Writing Program in C
Expressions and Control Structures
(Statements and Loops)

Jan Faigl

Department of Computer Science
Faculty of Electrical Engineering
Czech Technical University in Prague

Lecture 02
B3B36PRG — Programming in C

Overview of the Lecture

= Part 1 — Expressions
= Expressions — Literals and Variables
= Expressions — Operators

= Associativity and Precedence

n Assignment K. N. King: chapter 4 and 20

® Part 2 — Control Structures: Selection Statements and Loops
= Statements and Coding Styles
= Selection Statements
= Loops

= Conditional Expression K. N. King: chapters 5 and 6

= Part 3 — Assignment HW 01

Part |

Part 1 — Expressions

Jan Faigl, 2024 B3B36PRG — Lecture 02: Writing your program in C 1 /64 |Jan Faigl, 2024 B3B36PRG — Lecture 02: Writing your program in C 2 /64 | Jan Faigl, 2024 B3B36PRG — Lecture 02: Writing your program in C 3 /64
Expressions — Literals and Variables Expressions — Literals and Variables Expressions — Literals and Variables
Expressions Literals — Integer and Rational Literals — Characters and Text Strings
ExpreS§|on- prescribes calculation value of some given input. | £ the i ke - u Character literal is single (or multiple) character ~ ® Text string is a sequence of characters enclosed
= Expression is composed of operands, operators, and brackets. = Integer values are stored as one of the integer type (keywords): int, long, short, char and in apostrophe in quotation marks.
= Expression can be formed of their signed and unsigned variants. Further integer data types are possible. 00 B’ or \a? WA string with the ond of lina \u'.
= Rational numbers (data es float and double) can be written with floating point — 13.1; . . . — .
= |iterals = unary and binary operators, or with mantissa aE\d ex tZEent 31.4e-3 or 31)4E 3 gSp' tific notati ® Value of the single character literal is the ASCII u String literals separated by white spaces
, \ —31.4e- L4E-3. cientific notation e X
. X . P . . code of the character. are joined to single one.
= variables, = function call, u Floating point numeric types depends on the implementation (usually as IEEE-754-1985). 207~ 48, 'A’~ 65 "A string literal" "with the end of the line \n"
Integer literals (values) Rational literals Value of character out of ASCII (greater than is concatenate into
= constants, = brackets. . - 127) depends on the compiler. R . . . B
. P . Decimal 123 450932 = double — by default, if not explicitly) A string literal with end of the line \n
= The order of operation evaluation is prescribed by the operator precedence and asso- Hexadecimal 0x12 OXFAFF (starts with 0x or 0X) specified to be another type; = Type of the character constant (literal).
ciativity. Octal 0123 0567 (starts with 0) = float - suffix F or f; m Character constant is the int type. = String literal is stored in the array of the type
unsigned 123450 (suffix U or u) float £ = 10.£; char ¢ = '8°; // Letter of the digit 8 char terminated by the null character *\0’.
10 + x * y // order of the evaluation 10 + (x * y) long 123451 (suffix L or 1) = long double — suffix L or 1. int v = ¢ - ’0’; // Conversion to int value 8 A string literal "word" is stored as
i unsigned long 12345ul suffix UL or ul long double 1d = 10.11;
0 +x+y // order of the evaluation (10 + x) +y . (e > =) char a = ’0°; // Test a letter is upper case Wl |0 | x| ’d’ | °\0?
. L long long 12345LL (suffix LL or 11)
* has higher priority than + _Bool upper = (a >= A’ &k a <= ’Z’); The size of th be +1 item I
+ is associative from the left-to-right Without suffix, the literal is of the type typu int. sme:l‘zoel of the array must be +1 item longer to
. . . . i= . i igi re -
= The evaluation order can be prescribed by fully parenthesized expression. char i = °57; // Test a letter is a digit
. _Bool digit = (i >= 70’ & i <= ’9’);
Jan Faigl, 2024 B3B36PRG — Lecture 02 »S//??Ré/ycfﬂlﬁ%{gém iaqt sure, use brackets. g /64 | Jan Faigl, 2024 B3B36PRG — Lecture 02: Writing your program in C 6 /64 |Jan Faigl, 2024 B3B36PRG — Lecture 02: Writing your program in C 7/ 64
Expressions — Literals and Variables Expressions — Literals and Variables Expressions — Operators
Literals — Enumeration Variable Definition Operators
= By default, values of the enumerated type starts from 0 and each other item increases the value . e ® Operators are selected characters (or sequences of characters) dedicated for writting
about one, values can be explicitly prescribed. ® The variable definition has a general form . R expressions
declaration-specifiers variable-identifier;) Co L A
1 enum { . enum { Declarati . followi = Five types of binary operators can be distinguished.
= Declaration specifiers are following. X . " - . A ..
2 WHITE, ERROR_OK = O, // EXIT SUCCESS P g = Arithmetic operators — additive (addition/subtraction) and multiplicative (multiplica-
BLACK 2 - ’ - = Storage classes: at most one of the auto, static, extern, register; ion /division):
3 s 5 ERROR_INPUT = 100, . s oti et tion/ .IVISIOH),
4 RED, . FRROR_RANGE = 101 ype quantifiers: const, volatile, restrict;) = Relational operators — comparison of values (less than, greater than, ...);
5 GREEN, s 3 = .)) None or more type. quantifiers ar.e allowed. = Logical operators — logical AND and OR;
6 }; ’ = Type fSI_)elelel’SI void, cha.r, short, mF', long, float, dou.ble, signed, un31gned. = Bitwise operators — bitwise AND, OR, XOR, bitwise shift (left, right);
The enumeration values are usually written in uppercase. In addition, struct and union type specifiers can be used. Finally, own types defined by » Assignment operator = — a variables (l-value) is on its left side.
i . typedef can be used as well. How many keywords are covered? s U
= Type — enumerated constant is the int type. nary operators
® Value of the enumerated literal can be used in loops. float f = 10.1f; // float variable initialized by float literal = Indicating positive/negative value: + and —.
{ WHITE = 0, BLACK, RED, GREEN, BLUE, NUM_COLORS }; const double pi = 3.14; //const double variable initialized to 3.14 Operator — modifies the sign of the expression.
enum - B : > T ; unsigned char v = 255; //one byte integer variable with the full range 0..255 = Modifying a variable : ++ and ——.
gn v =3 g
N _ . . const unsigned long 1 = 1001; //constant long integer variable initialized by long literal = Logical negation: !.
for (int color = WHITE; color < NUM_COLORS; ++color) { & 8 g 3 Yy € g g
int i; // i variable of the common C integer type int that is not initialized = Bitwise negation: ~.
' m Ternary operator — conditional expression 7 :.
Jan Faigl, 2024 B3B36PRG — Lecture 02: Writing your program in C 8 / 64 | Jan Faigl, 2024 B3B36PRG — Lecture 02: Writing your program in C 9 /64 | Jan Faigl, 2024 B3B36PRG — Lecture 02: Writing your program in C 11 / 64

