Jan Faigl, 2025

Input/Output and Standard C Library. Preprocessor

and Building Programs

Jan Faigl

Department of Computer Science
Faculty of Electrical Engineering

Czech Technical University in Prague

Lecture 06
B3B36PRG — Programming in C

B3B36PRG — Lecture 06: 1/O and Standard Library

1/69

Overview of the Lecture

® Part 1 — Input and Output
File Operations
Character Oriented /O
Text Files
Block Oriented 1/0
Non-Blocking 1/0
Terminal 1/0
® Part 2 — Selected Standard Libraries
Standard library — Selected Functions
Error Handling
= Part 3 — Preprocessor and Building Programs
Organization of Source Files
Preprocessor
Building Programs
® Part 4 — Assignment HW 04 and HW 06.

Jan Faigl, 2025

K. N. King: chapters 22

K. N. King: chapters 21, 23, 24, 26, and 27

K. N. King: chapters 10, 14, and 15

B3B36PRG — Lecture 06: 1/O and Standard Library

2/69

Part |

Text vs. Binary Files

= |n terms of machine processing, there is no difference between text and binary files.

= Text files are supposed to be human readable.

Without additional specific software tools.

® Bytes represent characters, and the content is (usually) organized into lines.

= Different markers for the end-of-line are used (1 or 2 bytes).

® There can be a special marker for the end-of-file (Ctrl-Z).
It is from CP/M and later used in DOS. It is not widely used in Unix-like systems.
® Processing text files can be character, formatted, or line oriented with the functions
from the standard library stdio.h.
® Character oriented — putc O, getc Q0. Or for stdout/stdin — putchar(), getchar().
int putc(int c, FILE *stream);
int getc(FILE *stream);
® Formatted i/o — fprintf () and fscanf ().
® Line oriented — fputs (), fgets().

Input and Output

Or for stdout/stdin — printf (), scanf ().
Or for stdout/stdin — puts(), gets().

® |n general, text files are sequences of bytes, but numeric values as text need to be parsed
and formatted in writing.

= Numbers in binary files may deal with byte ordering.

B3B36PRG — Lecture 06: 1/O and Standard Library 3 /69 | Jan Faigl, 2025

Endianness — ARM vs. x86.

B3B36PRG — Lecture 06: 1/O and Standard Library 4 /69

Jan Faigl, 2025

File Operations

File open
® Functions for input/output are defined in the standard library <stdio.h>.
® The file access is through using a pointer to a file (stream) FILE*.
m File can be opened using fopen().
FILEx fopen(const char * restrict path, const char * restrict mode);
Notice, the restrict keyword

File operations are stream oriented — sequential reading/writing.
® The current position in the file is like a cursor.

® At the file opening, the cursor is set to the beginning of the file (if not specified otherwise).

The mode of the file operations is specified in the mode parameter.
m "r" — reading from the file — cursor is set to the beginning of the file.

The program (user) needs to have sufficient rights for reading from the file.

m "y" — writing to the file — cursor is set to the beginning of the file.
A new file is created if it does not exist; otherwise, the content of the file is cleared.
m "a" — append to the file — the cursor is set to the end of the file.
® The modes can be combined, such as "r+" open the file for reading and writing.
See man fopen.

Jan Faigl, 2025 B3B36PRG — Lecture 06: 1/O and Standard Library

6 / 69

File Operations

fopen(), fclose(), and feof ()

m Test if the file has been opened.

1 char *fname = "file.txt";

3 if ((f = fopen(fname, "r")) == NULL) {

4 fprintf (stderr, "Error: open file ’%s’\n", fname);
5 }

® Close file — int fclose(FILE *stream);

1 if (fclose(f) == EOF) {
2 fprintf(stderr, "Error: close file ’%s’\n", fname);

3}
m Test of reaching the end-of-file (EOF) — int feof (FILE *stream) ;

Jan Faigl, 2025 B3B36PRG — Lecture 06: 1/O and Standard Library

7/ 69

File Operations
File Positioning

m Every stream has a cursor that is associated with a position in the file.

m The position can be set using offset relatively to whence.

int fseek(FILE *stream, long offset, int whence);
where whence

® SEEK_SET - set the position from the beginning of file;
® SEEK_CUR - relatively to the current file position;
® SEEK_END — relatively to the end of file.

If the position is successfully set, fseek () returns 0.
® void rewind(FILE *stream) ; sets the position to the beginning of file.

m The position can be stored and set by the functions using structure fpos_t.
int fgetpos(FILE * restrict stream, fpos_t * restrict pos);
int fsetpos(FILE *stream, const fpos_t *pos);

See man fseek, man rewind.

Jan Faigl, 2025 B3B36PRG — Lecture 06: 1/O and Standard Library

8 /69

File Operations

File Stream Modes

® Modes in the fopen() can be combined.

FILEx fopen(const char * restrict path, const char * restrict mode) ;

m "r'" open for reading.

® "w" Open for writing (file is created if it does not exist).

® "a" open for appending (set cursor to the end of file or create a new file if it does not
exist).

® "r+" open for reading and writing (starts at beginning).

® "w+" open for reading and writing (truncate if file exists).

® "a+" open for reading and writing (append if file exists).

® There are restrictions for the combined modes with "+".
m We cannot switch from reading to writing without calling a file-positioning function or
reaching the end of the file.
® We cannot switch from writing to reading without calling ££f1ush() or calling a file-
positioning function.

Jan Faigl, 2025 B3B36PRG — Lecture 06: 1/O and Standard Library

9/69

File Operations

Temporary Files
® FILE* tmpfile(void); — creates a temporary file that exists until it is closed or the

program exists.
B char* tmpnam(char *str); — generates a name for a temporary file in P_tmpdir
directory that is defined in stdio.h.
m |f str is NULL, the function creates a name and, stores it in a static variable and returns
a pointer to it; otherwise, the name is copied into the buffer str.
The buffer str is expected to be at least L_tmpnam bytes in length (defined in stdio.h).

