *stream); – tests the stream has set the error indicator.
■ int feof(FILE *stream); – tests if the stream has set the end-of-file indicator.
■ void clearerr(FILE *stream); – clear the error and end-of-file indicators.

Jan Faigl, 2024 B3B36PRG – Lecture 06: I/O and Standard Library 12 / 69

File Operations Character Oriented I/O Text Files Block Oriented I/O Non-Blocking I/O Terminal I/O

Reading and Writing Single Character (Byte)

■ Functions for reading from stdin and stdout.
■ int getchar(void) and int putchar(int c).
■ Both function return int value, to indicate an error (EOF).
■ The written and read values converted to unsigned char.

■ The variants of the functions for the specific stream.
■ int getc(FILE *stream); and
int putc(int c, FILE *stream);

■ getchar() is equivalent to getc(stdin).
■ putchar() is equivalent to putc() with the stdout stream.

■ Reading byte-by-byte (unsigned char) can be also used to read binary data, e.g., to
construct 4 bytes length int from the four byte (char) values.

Jan Faigl, 2024 B3B36PRG – Lecture 06: I/O and Standard Library 14 / 69

File Operations Character Oriented I/O Text Files Block Oriented I/O Non-Blocking I/O Terminal I/O

Example – Naive Copy using getc() and putc() 1/2

■ Simple copy program based on reading bytes from stdin and writing them to stdout.

1 int c;
2 int bytes = 0;
3 while ((c = getc(stdin)) != EOF) {
4 if (putc(c, stdout) == EOF) {
5 fprintf(stderr, "Error in putc");
6 break;
7 }
8 bytes += 1;
9 }

lec06/copy-getc_putc.c

Jan Faigl, 2024 B3B36PRG – Lecture 06: I/O and Standard Library 15 / 69

File Operations Character Oriented I/O Text Files Block Oriented I/O Non-Blocking I/O Terminal I/O

Example – Naive Copy using getc() and putc() 2/2
■ We can count the number of bytes, and thus the time needed to copy the file.

1 #include <sys/time.h>
2 ...
3
4 struct timeval t1, t2;
5 gettimeofday(&t1, NULL);
6
7 ... // copy the stdin -> stdout
8
9 gettimeofday(&t2, NULL);

10 double dt = t2.tv_sec - t1.tv_sec + ((t2.tv_usec - t1.tv_usec) / 1000000.0);
11 double mb = bytes / (1024 * 1024);
12 fprintf(stderr, "%.2lf MB/sec\n", mb / dt); lec06/copy-getc_putc.c

■ Example of creating random file and using the program.
clang -O2 copy-getc_putc.c
dd bs=512m count=1 if=/dev/random of=/tmp/rand1.dat
1+0 records in
1+0 records out
536870912 bytes transferred in 2.437674 secs (220239034 bytes/sec)
./a.out < /tmp/rand1.dat >/tmp/rand2.dat
398.45 MB/sec

Jan Faigl, 2024 B3B36PRG – Lecture 06: I/O and Standard Library 16 / 69

File Operations Character Oriented I/O Text Files Block Oriented I/O Non-Blocking I/O Terminal I/O

Line Oriented I/O

■ A whole line (text) can be read by gets() and fgets() functions.
char* gets(char *str);
char* fgets(char * restrict str, int size, FILE * restrict stream);

■ gets() cannot be used securely due to lack of bounds checking.
■ A line can be written by fputs() an puts().
■ puts() write the given string and a newline character to the stdout stream.
■ puts() and fputs() return a non-negative integer on success and EOF on an error.

See man fgets, man fputs.

■ Alternatively, the line can be read by getline().
ssize_t getline(char ** restrict linep, site_t * restrict linecapp,
FILE * restrict stream);

Expand the buffer via realloc(), see man fgetline.

Capacity of the buffer, or if *linep==NULL (if linep points to NULL) a new buffer is allocated.

Jan Faigl, 2024 B3B36PRG – Lecture 06: I/O and Standard Library 18 / 69

File Operations Character Oriented I/O Text Files Block Oriented I/O Non-Blocking I/O Terminal I/O

Formatted I/O – fscanf()

■ int fscanf(FILE *file, const char *format, ...);
■ It returns a number of read items. For example, for the input

record 1 13.4

the statement

int r = fscanf(f, "%s %d %lf\n", str, &i, &d);

sets (in the case of success) the variable r to the value 3.
■ For strings reading, it is necessary to respect the size of the allocated memory, by using

the limited length of the read string.

char str[10];
int r = fscanf(f, "%9s %d %lf\n", str, &i, &d);

lec06/file_scanf.c

Jan Faigl, 2024 B3B36PRG – Lecture 06: I/O and Standard Library 19 / 69

File Operations Character Oriented I/O Text Files Block Oriented I/O Non-Blocking I/O Terminal I/O

Formatted I/O – fprintf()
■ int fprintf(FILE *file, const *format, ...);

int main(int argc, char *argv[])
{

char *fname = argc > 1 ? argv[1] : "out.txt";
FILE *f;
if ((f = fopen(fname, "w")) == NULL) {

fprintf(stderr, "Error: Open file ’%s’\n", fname);
return -1;