Expressions — Operators

Variables, Assignment Operator, and Assignment Statement
= Variables are defined by the type and name.
= Name of the variable is in lowercase.

= Multi-word names can be written with underscore _.
® Each variable is defined at a new line.

Or we can use CamelCase.
That is our coding style choice.
int n;
int number_of_items;
int numberOfItems;
= Assignment is setting the value to the variable, i.e., the value is stored at the memory
location referenced by the variable name.

® Assignment operator)
(l-value) = (expression)

Expression is literal, variable, function calling, ...
® The side is the so-called I-value — location-value, left-value
It must represent a memory location where the value can be stored.
= Assignment is an expression and we can use it everywhere it is allowed to use the
expression of the particular type.
= Assignment statement is the assignment operator = and ;.

Expressions — Operators

Basic Arithmetic Expressions

® For an operator of the numeric types int and double, the following operators are
defined.
Also for char, short, and £loat numeric types.
= Unary operator for changing the sign —;
= Binary addition + and subtraction —;
® Binary multiplication * and division /.
® For integer operator, there is also
= Binary module (integer reminder) %.
® If both operands are of the same type, the results of the arithmetic operation is the
same type.
® In a case of combined data types int and double, the data type int is converted to
double and the results is of the double type.

Implicit type conversion.

Expressions — Operators

Example — Arithmetic Operators 1/2

1

2
3
a
5

int a = 10;

int b = 3;

int ¢ = 4;

int d = 5;

int result;

result = a - b; // subtraction
printf("a - b = %i\n", result);
result = a * b; // multiplication

printf("a * b = %i\n", result);

result =
printf("a / b =

; // integer divison
%i\n", result);

result =
printf("a + b * ¢ =

a + b * c; // priority of the
%i\n", result);

operators

Jan Faigl, 2024 B3B36PRG — Lecture 02: Writing your program in C 12 / 64 | Jan Faigl, 2024 B3B36PRG — Lecture 02: Writing your program in C 13 / 64 | Jan Faigl, 2024 B3B36PRG — Lecture 02: Writing your program in C 14 / 64
Expressions — Operators Expressions — Operators Expressions — Operators
Example — Arithmetic Operators 2/2 Arithmetic Operators Integer Division
1 #include <stdio.h>
. L] i i i i .
5 int main(void) Operands of arithmetic operators can be of any arithmetic type
s 1 The only exception is the operator for the integer reminder % defined for the int type.
s int x1 = 1; * Multiplication X *y Multiplication of x and y u The results of the division of the operands of the int type is the integer part of the
° ‘fii“b:‘:e gl =22£Zg;; / Division x/y Division of x and y division. Er 732 and 73 i 2
7 oat x2 = . H . . -2 — —
. double v2 = 2: % Reminder xhy Reminder from the x / y))) & 7/3 52 and ~7/3 is
J ’ + Addition X +y Sum of x and y = For the integer reminder, it holds x%y = x — (x/y) * y.
10 printf("P1 = (4i, %H)\n", x1, y1); - Subtraction X -y Subtraction x and y Eg,7%3is1 7% 3is -1 7%-3is1 7 %-3is-1
1 printf("P1 = (%i, %i)\n", x1, (int)yl); + Unary plus x Value of x ® C99: The result of the integer division of negative values is the value closer to 0.
12 printf("P1 = (%, %f)\n", (double)x1, (double)yl); _ Unary minus -x Value of —x = |t holds that (a/b)*b + a%b = a.
intf("P1 = (%.3f, %.3f)\n", (double)xl, (double)yl); . .
® pran ! e ublelxt, fdoublelyL)s 4+ Increment ++x/x++ Incrementation before/after the evaluation For older versions of C, the results depends on the compiler.
15 printf ("P2 = (%f, %f)\n", x2, y2); of the expression x
- Decrement --x/x-- Decrementation before/after the evalua-
17 double dx = (x1 - x2); // implicit data conversion to float tion of the expression x
18 double dy = (y1 - y2); // and finally to double
Jan Faigl, 2024 . , B3B36PRG — Lectuge 02: Writing your program in C 15 / 64 | Jan Faigl, 2024 B3B36PRG — Lecture 02: Writing your program in C 16 / 64 | Jan Faigl, 2024 B3B36PRG — Lecture 02: Writing your program in C 17 / 64

Expressions — Operators

Implementation-Defined Behaviour

= The C standard deliberately leaves parts of the language unspecified.