!clang demo-tmpnam.c -o demo && ./demo
Temp fnamel: "/tmp/tmp.0.0dWD5SH".

Temp fname2: "/tmp/tmp.1.R9OLiP".

The name is stored in the static variable.
The pointer fnamel points to the static

const char *fnamel = tmpnam(NULL) ;

printf("Temp fnamel: \"%s\".\n",
fnamel) ;

const char *fname2 = tmpnam(NULL) ;

printf("Temp fname2: \"/%s\".\n",

fname2) ; variable.
Thus, its content is changed by the tmpnam
printf("Temp fnamel: \"%s\".\n", () call.

File Operations

File Buffering

® int fflush(FILE *stream); — flushes buffer for the given stream.
® £flush(NULL) ; — flushes all buffers (all output streams).

m Change the buffering mode, size, and location of the buffer.
int setvbuf (FILE * restrict stream, char * restrict buf, int mode,
size_t size);

The mode can be one of the following macros.
_IOFBF — full buffering. Data are read from the stream when the buffer is empty and
written to the stream when it is full.
_IOLBF - line buffering. Data are read or written from/to the stream one line at a time.
_IONBF — no buffer. Direct reading and writing without buffer.
#define BUFFER_SIZE 512
char buffer [BUFFER_SIZE];
setvbuf (stream, buffer, _IOFBF, BUFFER_SIZE);

See man setvbuf.

m void setbuf (FILE * restrict stream, char * restrict buf);

fnamel); Temp fnamel: "/tmp/tmp.1.R9OLiP". is equivalent to setvbuf (stream, buf, buf ? _IOFBF : _IONBF, BUFSIZ);
Jan Faigl, 2025 B3B36PRG — Lecture 06: 1/O and Standard Ligﬁﬁps/demo_tmpnam' C 10 /69 | Jan Faigl, 2025 B3B36PRG — Lecture 06: 1/O and Standard Library 11 / 69
File Operations Character Oriented 1/O
Detecting End-of-File and Error Conditions Reading and Writing Single Character (Byte)
® Three possible “errors’ can occur during reading data, such as using fscanf. . .
EF:j il b the end of fil & & & ® Functions for reading from stdin and stdout.
® End-of-file — we reach the end of file.
Or the stdin stream is closed ® int getchar(void) and int putchar(int c).
m Read error — the read function is unable to read data from the stream. : _?_Eth fu_:tcnon rdeturnd lnT value, to Jcnjfate an.erro(ri (EEF)'
= Matching failure — the read data does not match the requested format. € written and read values converted to unsigned char.
® Each stream FTLE* has two indicators. ® The variants of the functions for the specific stream.
® Error indicator — indicates that a read or write error occurs. lnz getCEFItE *S;;E;mi’tand Yy
® End-of-file (EOF) indicator — is set when the end of file is reached. b putclint <, streanss
The EOF is set when the attempt to read beyond the end-of-file, not when the last byte is read. m getchar() is equivalent to getc(stdin).
= The indicators can be read (tested if the indicator is set or not) and cleared. = putchar () is equivalent to putc() with the stdout stream.
® int ferror(FILE #stream); — tests the stream has set the error indicator. m Reading byte-by-byte (unsigned char) can also be used to read binary data, e.g., to
® int feof (FILE *stream); — tests if the stream has set the end-of-file indicator. construct 4-byte length int from the four bytes (char) values.
® yoid clearerr(FILE *stream); — clear the error and end-of-file indicators.
12 / 69 | Jan Faigl, 2025 B3B36PRG — Lecture 06: 1/O and Standard Library 14 / 69

Jan Faigl, 2025 B3B36PRG — Lecture 06: 1/O and Standard Library

Character Oriented |/O

Example — Naive Copy using getc() and putc() 1/2

m Simple copy program based on reading bytes from stdin and writing them to stdout.

Character Oriented I/O

Example — Naive Copy using getc() and putc() 2/2

= We can count the number of bytes and thus the time needed to copy the file.
1 #include <sys/time.h>

1 int c; 4 struct timeval tl1, t2;
> int bytes =0: 5 gettimeofday(&tl, NULL);
s
. . 7 ... // copy the stdin -> stdout
3 while ((c = getc(stdin)) != EOF) { fzy (&t2. UL
. __ 9 gettimeofday(&t2, 5
4 if (putc(c, stdout) == EOF) { 10 double dt = t2.tv_sec - tl.tv_sec + ((t2.tv_usec - tl.tv_usec) / 1000000.0);
5 fprintf(stderr, "Error in putc"); 1 double mb = bytes / (1024 * 1024);
6 break; 12 fprintf(stderr, "%.21f MB/sec\n", mb / dt); lec06/copy-getc_putc.c
7 } m Example of creating a random file and using the program.
8 bytes += 1; clang -02 copy-getc_putc.c
dd bs=512m count=1 if=/dev/random of=/tmp/randl.dat
9 } 1+0 records in
lec06/copy-getc_putc.c 1+0 records out
536870912 bytes transferred in 2.437674 secs (220239034 bytes/sec)
./a.out < /tmp/randl.dat >/tmp/rand2.dat
398.45 MB/sec
Jan Faigl, 2025 B3B36PRG — Lecture 06: 1/O and Standard Library 15 / 69 | Jan Faigl, 2025 B3B36PRG — Lecture 06: 1/O and Standard Library 16 / 69
Text Files Text Files

Line Oriented 1/0O

® A whole line (text) can be read by gets() and fgets () functions.

char* gets(char *str);
char* fgets(char * restrict str, int size, FILE * restrict stream);

m gets() cannot be used securely due to lack of bounds checking.

A line can be written by fputs() an putsQ).

puts () write the given string and a newline character to the stdout stream.

puts() and fputs() return a non-negative integer on success and EOF on an error.
See man fgets, man fputs.