}
fprintf(f, "Program arguments argc: %d\n", argc);
for (int i = 0; i < argc; ++i) {

fprintf(f, "argv[%d]=’%s’\n", i, argv[i]);
}
if (fclose(f) == EOF) {

fprintf(stderr, "Error: Close file ’%s’\n", fname);
return -1;

}
return 0;

} lec06/file_printf.c

Jan Faigl, 2024 B3B36PRG – Lecture 06: I/O and Standard Library 20 / 69

File Operations Character Oriented I/O Text Files Block Oriented I/O Non-Blocking I/O Terminal I/O

Block Read/Write

■ We can use fread() and fwrite() to read/write a block of data.

size_t fread(void * restrict ptr,
size_t size, size_t nmemb,
FILE * restrict stream);

size_t fwrite(const void * restrict ptr,
size_t size, size_t nmemb,
FILE * restrict stream);

Use const to indicate (ptr) is used only for reading.

Jan Faigl, 2024 B3B36PRG – Lecture 06: I/O and Standard Library 22 / 69

File Operations Character Oriented I/O Text Files Block Oriented I/O Non-Blocking I/O Terminal I/O

Block Read/Write – Example 1/5
■ Program to read/write a given (as #define NUMB) number of int values using
#define BUFSIZE length buffer.

■ Writing is enabled by the optional program argument -w.
■ File for reading/writing is a mandatory program argument.

1 #include <stdio.h>
2 #include <string.h>
3 #include <errno.h>
4 #include <stdbool.h>
5 #include <stdlib.h>
6

7 #include <sys/time.h>
8
9 #include "my_assert.h"

10
11 #ifndef BUFSIZE
12 #define BUFSIZE 32768
13 #endif
14
15 #ifndef NUMB
16 #define NUMB 4098
17 #endif

19 int main(int argc, char *argv[])
20 {
21 int c = 0;
22 _Bool read = true;
23 const char *fname = NULL;
24 FILE *file;
25 const char *mode = "r";
26 while (argc-- > 1) {
27 fprintf(stderr, "DEBUG: argc: %d ’%s’\n", argc, argv[argc]);
28 if (strcmp(argv[argc], "-w") == 0) {
29 fprintf(stderr, "DEBUG: enable writting\n");
30 read = false; // enable writting
31 mode = "w";
32 } else {
33 fname = argv[argc];
34 }
35 } // end while lec06/demo-block_io.c

Jan Faigl, 2024 B3B36PRG – Lecture 06: I/O and Standard Library 23 / 69

File Operations Character Oriented I/O Text Files Block Oriented I/O Non-Blocking I/O Terminal I/O

Block Read/Write – Example 2/5
36 file = fopen(fname, mode);
37 if (!file) {
38 fprintf(stderr, "ERROR: Cannot open file ’%s’, error %d - %s\n", fname, errno,

strerror(errno));
39 return -1;
40 }
41 int *data = (int*)malloc(NUMB * sizeof(int));
42 my_assert(data __LINE__, __FILE__);
43 struct timeval t1, t2;
44 gettimeofday(&t1, NULL);
45 if (read) { /* READ FILE */
46 fprintf(stderr, "INFO: Read from the file ’%s’\n", fname);
47 c = fread(data, sizeof(int), NUMB, file);
48 if (c != NUMB) {
49 fprintf(stderr, "WARN: Read only %i objects (int)\n", c);
50 } else {
51 fprintf(stderr, "DEBUG: Read %i objects (int)\n", c);
52 }
53 } else { /* WRITE FILE */
54 char buffer[BUFSIZE];
55 if (setvbuf(file, buffer, _IOFBF, BUFSIZE)) { /* SET BUFFER */
56 fprintf(stderr, "WARN: Cannot set buffer");
57 }

lec06/demo-block_io.c
Jan Faigl, 2024 B3B36PRG – Lecture 06: I/O and Standard Library 24 / 69

File Operations Character Oriented I/O Text Files Block Oriented I/O Non-Blocking I/O Terminal I/O

Block Read/Write – Example 3/5

58 fprintf(stderr, "INFO: Write to the file ’%s’\n", fname);
59 c = fwrite(data, sizeof(int), NUMB, file);
60 if (c != NUMB) {
61 fprintf(stderr, "WARN: Write only %i objects (int)\n", c);
62 } else {
63 fprintf(stderr, "DEBUG: Write %i objects (int)\n", c);
64 }
65 fflush(file);
66 }
67

68 gettimeofday(&t2, NULL);
69 double dt = t2.tv_sec - t1.tv_sec + ((t2.tv_usec - t1.tv_usec) / 1000000.0);
70 double mb = (sizeof(int) * c)/ (1024 * 1024);
71 fprintf(stderr, "DEBUG: feof: %i ferror: %i\n", feof(file), ferror(file));
72 fprintf(stderr, "INFO: %s %lu MB\n", (read ? "read" : "write"), sizeof(int)*NUMB