= Thus, some parts depend on the implementation, such as compiler, environment, or
computer architecture.

E.g., Reminder behavior for negative values and version of the C prior C99.

= The reason for that is the focus of C on efficiency, i.e., match the hardware behavior.

= Having it in mind, it is best to avoid writing programs that depend on implementation-
defined behavior.
K.N.King: Page 55

That is one example of difference in writting programs that seem to be working and functional

Expressions — Operators
Unary Arithmetic Operators

= Unary operator (++ and ——) change the value of its operand.
The operand must be the 1-value, i.e., an expression that has memory space, where the
value of the expression is stored, e.g., a variable.
® |t can be used as prefix operator, e.g., ++x and ——x;
® or as postfix operator, e.g., x++ and x——.
® |n each case, the final value of the expression is different!

int i; int a; value of i value of a
i=1a=09; 1 9

a=it++; 2 1

a = ++i; 3 3

a = ++(i++); Not allowed! Value of i++ is not the l-value

For the unary operator i++, it is necessary to store the previous value of i and then the

R

Expressions — Operators

elational Operators

= Operands of relational operators can be of arithmetic type, pointers (of the same type)
or one operand can be NULL or pointer of the void type.

< Less than x <y 1 if x is less than y; otherwise 0

<= Less than or equal x <=y 1ifxis less then or equal to y; otherwise 0

> Greater than x >y 1lifxis greater than y; otherwise 0

>=Greater than or equal x >= y 1 if x is greater than or equal to y; other-
wise 0

== Equal x ==y 1if xis equal to y; otherwise 0

I= Not equal x !'=y 1if xis not equal to y; otherwise 0

and a program that is correct. variable i is incremented. The expression ++i only increments the value of i. Therefore,
++i can be more efficient.
Jan Faigl, 2024 B3B36PRG — Lecture 02: Writing your program in C 18 / 64 | Jan Faigl, 2024 B3B36PRG — Lecture 02: Writing your program in C 19 / 64 | Jan Faigl, 2024 B3B36PRG — Lecture 02: Writing your program in C 20 / 64

Expressions — Operators
Logical operators

= Operands can be of arithmetic type or pointers.

= Resulting value 1 means true, O means false.

= In the expressions && (Logical AND) and || (Logical OR), the left operand is evaluated
first.

u |f the results is defined by the left operand, the right operand is not evaluated.

Short-circuiting behavior — it may speed evaluation of complex expressions in runtime.

&& Logical AND x & y 1if x and y is not 0; otherwise 0.

I Logical OR x || y 1if at least one of x, y is not 0;
otherwise 0.
! Logical NOT 'x 1 if x is 0; otherwise 0.

= Operands && a || have the short-circuiting behavior, i.e., the second operand is
not evaluated if the result can be determined from the value of the first operand.

Expressions — Operators

Example —
1 #include <s
2 #include <=

Short-Circuiting Behaviour 1/2

dlib.h>

int fce_a(int n);
int fce_b(int n);

; int main(int argc, char *argv(l)

o if (arge > 1 & fce_a(atoi(argvl1])) && fce_b(atoi(argv[1])))

10 {

1 printf("Both functions fce_a and fce_b pass the test\n");
12 } else {

13 printf("One of the functions does not pass the test\n");
1 }

15 return 0;

1 int fce_a(int n)

w {

20 printf("Calling fce_a with the argument ’%d’\n", n);
21 return n % 2 == 0;

2 }

20 int fce_b(int n)

Expressions — Operators

Example — Short-Circuiting Behaviour 2/2 — Tasks

In the example 1ec02/demo-short_circuiting.c
® Test how the logical expressions (a function call) are evaluated.
u |dentify what functions fce_a() and fce_b() are implementing.
= Rename the functions appropriately.
u |dentify the function headers and why they have to be stated above the main function.

® Try to split implementation of the functions to a separate module.