Alternatively, the line can be read by getline().

ssize_t getline(char ** restrict linep, site_t * restrict linecapp,

FILE * restrict stream);
Expand the buffer via realloc(), see man fgetline.

Capacity of the buffer, or if *linep==NULL (if linep points to NULL) a new buffer is allocated.

Jan Faigl, 2025 B3B36PRG — Lecture 06: 1/O and Standard Library

18 / 69

Formatted 1/O — fscanf ()

m int fscanf(FILE *file, const char *format, ...);
® |t returns a number of read items. For example, for the input
record 1 13.4
the statement
int r = fscanf(f, "Ys %d %1f\n", str, &i, &d);
sets (in the case of success) the variable r to the value 3.

m For string reading, it is necessary to respect the size of the allocated memory by using
the limited length of the red string.

char str[10];
int r = fscanf(f, "%9s %d %1f\n", str, &i, &d);

lec06/file_scanf.c

Jan Faigl, 2025 B3B36PRG — Lecture 06: 1/O and Standard Library 19 / 69

Text Files

Formatted /O — fprintf ()

®m int fprintf(FILE *file, const *format, L)

Block Oriented 1/O

Block Read/Write

1 int main(int argc, char *argv[])
2 A{ . .
s char *fname = argc > 1 7 argv[1] : "out.txt"; ® We can use fread() and fwrite() to read/write a block of data.
4 FILE *f; . . .
5 if ((f = fopen(fname, "w")) == NULL) { 1 size_t fread(void * restrict ptr,
6 fprintf(stderr, "Error: Open file ’%s’\n", fname); 2 size_t size, size_t nmemb’
7 return -1; .
s} 3 FILE * restrict stream);
9 fprintf(f, "Program arguments argc: %d\n", argc); . . X .
10 for (int i = 0; i < arge; ++i) { 6 size_t fwrite(const void * restrict ptr,
. v 37=29 : 27 - . . .
- } fprimet(f, targviidlzieniat, 1, argvhiD; 7 size_t size, size_t nmemb,
12
s if (fclose(f) == EOF) { 8 FILE * restrict stream);
14 fprintf(stderr, "Error: Close file ’%s’\n", fname); Use const to indicate (ptr) is used only for reading.
15 return -1;
16 }
1w return 0; lecO6/file_printf.c
18}
Jan Faigl, 2025 B3B36PRG — Lecture 06: 1/O and Standard Library 20 / 69 | Jan Faigl, 2025 B3B36PRG — Lecture 06: 1/O and Standard Library 22 / 69
Block Oriented 1/O Block Oriented 1/O
Block Read/Write — Example 1/5 Block Read/Write — Example 2/5
. . . . 36 file = fopen(fname, mode);
® Program to read/write a number of int values using #define BUFSIZE length buffer. 5 if (1file) {
= No. of values defined as #define NUMB. 38 fprintf (stderr, "ERROR: Cannot open file ’%s’, error %d - %s\n", fname, errno,
= Mandatory argument is a filename to read/write. strerror(errno));
= Writing is by the optional program argument -w. 39 return -1;
. . . Lo a0 }
! #:'anlude <std}o.h> :z ?lt main(int arge, char *argvl]) 41 int *data = (int*)malloc(NUMB * sizeof (int));
2 #include <string.h>) 42 my_assert(data __LINE__, __FILE__);
3 #include <errno.h> 21 int ¢ = 0; 45 struct timeval t1, t2;
4 #include <stdbool.h> 22 -Bool read = true; 41 gettimeofday(&tl, NULL);
5 #include <stdlib.h> 2 const char *fname = NULL; s if (read) { /% READ FILE */
7 #include <sys/time.h> = FILE *flle;* de = "pi: 46 fprintf (stderr, "INFO: Read from the file ’%s’\n", fname);
X " " 25 const char *mode = "r"; 47 c = fread(data, sizeof(int), NUMB, file);
9 #include "my_assert.h 2 while (argc-- > 1) { . if (c !'= NUMB) {
11 #ifndef BUFSIZE 27 fprintf(stderr, "DEBUG: argc: %d ’%s’\n", argc, argvlargcl); 49 fprintf (stderr, "WARN: Read only %i objects (int)\n", c);
12 #define BUFSIZE 32768 28 if (strcmp(argvlargel, "-w") == 0) { 50 } else {
13 #endif 29 fprintf (stderr, "DEBUG: enable writting\n"); 51 fprintf (stderr, "DEBUG: Read %i objects (int)\n", c);
15 #ifndef NUMB :(1; ;232 i f::ﬁe; // enable writting 52 , i . /v VRITE FILE /
. - > 53 else
16 #define NUMB 4098 32 } else { 54 char buffer [BUFSIZE] ;
17 #endif 33 fname = argv[argc); 55 if (setvbuf(file, buffer, _IOFBF, BUFSIZE)) { /* SET BUFFER */
34 ¥ 56 fprintf(stderr, "WARN: Cannot set buffer");
35 } // end while lec06/demo-block_io.c 57 } lec06/demo-block_io.c
Jan Faigl, 2025 B3B36PRG — Lecture 06: 1/O and Standard Library 23 / 69 | Jan Faigl, 2025 B3B36PRG — Lecture 06: 1/O and Standard Library 24 / 69

Block Oriented 1/O

Block Read/Write — Example 3/5

58 fprintf (stderr, "INFO: Write to the file ’%s’\n", fname);

59 c = furite(data, sizeof(int), NUMB, file);

60 if (c != NUMB) {

61 fprintf (stderr, "WARN: Write only %i objects (int)\n", c);

62 } else {

63 fprintf (stderr, "DEBUG: Write %i objects (int)\n", c);

64 }

65 fflush(file);

66 }

68 gettimeofday (&t2, NULL);

69 double dt = t2.tv_sec - tl.tv_sec + ((t2.tv_usec - tl.tv_usec) / 1000000.0);

70 double mb = (sizeof(int) * c)/ (1024 * 1024);