/(1024 * 1024));
73 fprintf(stderr, "INFO: %.2lf MB/sec\n", mb / dt);
74 free(data);
75 return EXIT_SUCCESS;
76 } lec06/demo-block_io.c

Jan Faigl, 2024 B3B36PRG – Lecture 06: I/O and Standard Library 25 / 69

File Operations Character Oriented I/O Text Files Block Oriented I/O Non-Blocking I/O Terminal I/O

Block Read/Write – Example 3/5
■ Default BUFSIZE (32 kB) to write/read 108 integer values (∼480 MB).

clang -DNUMB=100000000 demo-block_io.c && ./a.out -w a 2>&1 | grep INFO
INFO: Write to the file ’a’
INFO: write 381 MB
INFO: 10.78 MB/sec

./a.out a 2>&1 | grep INFO
INFO: Read from the file ’a’
INFO: read 381 MB
INFO: 2214.03 MB/sec

■ Try to read more elements results in feof(), but not in ferror().
clang -DNUMB=200000000 demo-block_io.c && ./a.out a
DEBUG: argc: 1 ’a’
INFO: Read from the file ’a’
WARN: Read only 100000000 objects (int)

DEBUG: feof: 1 ferror: 0
INFO: read 762 MB
INFO: 1623.18 MB/sec lec06/demo-block_io.c

Jan Faigl, 2024 B3B36PRG – Lecture 06: I/O and Standard Library 26 / 69

File Operations Character Oriented I/O Text Files Block Oriented I/O Non-Blocking I/O Terminal I/O

Block Read/Write – Example 5/5

■ Increased write buffer BUFSIZE (128 MB) improves writing performance.

clang -DNUMB=100000000 -DBUFSIZE=134217728 demo-block_io.c && ./
a.out -w aa 2>&1 | grep INFO

INFO: Write to the file ’aa’
INFO: write 381 MB
INFO: 325.51 MB/sec

■ But does not improve reading performance, which relies on the standard size of the
buffer.

clang -DNUMB=100000000 -DBUFSIZE=134217728 demo-block_io.c &&
./a.out aa 2>&1 | grep INFO

INFO: Read from the file ’aa’
INFO: read 381 MB
INFO: 1693.39 MB/sec

lec06/demo-block_io.c

Jan Faigl, 2024 B3B36PRG – Lecture 06: I/O and Standard Library 27 / 69

File Operations Character Oriented I/O Text Files Block Oriented I/O Non-Blocking I/O Terminal I/O

Blocking and Non-Blocking I/O Operations
■ Usually, I/O operations are considered as blocking requested.

■ System call does not return control to the program until the requested I/O is completed.
It is motivated that we need all the requested data and I/O operations are usually slower
than the other parts of the program. We have to wait for the data anyway.

■ It is also called synchronous programming.

■ Non-Blocking system calls do not wait, and thus do not block the application.
■ It is suitable for network programming, multiple clients, graphical user interface, or when

we need to avoid “deadlock” or too long waiting due to slow or not reliable communication.
■ Call for reading requested data read (and “return”) only data that are actually available in

the input buffer.

■ Asynchronous programming with non-blocking calls.
■ Return control to the application immediately .
■ Data are transfered to/from buffer “on the background.”

Callback function, triggering a signal, etc.

Jan Faigl, 2024 B3B36PRG – Lecture 06: I/O and Standard Library 29 / 69

File Operations Character Oriented I/O Text Files Block Oriented I/O Non-Blocking I/O Terminal I/O

Non-Blocking I/O Operations – Example
■ Setting the file stream (file descriptor – fd) to the O_NONBLOCK mode.

Usable also for socket descriptor.

■ Note that using non-blocking operations does not make too much sense for regular
files.

■ It is more suitable for reading from block devices such as serial port /dev/ttyACM0.
■ We can set O_NONBLOCK flag for a file descriptor using fcntl().

#include <fcntl.h> // POSIX

// open file by the open() system call that return a file descriptor
int fd = open("/dev/ttyUSB0", O_RDWR, S_IRUSR | S_IWUSR);

// read the current settings first
int flags = fcntl(fd, F_GETFL, 0);

// then, set the O_NONBLOCK flag
fcntl(fd, F_SETFL, flags | O_NONBLOCK);

■ Then, calling read() might not provide the requested number of bytes if fewer bytes are
currently available in the input buffer.

Jan Faigl, 2024 B3B36PRG – Lecture 06: I/O and Standard Library 30 / 69

File Operations Character Oriented I/O Text Files Block Oriented I/O Non-Blocking I/O Terminal I/O

Key Press without Enter
■ Reading from the standard (termi-

nal) input is usually line oriented,
which allows editing the program
input before its confirmation by
end-of-line using Enter.

■ Reading character from stdin can
be made by the getchar() func-
tion.

■ However, the input is buffered to
read line, and it is necessary to
press the Enter key by default.

■ We can avoid that by setting the
terminal to a raw mode.