Jan Faigl, 2024 B3B36PRG — Lecture 02: Writing your program in C 21 /64 | Jan Raigh 2024 B3B36PRG — Lecture 02: Writing your program in C 22 / 64 | Jan Faigl, 2024 B3B36PRG — Lecture 02: Writing your program in C 23 / 64
Expressions — Operators Expressions — Operators Expressions — Operators
Bitwise Operators Bitwise Shift Operators Example — Bitwise Expressions
#include <inttypes.h>
= Bitwise operators treat operands as a series of bits. L
Low—Lever[,’; ; i }?\IFK e ing I is low level when its programs require at- L] lBlf’iwnse _shhlit operators shift the binary representation by a given number of bits to the wint8_t a = 4;
tenti tl i t. K.N.King: ter 20. . .
ention of the irrelevan ing: apter ert or rig :)))) uint8_t b = 5;
m Left shift — Each bit shifted off a zero bit enters at the right.
& Bitwise AND x &y lifxandyisequal to1 (bit-by- = Right shift — Each bit shift off.)
bit) = A zero bit enters at the left — for positive values or unsigned types. a dec: 4 b:an. 0100
| Bitwise inclusive OR x|y 1if x ory is equal to 1 (bit-by-bit) = For negative values, the entered bit can be either 0 (logical shift) or 1 (arithmetic shift b dec: 5 bin: 0101
- Bitwise exclusive or (XOR) x "~y lifonlyxoronlyyis1 (bitby- right). Depends on the compiler. a & b dec: 4 bin: 0100
o | o b"_)f . ® Bitwise shift operators have lower precedence than the arithmetic operators! a | bdec: 5 bin: 0101
~ Bitwise complement (NOT) ~% 1 if x is O (bit-by-bit) B << 24 lmeansi << (241) a ~ b dec: 1 bin: 0001
<< Bitwise left shift x <<y Shift of x by y bits to the left Do not be surprised — parenthesized the expression!
>> Bitwise right shift x >> y Shift of x by y bits to the right a >> 1 dec: 2 bin: 0010
a << 1 dec: 8 bin: 1000
1lec02/bits.c
Jan Faigl, 2024 B3B36PRG — Lecture 02: Writing your program in C 24 /64 | Jan Faigl, 2024 B3B36PRG — Lecture 02: Writing your program in C 25 / 64 | Jan Faigl, 2024 B3B36PRG — Lecture 02: Writing your program in C 26 / 64
Expressions — Operators Expressions — Operators Expressions — Operators
Operators for Accessing Memory Other Operators Cast Operator
. Here, for completeness, detail i the further lectures. Operator Name Example Result
= In C, we can directly access the memory address of the variable. We need in scanf)/ = Changing the variable type in runtime is called type cast
= The access is realized through a pointer. It is an integer value, typically long 0 Function call £(x) Call the function £ with the argument x. 18Ing the vaniable typ P)
It allows great options and also understand data representation and memory access models. (type) Cast) (int)x Change the type of x to int. ® Explicit cast is written by the name of the type in O, e.g.,
Operator Name Example Result sizeof Size gfthe item sizeof(x) Size of % in bytes.) int i;
?7: Conditional x?7y:z Doyifx != 0;otherwise z. _ .
& Address &x Pointer to x s Comma X, y Evaluate x and then y, the result is the float f = (float)i;
* Indirection *p Variable (or function) addressed by the result of the last expression. . . . i . o
pointer p) . = Implicit cast is made automatically by the compiler during the program compilation.
.) o ® The operand of sizeof () can be a type name or expression. . .
1l Array subscript- x[i] *(x+1) — item of the array x at the ® |f the new type can represent the original value, the value is preserved by the cast.
ing position i. int a = 10:]) o
. . ’ ® QOperands of the char, unsigned char, short, unsigned short, and the bit field
Structure/union s.x Member x of the struct/union s. print£("%lu %lu\n", sizeof(a), sizeof(a + 1.0)); P & e g_ ; !
member Lec02/size0f ¢ types can be used everywhere where it is allowed to use int or unsigned int.
-> Structure/union p->x Member x of the struct/union ad- . E le of th " ' C expects at least values of the int type.
member dressed by the pointer p. xample of the comma opera or. X = Operands are automatically cast to the int or unsigned int.
It is not allowed an operand of the & operator is a bit field or variable of the register class, for (¢ =1, 1 =051 <3; ++, c+=2) {
because it has to be addressable memory space printf("i: %d c: %d\n", i, ¢);
Operator of the indirect address * allows to access to the memory using pointers.
Jan Faigl, 2024 B3B36PRG — Lecture 02: Writing your program in C 27 / 64 | Jan Faigl, 2024 B3B36PRG — Lecture 02: Writing your program in C 28 / 64 | Jan Faigl, 2024 B3B36PRG — Lecture 02: Writing your program in C 290 / 64

Associativity and Precedence

Operators Associativity and Precedence

= Binary operation op is associative on the set S if
(xopy)opz = xop(yopz), for each x,y,z € §.
For not associative operators, it is required to specify the order of evaluation.
m | eft-associative — operations are grouped from the left.
E.g., 10 — 5 — 3 is evaluated as (10 — 5) — 3.
= Right-associative — operations are grouped from the right.
Eg,3+5%is28 or3-52 is 75 vs (3-5)? is 225.

= The assignment is right-associative.
E.g., y=y+8.
First, the whole right side of the operator = is evaluated, and then, the results are assigned
to the variable on the left.
= The order of the operator evaluation can be defined by the fully parenthesized expression.

Assignment

Simple Assignment

® Set the value to the variable.
Store the value into the memory space referenced by the variable name.

m The form of the assignment operator is
(variable) = (expression)
Expression is literal, variable, function call, ...
= C is statically typed programming language.

= A value of an expression can be assigned only to a variable of the same type.
Otherwise the type cast is necessary.

® Example of the implicit type cast.

int i = 320.4; // implicit conversion from ’double’ to ’int’ changes value from
320.4 to 320 [-Wliteral-conversion]

char ¢ = i; // implicit truncation 320 -> 64
m C is type safe only within a limited context of the compilation, e.g., for
printf("%d\n", 10.1); a compiler reports an error.

® In general, C is not type safe. In runtime, it is possible to write out of the allocated memory space.

Assignment

Compound Assignment
® A short version of the assignment to compute a new value of the variable from itself:
(variable) = (variable) (operator) (expression)

® can be written as
(variable) (operator) = (expression)

Example
int i = 10; int i = 10;
double j = 12.6; double j = 12.6;
i=1+1; i+=1;
j=13/0.2; j/=0.2;

= Note that the assignment is an expression.
The assignment of the value to the variable is a side effect.