71 fprintf (stderr, "DEBUG: feof: %i ferror: %i\n", feof(file), ferror(file));

72 fprintf (stderr, "INFO: %s %lu MB\n", (read 7 "read" "write"), sizeof (int)=*NUMB/ (1024
1024));

73 fprintf (stderr, "INFO: %.21f MB/sec\n", mb / dt);

74 free(data);

75 return EXIT_SUCCESS;

76 3} lec06/demo-block_io.c

Jan Faigl, 2025 B3B36PRG — Lecture 06: 1/O and Standard Library 25 / 69

Block Oriented 1/O

Block Read/Write — Example 4/5
= Default BUFSIZE (32 kB) to write/read 108 integer values (~480 MB).

clang -DNUMB=100000000 demo-block_io.c && ./a.out -w a 2>&1 | grep INFO
INFO: Write to the file ’a’

INFO: write 381 MB

INFO: 10.78 MB/sec

./a.out a 2>&1 | grep INFO

INFO: Read from the file ’a’

INFO: read 381 MB

INFO: 2214.03 MB/sec

= Try to read more elements results in feof (), but not in ferror().

clang -DNUMB=200000000 demo-block_io.c && ./a.out a
DEBUG: argc: 1 ’a’

INFO: Read from the file ’a’

WARN: Read only 100000000 objects (int)

DEBUG: feof:

INFO: read 762 MB
INFO: 1623.18 MB/sec

1 ferror: O

lec06/demo-block_io.c

Jan Faigl, 2025 B3B36PRG — Lecture 06: 1/O and Standard Library 26 / 69

Block Oriented 1/O

Block Read/Write — Example 5/5

® Increased write buffer BUFSIZE (128 MB) improves writing performance.

clang -DNUMB=100000000 -DBUFSIZE=134217728 demo-block_io.c && ./a.out -w aa 2>&1 | grep INFO
INFO: Write to the file ’aa’

INFO: write 381 MB

INFO: 325.51 MB/sec

= But does not improve reading performance, which relies on the standard size of the
buffer.

clang -DNUMB=100000000 -DBUFSIZE=134217728 demo-block_io.c && ./a.out aa 2>&1 | grep INFO
INFO: Read from the file ’aa’

INFO: read 381 MB

INFO: 1693.39 MB/sec

lec06/demo-block_io.c

Jan Faigl, 2025 B3B36PRG — Lecture 06: 1/O and Standard Library 27 / 69

Non-Blocking 1/0

Blocking and Non-Blocking 1/O Operations

m Usually, I/O operations are considered as blocking requested.

m System call does not return control to the program until the requested 1/0 is completed.
It is motivated that we need all the requested data, and |/O operations are usually slower
than the other parts of the program. We have to wait for the data anyway.

= |t is also called synchronous programming.

= Non-Blocking system calls do not wait and thus do not block the application.

m |t is suitable for network programming, multiple clients, graphical user interface, or when
we need to avoid “deadlock” or too long waiting due to slow or unreliable communication.

m Call for reading requested data read (and “return”) only data that are actually available in
the input buffer.

m Asynchronous programming with non-blocking calls.
® Return control to the application immediately.
m Data are transferred to/from buffer “on the background.”
Callback function, triggering a signal, etc.
Jan Faigl, 2025

B3B36PRG — Lecture 06: 1/O and Standard Library 29 / 69

Non-Blocking 1/0

Non-Blocking 1/O Operations — Example
® Setting the file stream (file descriptor — £d) to the 0_NONBLOCK mode.

Usable also for socket descriptor.
® Non-blocking operations do not make too much sense for regular files.
= |t is more suitable for reading from block devices such as serial port /dev/ttyACMO.
= We can set 0_NONBLOCK flag for a file descriptor using fcnt1().
1 #include <fcntl.h> // POSIX

3 // open file by the open() system call that return a file descriptor
4 int fd = open("/dev/ttyUSBO", O_RDWR, S_IRUSR | S_IWUSR);

6 // read the current settings first

7 int flags = fcntl(fd, F_GETFL, 0);

9 // then, set the O_NONBLOCK flag

10 fcntl(fd, F_SETFL, flags | O_NONBLOCK);

Key Press without Enter

® Reading from the standard (termi-

nal) input is usually line-oriented,
which allows editing the program
input before its confirmation by
end-of-line using Enter.

Reading character from stdin can
be made by the getchar () func-
tion.

However, the input is buffered to
read the line, and it is necessary to
press the Enter key by default.

We can avoid that by setting the

N}

© ® N o o »

11
12
13
14
15
16
17

Terminal I/O

#include <stdio.h>
#include <ctype.h>
int c;
while ((c = getchar()) != ’q’) {
if (isalpha(c)) {
printf ("Key ’%c’ is alphabetic;", c);
} else if (isspace(c)) {
printf("Key ’%c’ is space character;", c);
} else if (isdigit(c)) {
printf ("Key ’%c’ is decimal digit;", c);
} else if (isblank(c)) {
printf("Key is blank;");
} else {
printf ("Key is something else;");
}

printf(" ascii: %s\n",

. i i3 ? N [[T] ny .
® Then, calling read () might not provide the requested number of bytes if fewer bytes are terminal to a raw mode. 1 N isascii(c) 7 "true" : "false");
. . . 19
currently available in the input buffer. 20 return 0 lec06/demo-getchar . c
Jan Faigl, 2025 B3B36PRG — Lecture 06: 1/O and Standard Library 30 / 69 | Jan Faigl, 2025 B3B36PRG — Lecture 06: 1/O and Standard Library 32 /69
Terminal 1/0O
Key Press without Enter — Example
® We can switch the stdin to the raw mode using termios or using stty tool.
1 void call_termios(int reset) 1 void call_stty(int reset)
2 { 2 {
3 static struct termios tio, tio0ld; 3 if (reset) {
4 tcgetattr (STDIN_FILENO, &tio); A system("stty -raw opost echo"); F) t |
5 if (reset) { 5 } else { ar
6 tcsetattr (STDIN_FILENO, TCSANOW, &tio01d); 6 system("stty raw opost -echo");
7 } else { 7 } 1 |
: sL001d = 103 //oackup o) Selected Standard Libraries
9 cfmakeraw(&tio) ; .
H n * .
10 // assure echo is disabled int SYStem(ConSt char Strlng)’
1 tio.c_lflag &= “ECHO; hands string to the command interperter.
12 // enable output postprocessing
s tio.c_oflag |= OPOST; ® Returns the program (shell) exit status.
14 tcsetattr (STDIN_FILENO, TCSANOW, &tio); m Returns 127 is the shell execution failed.
15 }
16}
® Usage clang demo-getchar.c -o demo-getchar