#include <stdio.h>
#include <ctype.h>

int c;
while ((c = getchar()) != ’q’) {

if (isalpha(c)) {
printf("Key ’%c’ is alphabetic;", c);

} else if (isspace(c)) {
printf("Key ’%c’ is space character;", c);

} else if (isdigit(c)) {
printf("Key ’%c’ is decimal digit;", c);

} else if (isblank(c)) {
printf("Key is blank;");

} else {
printf("Key is something else;");

}
printf(" ascii: %s\n",

isascii(c) ? "true" : "false");
}
return 0; lec06/demo-getchar.c

Jan Faigl, 2024 B3B36PRG – Lecture 06: I/O and Standard Library 32 / 69

File Operations Character Oriented I/O Text Files Block Oriented I/O Non-Blocking I/O Terminal I/O

Key Press without Enter – Example
■ We can switch the stdin to the raw mode using termios or using stty tool.

void call_termios(int reset)
{

static struct termios tio, tioOld;
tcgetattr(STDIN_FILENO, &tio);
if (reset) {

tcsetattr(STDIN_FILENO, TCSANOW, &tioOld);
} else {

tioOld = tio; //backup
cfmakeraw(&tio);
// assure echo is disabled
tio.c_lflag &= ~ECHO;
// enable output postprocessing
tio.c_oflag |= OPOST;
tcsetattr(STDIN_FILENO, TCSANOW, &tio);

}
}

void call_stty(int reset)
{

if (reset) {
system("stty -raw opost echo");

} else {
system("stty raw opost -echo");

}
}

■ int system(const char *string);

hands string to the command interperter.
■ Returns the program (shell) exit status.
■ Returns 127 is the shell execution failed.

■ Usage clang demo-getchar.c -o demo-getchar
■ Standard “Enter” mode: ./demo-getchar
■ Raw mode - termios: ./demo-getchar termios
■ Raw mode - stty: ./demo-getchar stty lec06/demo-getchar.c

Jan Faigl, 2024 B3B36PRG – Lecture 06: I/O and Standard Library 33 / 69

Standard library – Selected Functions Error Handling

Part II

Selected Standard Libraries

Jan Faigl, 2024 B3B36PRG – Lecture 06: I/O and Standard Library 34 / 69

Standard library – Selected Functions Error Handling

Standard Library
■ The C programming language itself does not provide operations for input/output,

more complex mathematical operations, nor
■ string operations;
■ dynamic allocation;
■ run-time error handling.

■ These and further functions are included in the standard library.
■ Library – the compiled code is linked to the program, such as libc.so.

E.g., see ldd a.out.
■ Header files contain function prototypes, types , macros, etc.
<assert.h> <inttypes.h> <signal.h> <stdlib.h>
<complex.h> <iso646.h> <stdarg.h> <string.h>
<ctype.h> <limits.h> <stdbool.h> <tgmath.h>
<errno.h> <locale.h> <stddef.h> <time.h>
<fenv.h> <math.h> <stdint.h> <wchar.h>
<float.h> <setjmp.h> <stdio.h> <wctype.h>

Jan Faigl, 2024 B3B36PRG – Lecture 06: I/O and Standard Library 36 / 69

Standard library – Selected Functions Error Handling

Standard library – Overview
■ <stdio.h> – Input and output (including formatted).
■ <stdlib.h> – Math function, dynamic memory allocation, conversion of strings to

number.
■ Sorting – qsort().
■ Searching – bsearch().
■ Random numbers – rand().

■ <limits.h> – Ranges of numeric types.
■ <math.h> – Math functions.
■ <errno.h> – Definition of the error values.
■ <assert.h> – Handling runtime erros.

■ <ctype.h> – character classification, e.g., see lec06/demo-getchar.c.
■ <string.h> – Strings and memory transfers, i.e., memcpy().
■ <locale.h> – Internationalization.
■ <time.h> – Date and time.

Jan Faigl, 2024 B3B36PRG – Lecture 06: I/O and Standard Library 37 / 69

Standard library – Selected Functions Error Handling

Standard Library (POSIX)

Relation to the operating system (OS).
Single UNIX Specification (SUS).

POSIX – Portable Operating System Interface.

■ <stdlib.h> – Function calls and OS resources.
■ <signal.h> – Asynchronous events.
■ <unistd.h> – Processes , read/write files, . . .
■ <pthread.h> – Threads (POSIX Threads).
■ <threads.h> – Standard thread library in C11.

Advanced Programming in the UNIX Environment, 3rd edition,
W. Richard Stevens, Stephen A. Rago Addison-Wesley, 2013,
ISBN 978-0-321-63773-4

Jan Faigl, 2024 B3B36PRG – Lecture 06: I/O and Standard Library 38 / 69

Standard library – Selected Functions Error Handling

Mathematical Functions

■ <math.h> – basic function for computing with “real” numbers.
■ Root and power of floating point number x.
double sqrt(double x);, float sqrtf(float x);

■ double pow(double x, double y); – power.
■ double atan2(double y, double x); – arctan y/x with quadrand determination.
■ Symbolic constants – M_PI, M_PI_2, M_PI_4, etc.