Jan Faigl, 2024 B3B36PRG — Lecture 02: Writing your program in C 31 /64 | Jan Faigl, 2024 B3B36PRG — Lecture 02: Writing your program in C 33 / 64 | Jan Faigl, 2024 B3B36PRG — Lecture 02: Writing your program in C 34 / 64
Assignment. Assignment.
Assignment Expression and Assignment Statement Undefined Behaviour
= The statement performs some action and it is terminated by ; m There are some statements that can cause undefined behavior according to the C
robot_heading = -10.23; standard. Part ||
robot_heading = fabs(robot_heading); mc=(b=a+2) - (b-1);
printf ("Robot heading: %f\n", robot_heading); B o=k it
u Expression has type and value. = The program may behaves differently according to the used compiler, but may also Part 2 — Control Structures: Selection Statements and
23 int type, value is 23 not Cf)mlplle or rTllay not run; or it may even crash and behave erratically or produce LOOpS
144+16/2 int type, value is 22 meaningless results.
y=8 int type, value is 8 = |t may also happened if variables are used without initialization.
= Assignment is an expression and its value is assigned to the left side.
= By adding the semicolon, the assignment expression becomes the assignment state- = Avoid statements that may produce undefined behavior!
ment. A further detailed example of undefined behavior and code optimization with its analysis
is in Lecture 09.
Jan Faigl, 2024 B3B36PRG — Lecture 02: Writing your program in C 35 /64 | Jan Faigl, 2024 B3B36PRG — Lecture 02: Writing your program in C 36 / 64 | Jan Faigl, 2024 B3B36PRG — Lecture 02: Writing your program in C 37 / 64
Statements and Coding Styles Statements and Coding Styles Statements and Coding Styles
Statement and Compound Statement (Block) Coding Style Coding Style — Code Clarity and Readability
; : . . . = There are many different coding styles.
= Statement is terminated by ; ® |t supports clarity and readability of the source code. . y cliteren g styles. . .
. .) . = Inspire yourself by existing recommendations and by reading representative source codes.
Statement consisting only of the semicolon is empty statement. https://www.gnu.org/prep/standards/html_node/Writing-C.html
= Block consists of sequences of declarations and statements. = Formatting of the code is the fundamental step.
. . . . e Setup automatic formatting in your text editor.
= ANSI C, C89, C90: Declarations must be placed prior other statements. m Appropriate identifiers. P g in ORI |
It is not necessary for €99 = Train yourself in coding style even at the cost of slower coding!
Start and end of the block is marked by the curly brackets { and }. » Readability and clarity is important, especially during debugging!
= A block can be inside other block. Notice, sometimes it can be better to start from scratch.
void function(void) void function(void) { /* function block start */ = Recommend coding style.
{ /* function block start */ { /* inner block */ id function(void)) . . "
{/* inner block */ for (int i = 0; i < 10; ++i) { ; ‘{’O}* fﬁ:;ig: ggéck start */ u Use English, especially for identifiers.
for (i = 05 i < 105 ++i) // for-loop block CoLom DRoeE. - . " P— "
or @ * * pnner formioop bhec 3 f°f/;?nt 12054 <105 1‘;"1) { = Use nouns for variables. Clean Code - Uncle Bob / Lesson 1 Google Coding Interview with a High School Student
. B 4 inner for-loop bloc . https://youtu.be/7EmboKQHS81M https://youtu.be/qz9tK1F431k
//inner for-loop block 3 5 if (1 ==5) { m Use verbs for function names. -
} 6 break; http://users.ece.cmu.edu/"eno/coding/CCodingStandard. html;
} ’ https://wew.doc. ic.ac.uk/lab/cplus/cstyle.htal;
7 http://en.wikipedia.org/wiki/Indent_style;
¥ Notice the coding styles. 2 N + Lecturer's preference: indent shift 3, space characters rather than tabular. e ing seyte ot
Jan Faigl, 2024 B3B36PRG — Lecture 02: Writing your program in C 39 / 64 | Jan Faigl, 2024 B3B36PRG — Lecture 02: Writing your program in C 40 / 64 | Jan Faigl, 2024 B3B36PRG — Lecture 02: Writing your program in C 41 / 64

Statements and Coding Styles

Compound Command and Nesting 1/2

Four nested levels. Extraction (new function definition).

1 |int get_sum_of_even_numbers(int from, int to) N
2
3 if (from < to) { 3 |int get_sum_of_even numbers(int from, int to)
4 int sum = 0; 4
5 for (int number = from; number <= to; ++number) {| g if (from < to) {
6 if (number % 2 == 0) { 6 int sum = 0;
7 sum += number; 7 for (int number = from; number <= to; ++number) {
8 ¥ 8 sum += filter_odd(number);
9 } // end for loop ° } // end for loop
10 return sum; 10 return sum;
1 } else { 1 } else {
12 return 0; 12 return 0;
13 13 X
14 |} 14 |}
We aim to have a more readable form. PR i Gy i)

1 [int got_sun_of even nunbers(int from, int to) -

2[4 L 5 P

3| it Ctrom > o) retuma 05 18 if (aumber % 2 == 0) {

“ int sum = 0; 19 return number;

5| for (in musber = from; mumber <= to; +rnusber) {

o sun += filter_odd(number) ; 20 3}

7|3 /7 ena tor 1oop 2 return 0;

o) e sums 2

= Using extraction and inversion techniques, we reduce the nesting depth.