= Standard “Enter” mode: ./demo-getchar

= Raw mode - termios: ./demo-getchar termios

= Raw mode - stty: ./demo-getchar stty lec06/demo-getchar.c
Jan Faigl, 2025 B3B36PRG — Lecture 06: 1/O and Standard Library 33 / 69 | Jan Faigl, 2025 B3B36PRG — Lecture 06: 1/O and Standard Library 34 / 69

Standard library — Selected Functions

Standard Library

® The C programming language itself does not provide operations for input/output,
more complex mathematical operations, nor
® string operations;
= dynamic allocation;
® runtime error handling.
m These and further functions are included in the standard library.
m Library — the compiled code is linked to the program, such as libc.so.
E.g., see 1dd a.out.
m Header files contain function prototypes, types , macros, etc.

<assert.h> <inttypes.h> <signal.h> <stdlib.h>
<complex.h> <is0646.h> <stdarg.h> <string.h>
<ctype.h> <limits.h> <stdbool.h> <tgmath.h>
<errno.h> <locale.h> <stddef.h> <time.h>
<fenv.h> <math.h> <stdint.h> <wchar.h>
<float.h> <setjmp.h> <stdio.h> <wctype.h>

Standard library — Selected Functions

Standard library — Overview

® <stdio.h> — Input and output (including formatted).
® <stdlib.h> — Math function, dynamic memory allocation, conversion of strings to
numbers.
m Sorting — gsort ().
m Searching — bsearch().
= Random numbers — rand ().
<limits.h> — Ranges of numeric types.
<math.h> — Math functions.
<errno.h> — Definition of the error values.
<assert.h> — Handling runtime errors.

m <ctype.h> — character classification, e.g., see 1ec06/demo-getchar.c.
® <string.h> — Strings and memory transfers, i.e., memcpy ().
m <locale.h> — Internationalization.

® <time.h> — Date and time.

Jan Faigl, 2025 B3B36PRG — Lecture 06: 1/O and Standard Library 36 / 69 | Jan Faigl, 2025 B3B36PRG — Lecture 06: 1/O and Standard Library 37 / 69
Standard library — Selected Functions Standard library — Selected Functions
Standard Library (POSIX) Mathematical Functions
Relation to the operating system (OS). ® <math.h> — basic function for computing with “real” numbers.
Single UNIX Specification (SUS). ® Root and power of floating point number x.
POSIX — Portable Operating System Interface. double sqrt(double x);, float sqrtf(float x);
® <stdlib.h> — Function calls and OS resources. u double pow(double x, double y); — power. , o
) ® double atan2(double y, double x); — arctan y/x with quadrand determination.
m <signal.h> — Asynchronous events. ® Symbolic constants — M_PI, M_PI_2, M_PI_4, etc.
® <unistd.h> — Processes , read/write files, ... = #define M_PI 3.14159265358979323846
m #define M_PI_2 1.57079632679489661923
= <pthread.h> — Threads (POSIX Threads). m #define M_PI_4 0.78539816339744830962
® <threads.h> — Standard thread library in C11. m isfinite(), isnan(), isless(), . — comparision of “real” numbers.
® round(), ceil(), floor() — rounding and assignment to integer.
Advanced .
[M Advanced Programming in the UNIX Environment, 3rd edition, R ® <complex.h> — function for complex numbers. ISO C99
W. Richard Stevens, Stephen A. Rago Addison-Wesley, 2013, m <fenv.h> — function for control rounding and representation according to IEEE 754.
ISBN 978-0-321-63773-4
man math
Jan Faigl, 2025 B3B36PRG — Lecture 06: 1/O and Standard Library 38 / 69 | Jan Faigl, 2025 B3B36PRG — Lecture 06: 1/O and Standard Library 39 / 69

Standard library — Selected Functions

Variable Arguments <stdarg.h>

= |t allows writing a function with a variable number of arguments.

Similarly as in the functions printf () and scanf ().
® The header file <stdarg.h> defines.

= Type va_list and macros.

® void va_start(va_list ap, parmN); — initiate va_list.

m {ype va_arg(va_list ap, type); — fetch next variable.

® void va_end(va_list ap); — cleanup before function return.

® void va_copy(va_list dest, va_list src); — copy a variable argument list.

= We have to pass the number of arguments to the functions with a variable number of

arguments to know how many values we can retrieve from the stack.
Arguments are passed with stack; thus, we need the size of the particular arguments to access them
in the memory and interpret the memory blocks, e.g., as int or double values.

Jan Faigl, 2025 B3B36PRG — Lecture 06: 1/O and Standard Library 40 / 69

Standard library — Selected Functions

Example — Variable Arguments <stdarg.h>

1 #include <stdio.h>
2 #include <stdarg.h>

4 int even_numbers(int n, ...);

5 int main(void)

6 {

7 printf ("Number of even numbers: %i\n", even_numbers(2, 1, 2)); // returns 1
8 printf ("Number of even numbers: %i\n", even_numbers(4, 1, 3, 4, 5)); // returns 1
9 printf ("Number of even numbers: %i\n", even_numbers(3, 2, 4, 6)); // returns 3
10 return O;

11}

13 int even_numbers(int n, ...)