■ #define M_PI 3.14159265358979323846
■ #define M_PI_2 1.57079632679489661923
■ #define M_PI_4 0.78539816339744830962

■ isfinite(), isnan(), isless(), ... – comparision of “real” numbers.
■ round(), ceil(), floor() – rounding and assignment to integer.

■ <complex.h> – function for complex numbers. ISO C99

■ <fenv.h> – function for control rounding and representation according to IEEE 754.
man math

Jan Faigl, 2024 B3B36PRG – Lecture 06: I/O and Standard Library 39 / 69

Standard library – Selected Functions Error Handling

Variable Arguments <stdarg.h>

■ It allows writing a function with a variable number of arguments.
Similarly as in the functions printf() and scanf().

■ The header file <stdarg.h> defines.
■ Type va_list and macros.
■ void va_start(va_list ap, parmN); – initiate va_list.
■ type va_arg(va_list ap, type); – fetch next variable.
■ void va_end(va_list ap); – cleanup before function return.
■ void va_copy(va_list dest, va_list src); – copy a variable argument list.

■ We have to pass the number of arguments to the functions with variable number of
arguments to known how many values we can retrieved from the stack.

Arguments are passed with stack; thus, we need size of the particular arguments to access them in
the memory and interpret the memory blocks, e.g., as int or double values.

Jan Faigl, 2024 B3B36PRG – Lecture 06: I/O and Standard Library 40 / 69

Standard library – Selected Functions Error Handling

Example – Variable Arguments <stdarg.h>
1 #include <stdio.h>
2 #include <stdarg.h>
3

4 int even_numbers(int n, ...);
5 int main(void)
6 {
7 printf("Number of even numbers: %i\n", even_numbers(2, 1, 2)); // returns 1
8 printf("Number of even numbers: %i\n", even_numbers(4, 1, 3, 4, 5)); // returns 1
9 printf("Number of even numbers: %i\n", even_numbers(3, 2, 4, 6)); // returns 3

10 return 0;
11 }
12

13 int even_numbers(int n, ...)
14 {
15 int c = 0;
16 va_list ap;
17 va_start(ap, n);
18 for (int i = 0; i < n; ++i) {
19 int v = va_arg(ap, int);
20 (v % 2 == 0) ? c += 1 : 0;
21 }
22 va_end(ap);
23 return c;
24 } lec06/demo-va_args.c

Jan Faigl, 2024 B3B36PRG – Lecture 06: I/O and Standard Library 41 / 69

Standard library – Selected Functions Error Handling

Error Handling – errno

■ Basic error codes are defined in <errno.h>.
■ These codes are used in standard library as indicators that are set in the global variable
errno in a case of an error during the function call.

■ If fopen() fails, it returns NULL, which does not provide the cause of the failure.
■ The cause of failure can be stored in the errno variable.

■ Text description of the numeric error codes are defined in <string.h>.
■ String can be obtain by the function.

char* strerror(int errnum);

Jan Faigl, 2024 B3B36PRG – Lecture 06: I/O and Standard Library 43 / 69

Standard library – Selected Functions Error Handling

Example – errno in Fie Open fopen()
1 #include <stdio.h>
2 #include <errno.h>
3 #include <string.h>
4

5 int main(int argc, char *argv[]) {
6 FILE *f = fopen("soubor.txt", "r");
7 if (f == NULL) {
8 int r = errno;
9 printf("Open file failed errno value %d\n", errno);

10 printf("String error ’%s’\n", strerror(r));
11 }
12 return 0;
13 }

lec06/errno.c

■ Program output if the file does not exist.
Open file failed errno value 2
String error ’No such file or directory’

■ Program output for an attempt to open a file without having sufficient access rights.
Open file failed errno value 13
String error ’Permission denied’

Jan Faigl, 2024 B3B36PRG – Lecture 06: I/O and Standard Library 44 / 69

Standard library – Selected Functions Error Handling

Testing Macro assert()
■ We can add tests for a particular value of the variables, for debugging.

Test and indications of possible errors, e.g., due to a wrong function argument.

■ Such test can be made by the macro assert(expr) from <assert.h>.
■ If expr is not logical 1 (true) the program is terminated and the particular line and

the name of the source file is printed.
■ We can disable the macro by definition of the macro NDEBUG. man assert.

■ It is not for run-time errors detection.

#include <stdio.h>
#include <assert.h>

int main(int argc, char *argv[])
{

assert(argc > 1);
printf("program argc: %d\n", argc);
return 0;

} lec06/assert.c
Jan Faigl, 2024 B3B36PRG – Lecture 06: I/O and Standard Library 45 / 69

Standard library – Selected Functions Error Handling

Example of assert() Usage
■ Compile the program with the assert() macro and executing the program with/without

program argument. lec06/assert.c

clang assert.c -o assert
./assert
Assertion failed: (argc > 1), function main, file assert.c, line 5.
zsh: abort ./assert

./assert 2
start argc: 2

■ Compile the program without the macro and executing it with/without program argu-
ment. lec06/assert.c

clang -DNDEBUG assert.c -o assert
./assert
program start argc: 1
./assert 2
program start argc: 2

The assert() macro is not for run-time errors detection!
Jan Faigl, 2024 B3B36PRG – Lecture 06: I/O and Standard Library 46 / 69

Standard library – Selected Functions Error Handling

Long Jumps
■ <setjmp.h> defines function setjmp() and longjmp() for jumps across functions.