Statements and Coding Styles

Compound Command and Nesting 2/2

Inversion (substitution of the input value conditions). Final cleanup.

int filter_odd(int number);

1 |int filter_odd(int number);

int get_sum_of_even_numbers(int from, int to)

3 |int get_sum_of_even_numbers(int from, int to)
a 4 |{
5 if (from > to) { 5 if (from > to) return 0;
6 return 0;
7 7 int sum = 0;
s int sum = 0; 8 for (int number = from; number <= to; ++number) {
° for (int number = from; number <= to; ++number) { o sun += filter_odd(number);
10 sum += filter_odd(number); 10 } // end for loop
u } // end for loop 1u return sum;
12 return sum; 12 |}
13 |}
14 |int filter_odd(int number)
15 | int filter_odd(int number) 15
16 16 return (number % 2 == 0) : number : 0;
17 if (number % 2 == 0) { 17
18 return number;
19 ¥
20 return 0;
21 |}

= Using extraction and inversion techniques, we reduce the nesting depth.
https://youtu.be/CFRhGnUXG-4

Statements and Coding Styles

Control Statements

m Selection Statement
= Selection Statement: if () or if ()
= Switch Statement: switch () case

= Control Loops

m for ()
® yhile ()
= do while ()

® continue
® break

® return
® goto

else

® Jump statements (unconditional program branching)

https://youtu.be/CFRhGnuXG-4
Jan Faigl, 2024 B3B36PRG — Lecture 02: Writing your program in 42 / 64 | Jan Faigl, 2024 B3B36PRG — Lecture 02: Writing your program in C 43 / 64 | Jan Faigl, 2024 B3B36PRG — Lecture 02: Writing your program in C 44 / 64
Selection Statements Selection Statements Selection Statements
Selection Statement — if The switch Statement The switch Statement — Example
m if (expression) statement;; else statement, u Allows to branch the program based on the value of the expression of the enumerate
® For expression != 0 the statement; is executed; otherwise statement,. (integer) type, e.g., int, char, short, enum. switch (v) { if (v == 'A°) {
M
= The else part is optional. The can be the < = The form is case ’A’: printf ("Upper ’A’\n");
= Selection statements can be nested and cascaded. switch (expression) { ! printf ("Upper ’A’\n"); } else if (v == ’a’) {
Why You Shouldn’t Nest Your Code — https: //youtu.be/CFRhGnuXG-4. case constant;: statements;; break; break; printf("Lower ’a’\n");
int max; int max; case constantp: statementsy; break; case ’a’: } else {
if (a > b) { if (a > b) { printf("Lower ’a’\n"); printf(
if (a> o) { case constant,: statements,; break; %9 break; "It is not A’ nor ’a’\n");
max = a; }else if (a <o) { default: statementsges; break; default:
} cee } printf (
¥ } else if (a == b) { a . A " ; e A\ -
where constants are of the same type as the expression and statements; is a list of It is mot ’A’ mor ’a’\n");
} else { statements. break;
® Switch statements can be nested. Y
} Semantics: First the expression value is calculated. Then, the statements under the same value are executed. lec02/switch.c
If none of the branch is selected, statementsger under default branch as performed (optional).
Jan Faigl, 2024 B3B36PRG — Lecture 02: Writing your program in C 46 / 64 | Jan Faigl, 2024 B3B36PRG — Lecture 02: Writing your program in C 47 / 64 | Jan Faigl, 2024 B3B36PRG — Lecture 02: Writing your program in C 48 / 64
Selection Statements Loops Loops
The Role of the break Statement Loops The for Loop
] The statement break terminates the branch. If not presented, the execution continues ® The for and while loop statements test the controlling expression = The basic form has four parts (three expressions and a single statement).
with the statement of the next case label. before the enter to the loop body. false for (expry; exprp; exprz) statement
Example = for — initialization, condition, change of the controlling variable f m All expr; are expressions and typically they are used for
: _ rue L :) : .
' mFtP;l(’t *t;’ . - léar;tn; % can bfeoj E’f‘nftt ‘ilf_th‘)e. 5jY2t35¥-++i) c 1. expr; — initialization of the controlling variable (side effect of the assignment
as =0; ;)
j s‘uc;seplf 2 expression);
4 printf("Branch 1\n"); = part + 2 s} 2. expr, — Test of the controlling expression;
5 break; Branch 2 = while — controlling variable out of the syntax 3. If expr, !'=0 the statement is executed; Otherwise the loop is terminated.
. int i = 0; . .
s case Q-tﬂ"B 2 Branch 3 . :’;1: PR 4. exprs — updated of the controlling variable (performed at the end of the loop
; printf ("Branch 2\n");
s case 3: = part < 3 3 = Any of the expressions expr; can be omitted.
0 printf ("Branch 3\n"); Branch 3 PE can
. s) ® break statement — force termination of the loop.
. e he do | h I fer the first | ’
. = The do loop tests the controlling expression after the first loo . .)
n “"‘S;ri'mf("Bramh Aany; - Ei;tn;i s performedp & &P P m continue — force end of the current iteration of the loop.
13 break; 1 dint i = -1; The expression exprs is evaluated and test of the loop is performed.
14 default: ® part < 5 2 do { C . . .
1 printf ("Default branch\n"); Default branch s .. = An infinity loop can be written by omitting the expressions.
16 break; 4 i+= 1 true for (55) {...}
. s } while (i < 5); H
Jan Faigl, 2024 B3B36PRG — Lecture 02: Writing yourl§§024Agme-switch_break.c 49 /64 | Jan Faigl, 2024 B3B36PRG — Lecture 02: Writing your program in C 51 /64 |Jan Faigl, 2024 B3B36PRG — Lecture 02: Writing your program in C 52 /64

Loops

The continue Statement

= |t transfers the control to the evaluation of the controlling expression.