1 {

15 int ¢ = 0;

16 va_list ap;

17 va_start(ap, n);

18 for (int i = 0; i < n; ++i) {

19 int v = va_arg(ap, int);

20 (v%2==0) 2c+=1: 0;

21 }

22 va_end(ap) ;

23 return c;

24 }

lec06/demo-va_args.c

Jan Faigl, 2025 B3B36PRG — Lecture 06: 1/O and Standard Library

41 / 69

Error Handling

Error Handling — errno

® Basic error codes are defined in <errno.h>.
m These codes are used in the standard library as indicators that are set in the global
variable errno in case of an error during the function call.
= If fopen() fails, it returns NULL, which does not provide the cause of the failure.
® The cause of failure can be stored in the errno variable.
m Text description of the numeric error codes are defined in <string.h>.

® String can be obtained by the function.
char* strerror(int errnum);

Jan Faigl, 2025 B3B36PRG — Lecture 06: 1/O and Standard Library 43 / 69

Error Handling

Example — errno in Fie Open fopen()

1 #include <stdio.h>
2 #include <errno.h>
3 #include <string.h>

5 int main(int argc, char *argv[]) {

6 FILE *f = fopen("soubor.txt", "r");

7 if (f == NULL) {

8 int r = errno;

9 printf("Open file failed errno value %d\n", errno);

10 printf ("String error ’%s’\n", strerror(r));

11 }

12 return O;

13} lec06/errno.c

® Program output if the file does not exist.

Open file failed errno value 2
String error ’No such file or directory’

® Program output for an attempt to open a file without having sufficient access rights.

Open file failed errno value 13
String error ’Permission denied’

Jan Faigl, 2025 B3B36PRG — Lecture 06: 1/O and Standard Library

44 / 69

Error Handling

Testing Macro assert ()

N

© 0 N o U »

Jan Faigl, 2025

We can add tests for a particular value of the variables for debugging.

Test and indications of possible errors, e.g., due to a wrong function argument.
Such test can be made by the macro assert (expr) from <assert.h>.
If expr is not logical 1 (true), the program is terminated, and the particular line and
the name of the source file are printed.
We can disable the macro by definition of the macro NDEBUG.
® |t is not for run-time errors detection.

man assert.

#include <stdio.h>
#include <assert.h>

int main(int argc, char *argv([])

{
assert(argc > 1); // Wrong assert usage, it depends on runtime
printf ("program argc: %d\n", argc);
return 0;

}

lecO6/assert.c

B3B36PRG — Lecture 06: 1/O and Standard Library 45 / 69

Error Handling

Example of assert() Usage

Jan Faigl,

Compile the program with the assert () macro and execute the program with/without program

argument. lecO6/assert.c

clang assert.c -o assert

./assert

Assertion failed: (argc > 1), function main, file assert.c, line 5.
zsh: abort ./assert

./assert 2
start argc: 2

Compile the program without the macro and execute it with/without the program argument.

clang -DNDEBUG assert.c -o assert lecO6/assert.c

./assert

program start argc: 1
./assert 2

program start argc: 2

The assert () macro is not for run-time errors detection!

2025 B3B36PRG — Lecture 06: 1/O and Standard Library 46 / 69

Error Handling

Long Jumps

Jan Faigl, 2025

<setjmp.h> defines function setjmp() and longjmp() for jumps across functions.
Note that the goto statement can be used only within a function.

setjmp() stores the actual state of the registers, and if the function returns a non-zero

value, the function longjmp () has been called.

During longjmp () call, the values of the registers are restored, and the program con-

tinues the execution from the location of the setjmp () call.

We can use set jmp () and longjmp () to implement handling exceptional states similarly as try-catch.

1 #include <setjmp.h> 12 int compute(int x, int y) {
2 jmp_buf jb; 13 if (y == 0) {

3 int compute(int x, int y); 14 longjmp(jb, 1);

4 void error_handler(void); 15 } else {

5 if (setjmp(jb) == 0) { 16 x=(x+yx*2);

6 r = compute(x, y); 17 return (x / y);

7 return 0; 18 ¥

8 1} else { 19 }

9 error_handler(); 20 void error_handler(void) {
10 return -1; 21 printf ("Error\n");

1}

22
B3B36PRG — Lecture 06: 1/O and Standard Library 47 / 69

Error Handling

Communication with the Environment — <stdlib.h>

N

© o N o o »

Jan Faigl,

The header file <std1ib.h> defines standard program return values EXIT_FAILURE and
EXIT_SUCCESS.

A value of the environment variable can be retrieved by the getenv () function.
#include <stdio.h>

#include <stdlib.h>

int main(void)

{
printf ("USER: %s\n", getenv("USER"));
printf ("HOME: Y%s\n", getenv("HOME"));

return EXIT_SUCCESS; 16c06/4 .
ec emo-getenv.c

void exit(int status); —the program is terminated as it will be by calling return (status)
in the main() function.
We can register a function that will be called at the program exit.

int atexit(void (xfunc) (void));

The program can be aborted by calling void abort (void).
The registered functions by the atexzit () are not called.