Note that the goto statement can be used only within a function.

■ setjmp() stores the actual state of the registers and if the function returns non-zero
value, the function longjmp() has been called.

■ During longjmp() call, the values of the registers are restored and the program con-
tinues the execution from the location of the setjmp() call.

We can use setjmp() and longjmp() to implement handling exceptional states similarly as try–catch.

1 #include <setjmp.h>
2 jmp_buf jb;
3 int compute(int x, int y);
4 void error_handler(void);
5 if (setjmp(jb) == 0) {
6 r = compute(x, y);
7 return 0;
8 } else {
9 error_handler();

10 return -1;
11 }

12 int compute(int x, int y) {
13 if (y == 0) {
14 longjmp(jb, 1);
15 } else {
16 x = (x + y * 2);
17 return (x / y);
18 }
19 }
20 void error_handler(void) {
21 printf("Error\n");
22 }

Jan Faigl, 2024 B3B36PRG – Lecture 06: I/O and Standard Library 47 / 69

Standard library – Selected Functions Error Handling

Communication with the Environment – <stdlib.h>
■ The header file <stdlib.h> defines standard program return values EXIT_FAILURE and
EXIT_SUCCESS.

■ A value of the environment variable can be retrieved by the getenv() function.
1 #include <stdio.h>
2 #include <stdlib.h>
3
4 int main(void)
5 {
6 printf("USER: %s\n", getenv("USER"));
7 printf("HOME: %s\n", getenv("HOME"));
8 return EXIT_SUCCESS;
9 } lec06/demo-getenv.c

■ void exit(int status); – the program is terminated as it will be by calling return(status)
in the main() function.

■ We can register a function that will be called at the program exit.
int atexit(void (*func)(void));

■ The program can be aborted by calling void abort(void).
The registered functions by the atexit() are not called.

Jan Faigl, 2024 B3B36PRG – Lecture 06: I/O and Standard Library 48 / 69

Standard library – Selected Functions Error Handling

Example – atexit(), abort(), and exit()
1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <string.h>
4

5 void cleanup(void);
6 void last_word(void);
7

8 int main(void)
9 {

10 atexit(cleanup); // register function
11 atexit(last_word); // register function
12 const char *howToExit = getenv("HOW_TO_EXIT");
13 if (howToExit && strcmp(howToExit, "EXIT") == 0) {
14 printf("Force exit\n");
15 exit(EXIT_FAILURE);
16 } else if (howToExit && strcmp(howToExit, "ABORT") == 0) {
17 printf("Force abort\n");
18 abort();
19 }
20 printf("Normal exit\n");
21 return EXIT_SUCCESS;
22 }
23

24 void cleanup(void)
25 {
26 printf("Perform cleanup at the program exit!\n");
27 }
28

29 void last_word(void)
30 {
31 printf("Bye, bye!\n");
32 }

■ Example of usage.

clang demo-atexit.c -o atexit

% ./atexit; echo $?
Normal exit
Bye, bye!
Perform cleanup at the program exit!
0

% HOW_TO_EXIT=EXIT ./atexit; echo $?
Force exit
Bye, bye!
Perform cleanup at the program exit!
1

% HOW_TO_EXIT=ABORT ./atexit; echo $?
Force abort
zsh: abort HOW_TO_EXIT=ABORT ./atexit
134

lec06/demo-atexit.c

Jan Faigl, 2024 B3B36PRG – Lecture 06: I/O and Standard Library 49 / 69

Organization of Source Files Preprocessor Building Programs

Part III

Preprocessor and Building Programs

Jan Faigl, 2024 B3B36PRG – Lecture 06: I/O and Standard Library 50 / 69

Organization of Source Files Preprocessor Building Programs

Variables – Scope and Visibility
■ Local variables

■ A variable declared in the body of a function is the local variable.
■ Using the keyword static we can declared static local variables.
■ Local variables are visible (and accessible) only within the function.

■ External variables (global variables)
■ Variables declared outside the body of any function.
■ They have static storage duration; the value is stored as the program is running.

Like a local static variable.
■ External variable has file scope, i.e., it is visible from its point of the declaration to the

end of the enclosing file.
■ We can refer to the external variable from other files by using the extern keyword.
■ In a one file, we define the variable, e.g., as int var;.
■ In other files, we declare the external variable as extern int var;.

■ We can restrict the visibility of the global variable to be within the single file only by
the static keyword.

Jan Faigl, 2024 B3B36PRG – Lecture 06: I/O and Standard Library 52 / 69

Organization of Source Files Preprocessor Building Programs

Organizing C Program

■ Particular source files can be organized in many ways.
■ A possible ordering of particular parts can be as follows:

1. #include directives;
2. #define directives;
3. Type definitions;
4. Declarations of external variables;
5. Prototypes for functions other than main() (if any);
6. Definition of the main() function (if so);
7. Definition of other functions.