Loops

The break Statement — Force Termination of the Loop

® The program continues with the next statement after the loop.
m Example in the while loop.

Loops

The goto Statement

® goto allows transfing the control to the defined label.
It can be used only within a function body.

= Syntax goto label;.

= The continue statement can be used inside the body of the loops. int i = 10;
m for () shize 8 ;O;){{ = The goto can jump only outside of the particular block, it jumps to a statement.
= while O for (int i = 0; i < 10; ++i) { printf("i reaches 5, leave the loop\n"); ® |t can be used only within a function block.
. 5 ni. o Ysom i) - . lec02/b: k.
® do...while () p;lr(ltf; ; Iflo) ,{1), break; ec02/break.c L int test = 3;
= Examples A RS ey //or ij or i -=1; ord=i-1; 2 for Gint = 03 & < 3; ++1) {
continue; printf("End of the while loop i: %d\n", i); s for (mt j =0; j <5 i) {
. . 4 if (j == test) {
int 1i;
. N 5 goto loop_out;
for (i = 0; i < 20; ++i) { printf("\n"); ® Example in the for loop. o 3
i i == for (int i =0; i < 10; ++i) { $ clang demo-break.c ; w L4 i Yd\nt. i, 1)
it @%2==0{ ¥ Lec02/demo-continue.c e : ‘/a.gut 7 fprintf (stdout, "Loop i: %d j: %d\n", i, §);
continue; if (%3 1=0) { i:0 °
b $ clang demo-continue.c continue; i1 i:24:3 9 } .
. . $./a.out i:4 i:5 i 10 return 0;
printf("%d\n", i); i:0 ;r)ntf(n\nu); 1415 116 1 loop_out:
i1 i:2 i:3 if (> 8) { 12 fprintf(stdout, "After loop\n"); // goto can jump to a label that
i:4 i:5 i:6 break; represents statement (there must be an address to be jump at).
lec02/continue.c i:7 1:8 i:9 3 lec02/demo-break.c 15 return -1;
) 1ec02/goto.c
Jan Faigl, 2024 B3B36PRG — Lecture 02: Writing your program in C 53 / 64 | Jan Faigl, 2024 B3B36PRG — Lecture 02: Writing your program in C 54 / 64 | Jan Faigl, 2024 B3B36PRG — Lecture 02: Writing your program in C 55 / 64
Loops Loops. Loops
Nested Loops Example — isPrimeNumber () 1/2 Example — isPrimeNumber () 2/2
) ;OrTI:;ani)riea:kosAtz;te(rr;eAnLtie)rT|nates the inner loop. . #include <stdbool.h> ® The value of (int)sqrt((double)n) is not changing in the loop.
2 for (int j = 0; j < 3; ++j) { ! 2 #include <math.h> 1 for (int i = 2; i <= (int)sqrt((double)n); ++i) {
3 printf("i-j: %i-%i\n", i, j); 2 2
4 if (3 = 1) { 3 4 _Bool isPrimeNumber(int n) }
5 break; a 5 { : . s e .
6 , . R _Bool ret = true; = \We can use the comma operator to initialize the maxBound variable.
; N . 7 for (int i = i <= (int)sqrt((double)n); ++i) { 1 for (int i = 2, maxBound = (int)sqrt((double)n);
= The outer loop can be terminated by the goto statement. 8 if m%i==0 { N i <= maxBound; ++i) {
for (int i = 0; i < 5; ++i) { 9 ret = false;
for (int j = 0; j < 3; ++i) { i-j: 0-0 10 break; :
printf("i-j: %i-%i\n", i, j); i-j: 0-1 n 3 = Or, we can declare maxBound as a constant variable.
if (j =2) { X
goto outer; i-j: 0-2 12 } 1 _Bool ret = true;
} 13 return ret; Lecoa/a) 2 const int maxBound = (int)sqrt((double)n);
ec02/demo-prime.c . . .
i)))) P 3 for (int i = 2; i <= maxBound ; ++i) {
¥ . ® Once the first factor is found, call break to terminate the loop. .
outer: .
; lec02/demo-goto.c It is not necessary to test other numbers. 5 } E.g., Compile and run demo-prime.c: clang demo-prime.c -lm; ./a.out 13.
Jan Faigl, 2024 B3B36PRG — Lecture 02: Writing your program in C 56 / 64 | Jan Faigl, 2024 B3B36PRG — Lecture 02: Writing your program in C 57 / 64 | Jan Faigl, 2024 B3B36PRG — Lecture 02: Writing your program in C 58 / 64
Conditional Expression
Conditional Expression — Example Greatest Common Divisor HW 01 — Assignment
1 int getGreatestCommonDivisor(int x, int y)
>
s oint g .
s if <y o Topic: ASCII art
s d=x; Mandatory: 2 points; Optional: none; Bonus : none
6 }elsed Part 11 N . -
; =y = Motivation: Have a fun with loops and user parametrization of the program.
s}
. hile (x%d 1= 0) 11 (%hd ! =0 < Part 3 — Assignment HW 01 ® Goal: Acquire experience using loops and inner loops.
10 N d=d-1; = Assignment https://cw.fel.cvut.cz/wiki/courses/b3b36prg/hw/hw01
:: return d; = Read parameters specifying a picture of small house using selected ASCII chars.
Y https://en.wikipedia.org/wiki/ASCII_art
= The same with the conditional expression expry ? expry : exprs can be as follows. = Assesment of the input values.
1 int getGreatestCommonDivisor(int x, int y)
2 { m Deadline: 16.03.2024, 23:59 AoE.
3 int d = Txys AoE — Anywhere on Earth.
4 uh11e((‘/.d'*O)I\(y'/.d') {
s —d-1;
6 3
7 return d; lec02/demo-ged. c
Jan Faigl, 2024 ° } B3B36PRG — Lecture 02: Writing your program in C 60 / 64 | Jan Faigl, 2024 B3B36PRG — Lecture 02: Writing your program in C 61 / 64 | Jan Faigl, 2024 B3B36PRG — Lecture 02: Writing your program in C 62 / 64