2025 B3B36PRG — Lecture 06: 1/O and Standard Library 48 / 69

Error Handling

Example — atexit (), abort (), and exit ()

#include <stdio.h>

2 #include <stdlib.h>
3 #include <string.h>

5 void cleanup(void);

20 void last_word(void)

30 {

31 printf("Bye, bye!\n");
2}

6 void last_word(void);

8 int main(void)

clang demo-atexit.c -o atexit

Part Il

o {
10 atexit(cleanup); // register function % ./atexit; echo $7
11 atexit(last_word); // register function Normal exit
12 const char *howToExit = getenv("HOW_TO_EXIT"); Bye, bye! | |
i 57 ChowToBeit 88 strcop houToBxit, "EXTT™) - 0) { B e oamup at the progran exit! Preprocessor and Building Programs
14 printf("Force exit\n"); 0
15 exit (EXIT _FAILURE);
16 } else if (howToExit &% strcmp(howToExit, "ABORT") == 0) % HOW_TO_EXIT=EXIT ./atexit; echo $7?
{ Force exit
17 printf ("Force abort\n"); Bye, bye!
18 abort() ; ;) it!
1 3 Perform cleanup at the program exit!
20 printf("Normal exit\n"); 1
21 return EXIT_SUCCESS; % HOW_TO_EXIT=ABORT ./atexit; echo $7
2} Force abort
24 Z"id cleanup(void) zsh: abort HOW_TO_EXIT=ABORT ./atexit
25
26 printf ("Perform cleanup at the program exit!\n"); 134
27 lecO6/demo-atexit.c
Jan Faigl, 2025 B3B36PRG — Lecture 06: 1/O and Standard Library 49 / 69 | Jan Faigl, 2025 B3B36PRG — Lecture 06: 1/O and Standard Library 50 / 69
Organization of Source Files Organization of Source Files
Variables — Scope and Visibility Organizing C Program
m Local variables
m A variable declared in the body of a function is the local variable.
m Usi i ic local variables.
Using the keyword static we can declared static local variables ® Particular source files can be organized in many ways.
® Local variables are visible (and accessible) only within the function.)])
. . m A possible ordering of particular parts can be as follows:
m External variables (global variables) i .
.) . 1. #include directives;
® Variables declared outside the body of any function. 5 #define directives:
m They have static storage duration; the value is stored as the program is running. T
) e 3. Type definitions;
Like a local static variable. . . .
. : 4. Declarations of external variables;
m External variable has file scope, i.e., it is visible from its point of the declaration to the . . .
P 5. Prototypes for functions other than main() (if any);
end of the enclosing file. o) L
.) . 6. Definition of the main() function (if so);
® We can refer to the external variable from other files by using the extern keyword. L .
. . .) 7. Definition of other functions.
= |n one file, we define the variable, e.g., as int var;.
= |n other files, we declare the external variable as extern int var;.
= We can restrict the visibility of the global variable to be within the single file only by
the static keyword.
Jan Faigl, 2025 B3B36PRG — Lecture 06: 1/O and Standard Library 52 / 69 | Jan Faigl, 2025 B3B36PRG — Lecture 06: 1/O and Standard Library 53 / 69

Organization of Source Files Organization of Source Files

Header Files Sharing Macros and Types, Function Prototypes and External Variables
m Header files provide a way how to share defined macros and variables and use functions ® et have three files graph.h, graph.c, and main.c for which we like to share macros
defined in other modules (source files) and libraries. and types, and also functions and external variables defined in graph.c in main.c.
® #include directive has two forms.

graph.h: graph.c:

® #include <filename> — to include header files that are searched from system #include "graph.h"

#define GRAPH_SIZE 1000

dl.rectlves. . . _ typedef struct { graph_s graph_global = { NULL, GRAPH_SIZE };
® #include "filename" — to include header files that are searched from the current graph_s* load_graph(const char *filename)
directory. } edget_s; {
. . typedef struct {
® The places to be searched for the header files can be altered, e.g., using the command edges.s *edges; ¥
line options such as -Ipath. int size; main.c:
} graph_s; #include "graph.h"
// make the graph_global extern int main(int argc, char *argv[])
. . . . t h h_global;
® |t is not recommended to use brackets < and > for including own header files. CXLETn graph-s graph-gioba t A
// declare function prototype // we can use function from graph.c
= |t is also not recommended to use absolute paths. graph_s* load_graph(const char *filename); graph_s *graph = load_graph(...
// we can also use the global variable
Neither windows nor unix like absolute paths. // declared as extern in the graph.h
If you ne'ed .them, itis an indication you most.likely do not understand the process if (global_graph.size !'= GRAPH_SIZE) { ...
of compilation and building the program/project.
Jan Faigl, 2025 B3B36PRG — Lecture 06: 1/O and Standard Library 54 / 69 | Jan Faigl, 2025 B3B36PRG — Lecture 06: 1/O and Standard Library 55 / 69
Organization of Source Files Preprocessor
Protecting Header Files Macros
m Header files can be included from other header files.
m Due to the sequence of header files included, the same type can be defined multiple = Macro definitions are by the #define directive.
times. ® The macros can be parametrized to define function-like macros.
® We can protect header files from multiple includes by using the preprocessor macros. ® Already defined macros can be undefined by the #undef command.
#ifndef GRAPH_H m File inclusion is by the #include directive.
#define GRAPH_H o o
= Conditional compilation — #if, #ifdef, #ifndef, #elif, #else, #endif.
// header file body here _ , m Miscellaneous directives.
// it is processed only if GRAPH_H is not defined . . .
// therefore, after the first include, m #error — produces error message, which can be combined with #if, e.g., to test
// the macro GRAPH_H is defined sufficient size of MAX_INT.
// and the body is not processed during therepeated includes ® #line — alter the way how lines are numbered (__LINE__ and __FILE _ macros).
® #pragma — provides a way to request a special behavior from the compiler.
#endif
C99 introduces _Pragma operator used for “destringing” the string literals and pass them
® Or using #pragma once, which is, however, non-standard preprocessor directive. to #pragma operator.

#pragma once

Jan Faigl, dd2sheader file body here B3B36PRG — Lecture 06: 1/O and Standard Library 56 / 69 | Jan Faigl, 2025 B3B36PRG — Lecture 06: 1/O and Standard Library 58 / 69

Preprocessor

Predefined Macros

= Several predefined macros provide information about the compilation and compiler as
integer constant or string literal.

® __LINE__ — Line number of the file being compiled (processed).

®m __FILE__ — Name of the file being compiled.

® __DATE__ — Date of the compilation (in the form "Mmm dd yyyy").
® __TIME__ — Time of the compilation (in the form "hh:mm:ss").