Jan Faigl, 2024 B3B36PRG – Lecture 06: I/O and Standard Library 53 / 69

Organization of Source Files Preprocessor Building Programs

Header Files
■ Header files provide the way how to share defined macros, variables, and use functions

defined in other modules (source files) and libraries.
■ #include directive has two forms.

■ #include <filename> – to include header files that are searched from system
directives.

■ #include "filename" – to include header files that are searched from the current
directory.

■ The places to be searched for the header files can be altered, e.g., using the command
line options such as -Ipath.

■ It is not recommended to use brackets < and > for including own header files.
■ It is also not recommended to use absolute paths.

Neither windows nor unix like absolute paths.
If you needed them, it is an indication you most likely do not understand the
process of compilation and building the program/project.

Jan Faigl, 2024 B3B36PRG – Lecture 06: I/O and Standard Library 54 / 69

Organization of Source Files Preprocessor Building Programs

Sharing Macros and Types, Function Prototypes and External Variables
■ Let have three files graph.h, graph.c, and main.c for which we like to share macros

and types, and also functions and external variables defined in graph.c in main.c.
graph.h:
#define GRAPH_SIZE 1000
typedef struct {

...
} edget_s;
typedef struct {

edges_s *edges;
int size;

} graph_s;
// make the graph_global extern
extern graph_s graph_global;
// declare function prototype
graph_s* load_graph(const char *filename);

graph.c:
#include "graph.h"
graph_s graph_global = { NULL, GRAPH_SIZE };
graph_s* load_graph(const char *filename)
{

...
}
main.c:
#include "graph.h"
int main(int argc, char *argv[])
{

// we can use function from graph.c
graph_s *graph = load_graph(...
// we can also use the global variable
// declared as extern in the graph.h
if (global_graph.size != GRAPH_SIZE) {
...

Jan Faigl, 2024 B3B36PRG – Lecture 06: I/O and Standard Library 55 / 69

Organization of Source Files Preprocessor Building Programs

Protecting Header Files
■ Header files can be included from other header files.
■ Due to sequence of header files includes, the same type can be defined multiple times.
■ We can protect header files from multiple includes by using the preprocessor macros.

#ifndef GRAPH_H
#define GRAPH_H
...
// header file body here
// it is processed only if GRAPH_H is not defined
// therefore, after the first include,
// the macro GRAPH_H is defined
// and the body is not processed during therepeated includes
...
#endif

■ Or using #pragma once, which is, however, non-standard preprocessor directive.
#pragma once
...
// header file body here

Jan Faigl, 2024 B3B36PRG – Lecture 06: I/O and Standard Library 56 / 69

Organization of Source Files Preprocessor Building Programs

Macros

■ Macro definitions are by the #define directive.
■ The macros can be parametrized to define function-like macros.
■ Already defined macros can be undefined by the #undef command.

■ File inclusion is by the #include directive.
■ Conditional compilation – #if, #ifdef, #ifndef, #elif, #else, #endif.
■ Miscellaneous directives.

■ #error – produces error message, which can be combined with #if, e.g., to test
sufficient size of MAX_INT.

■ #line – alter the way how lines are numbered (__LINE__ and __FILE__ macros).
■ #pragma – provides a way to request a special behaviour from the compiler.

C99 introduces _Pragma operator used for “destringing” the string literals and pass them
to #pragma operator.

Jan Faigl, 2024 B3B36PRG – Lecture 06: I/O and Standard Library 58 / 69

Organization of Source Files Preprocessor Building Programs

Predefined Macros

■ There are several predefined macros that provide information about the compilation
and compiler as integer constant or string literal.

■ __LINE__ – Line number of the file being compiled (processed).
■ __FILE__ – Name of the file being compiled.
■ __DATE__ – Date of the compilation (in the form "Mmm dd yyyy").
■ __TIME__ – Time of the compilation (in the form "hh:mm:ss").
■ __STDC__ – 1 if the compiler conforms to the C standard (C89 or C99).

■ C99 introduces further macros, such as the following versions.
■ __STDC_VERSION__ – Version of C standard supported.

■ For C89 it is 199409L.
■ For C99 it is 199901L.

■ It also introduces identifier __func__ that provides the name of the actual function.
It is actually not a macro, but behaves similarly.

Jan Faigl, 2024 B3B36PRG – Lecture 06: I/O and Standard Library 59 / 69

Organization of Source Files Preprocessor Building Programs

Defining Macros Outside a Program

■ We can control the compilation using the preprocessor macros.
■ The macros can be defined outside a program source code during the compilation, and

passed to the compiler as particular arguments.
■ For gcc and clang it is the -D argument.

■ gcc -DDEBUG=1 main.c – define macro DEBUG and set it to 1.
■ gcc -DNDEBUG main.c – define NDEBUG to disable assert() macro.

See man assert.

■ The macros can be also undefined, e.g., by the -U argument.

■ Having the option to define the macros by the compiler options, we can control the
compilation process according to the particular environment and desired target platform.