® __STDC__ — 1 if the compiler conforms to the C standard (C89 or C99).

m (C99 introduces further macros, such as the following versions.
®m __STDC_VERSION__ — Version of C standard supported.

= For C89 it is 199409L.
= For C99 it is 199901L.

® |t also introduces identifier __func__ that provides the name of the actual function.
It is actually not a macro but behaves similarly.
Jan Faigl, 2025

B3B36PRG — Lecture 06: 1/O and Standard Library 59 / 69

Preprocessor

Defining Macros Outside a Program

We can control the compilation using the preprocessor macros.

The macros can be defined outside a program source code during the compilation and
passed to the compiler as particular arguments.

For gcc and clang it is the -D argument.

® gcc -DDEBUG=1 main.c — define macro DEBUG and set it to 1.
® gcc -DNDEBUG main.c — define NDEBUG to disable assert () macro.

See man assert.

The macros can also be undefined, e.g., by the -U argument.

Having the option to define the macros by the compiler options, we can control the
compilation process according to the particular environment and desired target platform.

Jan Faigl, 2025 B3B36PRG — Lecture 06: 1/O and Standard Library 60 / 69

Building Programs

Compiling and Linking
® Programs composed of several modules (source files) can be built by an individual
compilation of particular files, e.g., using the -c option of the compiler.
® Then, all object files can be linked to a single binary executable file.
m Using the -1/ib, we can add a particular /ib library.

m E.g., let have source files moduleA.c, moduleB.c, and main.c that also depends on
the math library (-1m). The program can be built as follows.

clang -c moduleA.c -o moduleA.o
clang -c moduleB.c -o moduleB.o
clang -c main.c -o main.o

clang main.o moduleB.o moduleA.o -1m -o main
Be aware that the order of the files is important for resolving dependencies! It is incremental,
and only the function(s) needed in the first modules are linked from the other modules.
For example functions called in main.o with implementation in mainA.o and mainB.o; and
functions called in mainB.o that have implementation in mainA.o.

Jan Faigl, 2025

B3B36PRG — Lecture 06: 1/O and Standard Library 62 / 69

Building Programs

Makefile
= Some building systems may be suitable for projects with several files.
® One of the most common tools is the GNU make or the make.
Notice, many building systems may provide different features, e.g., designed for the fast evaluation of
the dependencies like ninja.
® For make, the building rules are written in the Makefile files.
http://www.gnu.org/software/make/make.html
® The rules define targets, dependencies, and actions to build the targets based on the
dependencies. .
target : dependencies colon
action tabulator
® Target (dependencies) can be a symbolic name or file name(s).
main.o : main.c
clang -c main.c -0 main.o
® The building receipt can be a simple usage of file names and compiler options.

The main advantage of Makefiles is flexibility arising from unified variables, internal make variables,
and templates, as most of the sources can be compiled similarly.

Jan Faigl, 2025 B3B36PRG — Lecture 06: 1/O and Standard Library 63 / 69

Building Programs

Example Makefile

m Pattern rule for compiling source files .c to object files .o.
= Wildcards are used to compile all source files in the directory.

1
2

6

10

14

18
19

23
24

28
29

Can be suitable for small project. In general, explicit listings of the files are more appropriate.

CC:=ccache $(CC)
CFLAGS+=-02

0BJS=$ (patsubst %.c,%.0,$(wildcard *.c))
TARGET=program
bin: $(TARGET)

$(0BJS): %.o: %.c
$(CC) -c $< $(CFLAGS) $(CPPFLAGS) -o $@

$(TARGET) : $(0BJS)
$(cC) $(0BJS) $(LDFLAGS) -o $@

clean: h
$(RM) $(0BJS) $(TARGET) ccache
CC=clang make vs CC=gcc make

® The order of the files is important during the linking!

Jan Faigl, 2025

B3B36PRG — Lecture 06: 1/O and Standard Library 64 / 69

Part IV
Part 3 — Assignment HW 04 and HW 06

Jan Faigl, 2025 B3B36PRG — Lecture 06: 1/O and Standard Library 65 / 69

HW 04 — Assignment

Topic: Text processing — Grep

Mandatory: 2 points; Optional: 3 points; Bonus : none

® Motivation: Memory allocation and string processing.

® Goal: Familiar yourself with string processing.

m Assignment: https://cw.fel.cvut.cz/wiki/courses/b3b36prg/hw/hw04
= Read input file and search for a pattern.
® Optional assignment — redirect of stdint; regular expressions; color output.

m Deadline: 12.04.2025, 23:59 AoE.

Jan Faigl, 2025

B3B36PRG — Lecture 06: 1/O and Standard Library 66 / 69

HW 06 — Assignment

Topic: Circular buffer

Mandatory: 2 points; Optional: 2 points; Bonus : none

Motivation: Implement library according to defined header file with function
prototypes. Compile and link shared library.
Goal: Familiar yourself with circular buffer, building and usage of shared library.

Assignment: https://cw.fel.cvut.cz/wiki/courses/b3b36prg/hw/hwo6

® Fixed size circular buffer.
m Optional assignment — dynamically resized circular buffer.

Deadline: 26.04.2025, 23:59 AoE.

Jan Faigl, 2025 B3B36PRG — Lecture 06: 1/O and Standard Library 67 / 69

Jan Faigl, 2025

Summary of the Lecture

B3B36PRG — Lecture 06: 1/O and Standard Library

68 / 69

Topics Discussed

Topics Discussed

= |/O operations
= File operations
Character oriented input/output
Text files
Block oriented input/output
Non-blocking input/output
Terminal input/output
m Selected functions of standard library
® Qverview of functions in standard C and POSIX libraries
= Variable number of arguments
= Error handling
= Building Programs
= Variables and their scope and visibility
m QOrganizing source codes and using header files
= Preprocessor macros

= Makefiles
m Next: Parallel programming
Jan Faigl, 2025 B3B36PRG — Lecture 06: 1/O and Standard Library

69 / 69