Jan Faigl, 2024 B3B36PRG – Lecture 06: I/O and Standard Library 60 / 69

Organization of Source Files Preprocessor Building Programs

Compiling and Linking
■ Programs composed of several modules (source files) can be build by an individual

compilation of particular files, e.g., using -c option of the compiler.
■ Then, all object files can be linked to a single binary executable file.
■ Using the -llib, we can add a particular lib library.
■ E.g., let have source files moduleA.c, moduleB.c, and main.c that also depends on

the math library (-lm). The program can be build as follows.

clang -c moduleA.c -o moduleA.o
clang -c moduleB.c -o moduleB.o
clang -c main.c -o main.o

clang main.o moduleB.o moduleA.o -lm -o main

Be aware that the order of the files is important for resolving dependencies! It is incremental,
and only the function(s) needed in first modules are linked from the other modules. For
example functions called in main.o with implementation in mainA.o and mainB.o; and
functions called in mainB.o that have implementation in mainA.o.

Jan Faigl, 2024 B3B36PRG – Lecture 06: I/O and Standard Library 62 / 69

Organization of Source Files Preprocessor Building Programs

Makefile
■ Some building system may be suitable for project with several files.
■ One of the most common tools is the GNU make or the make.

Notice, there are many building systems that may provide different features, e.g., designed for the fast
evaluation of the dependencies like ninja.

■ For make, the building rules are written in the Makefile files.
http://www.gnu.org/software/make/make.html

■ The rules define targets, dependencies, and action to build the targets based on the
dependencies.

target : dependencies colon

action tabulator
■ Target (dependencies) can be symbolic name or file name(s).

main.o : main.c
clang -c main.c -o main.o

■ The building receipt can be a simple usege of file names and compiler options.
The main advantage of Makefiles is flexibility arising from unified variables, internal make variables,
and templates, as most of the sources can be compiled similarly.

Jan Faigl, 2024 B3B36PRG – Lecture 06: I/O and Standard Library 63 / 69

Organization of Source Files Preprocessor Building Programs

Example Makefile
■ Pattern rule for compiling source files .c to object files .o.
■ Wildcards are used to compile all source files in the directory.

Can be suitable for small project. In general, explicit listings of the files is more appropriate.

CC:=ccache $(CC)
CFLAGS+=-O2

OBJS=$(patsubst %.c,%.o,$(wildcard *.c))

TARGET=program

bin: $(TARGET)

$(OBJS): %.o: %.c
$(CC) -c $< $(CFLAGS) $(CPPFLAGS) -o $@

$(TARGET): $(OBJS)
$(CC) $(OBJS) $(LDFLAGS) -o $@

clean:
$(RM) $(OBJS) $(TARGET)

ccache

CC=clang make vs CC=gcc make

■ The order of the files is important during the linking!
Jan Faigl, 2024 B3B36PRG – Lecture 06: I/O and Standard Library 64 / 69

Part IV

Part 3 – Assignment HW 04 and HW 06

Jan Faigl, 2024 B3B36PRG – Lecture 06: I/O and Standard Library 65 / 69

HW 04 – Assignment

Topic: Text processing – Grep
Mandatory: 2 points; Optional: 3 points; Bonus : none

■ Motivation: Memory allocation and string processing.
■ Goal: Familiar yourself with string processing.
■ Assignment: https://cw.fel.cvut.cz/wiki/courses/b3b36prg/hw/hw04

■ Read input file and search for a pattern.
■ Optional assignment – redirect of stdint; regular expressions; color output.

■ Deadline: 13.04.2024, 23:59 AoE.

Jan Faigl, 2024 B3B36PRG – Lecture 06: I/O and Standard Library 66 / 69

HW 06 – Assignment

Topic: Circular buffer
Mandatory: 2 points; Optional: 2 points; Bonus : none

■ Motivation: Implement library according to defined header file with function
prototypes. Compile and link shared library.

■ Goal: Familiar yourself with circular buffer, building and usage of shared library.
■ Assignment: https://cw.fel.cvut.cz/wiki/courses/b3b36prg/hw/hw06

■ Fixed size circular buffer.
■ Optional assignment – dynamically resized circular buffer.

■ Deadline: 27.04.2024, 23:59 AoE.

Jan Faigl, 2024 B3B36PRG – Lecture 06: I/O and Standard Library 67 / 69

Topics Discussed

Summary of the Lecture

Jan Faigl, 2024 B3B36PRG – Lecture 06: I/O and Standard Library 68 / 69

Topics Discussed

Topics Discussed
■ I/O operations

■ File operations
■ Character oriented input/output
■ Text files
■ Block oriented input/output
■ Non-blocking input/output
■ Terminal input/output

■ Selected functions of standard library
■ Overview of functions in standard C and POSIX libraries
■ Variable number of arguments
■ Error handling

■ Building Programs
■ Variables and their scope and visibility
■ Organizing source codes and using header files
■ Preprocessor macros
■ Makefiles

■ Next: Parallel programming
Jan Faigl, 2024 B3B36PRG – Lecture 06: I/O and Standard Library 69 / 69