Summary of the Lecture

Topics Discussed

Topics Discussed

= Expressions

® Operators — Arithmetic, Relational, Logical, Bitwise, and others

= Operator Associativity and Precedence

= Assignment and Compound Assignment

= |mplementation-Defined Behaviour
= Undefined Behaviour

= Coding Styles
m Select Statements
= Loops

= Conditional Expression

m Next: Data types, memory storage classes, function call

Part V

Appendix

Jan Faigl, 2024 B3B36PRG — Lecture 02: Writing your program in C 63 / 64 | Jan Faigl, 2024 B3B36PRG — Lecture 02: Writing your program in C 64 / 64 | Jan Faigl, 2024 B3B36PRG — Lecture 02: Writing your program in C 65 / 64
Coding Example Coding Example Coding Example
Coding Example — Assignment Coding Example — Implementation Strategy 1/4 Coding Example — Implementation Strategy 2/4
a Impl t that prints the patt = Define return (error) values to make the code ~ #include <stdio.h> //for putchar() m Define return (error) values to make the code X
"r'l?qeme“ |2" program that prints the pattern = . . o o & & % % % * * * * * * % * * clean (0, 100, 101), e.g., using enum. #include <stdlib.h> //for atoi() clean (0, 100, 101), e.g., using enum. int main(int argc, char *argv([])
with seven lines. 2 kk ckk kk kk ckk kk kk kk kX kk kX kX . . . {
) , . .
® The default width n is 27 characters or it is 3 %% #%% sokk kkk okk kkk kkk dokk *kxk - Deﬁ;e valid range (11,67), e.g., using enum { m Define valid range (11,67), e.g., using int ret = ERROR_OK;
A i #define. - ; . - . .
read as the first program argument (if given). 4 etine Eggi_gﬁpmoi 100 #define. int n targc E1]1 ? atol(darfgv[;g) 4127, //
. - = B . conver: argv or use elau. value
Rk kkok kokok kokok rokok kol okl tokok bokok = Ensure accessing passed arguments to the pro- ERROR_RANGE = 101 ® Ensure accessing passed arguments to the pro- &

Jan Faigl, 2024

The width n needs to be odd number, or the :

program returns 100.

It holds 11 < n < 67, or the program returns
101.

On success, the program prints seven lines and
returns 0.

Avoid “magic numbers” in the program when-
ever possible.

B3B36PRG — Lecture 02: Writing your program in C

ok kk Rk Rk kok Rk Rk ok Rk Rk Rk Kk

* k% %k 3k %k %k k% k% %k %k %k % % % X X X X
Convert program argv[1] by atoi (), if given.
Decompose the program into printing 7x line.
Implement the program infrastructure first.

Then, focus on logic to particular lines con-
trolled by a suitably designed expressions.

67 / 64

Jan Faigl, 2024

gram only if they are passed to the program

Ensure the number of lines n is a valid value or
set the error program return value.

Peform any operation only if arguments (val-
ues) are valid.

Split printing 7 lines into two for loops, with
one print line call between the loops.

Implement a function to print the line pattern.

B3B36PRG — Lecture 02: Writing your program in C

#define MIN_VALUE 11
#define MAX_VALUE 67

#define LINES 3

// Print line of the with n using character
in c and space; with k continuous
characters c followed by space.

void print(char c, int n, int k);

68 / 64

Jan Faigl, 2024

gram only if they are passed to the program.

Ensure the number of lines n is a valid value or
set the error program return value.

Peform any operation only if arguments (val-
ues) are valid.

Split printing 7 lines into two for loops, with
one print line call between the loops.

Implement a function to print the line pattern.

B3B36PRG — Lecture 02: Writing your program in C

ret =n % 2 == 0 ? ERROR_INPUT :
ensure n is odd number
if (lret &&
(n < MIN_VALUE || n > MAX_VALUE)) {
ret = ERROR_RANGE; //ensure n is in the
closed interval [MIN_VALUE, MAX_VALUE]
}

ret; //

return ret;

69 / 64

Coding Example

Coding Example — Implementation Strategy 3/4

Jan Faigl, 2024

Define return (error) values to make the code
clean (0, 100, 101), e.g., using enum.

Define valid range (11,67), e.g., using
#define
Ensure accessing passed arguments to the pro-

gram only if they are passed to the program

Ensure the number of lines n is a valid value or
set the error program return value

Peform any operation only if arguments (val-
ues) are valid

Split printing 7 lines into two for loops, with
one print line call between the loops.

Implement a function to print the line pattern

B3B36PRG — Lecture 02: Writing your program in C

// print a line with n characters with the
pattern: k-times c, then space.

// the line ends by new line character ’\n’.

void print(char ¢, int n, int k);

int main(int argc, char *argv[])

{...
if (!ret) { // only if ret == ERROR_OK
for (int 1 = 1; 1 <= LINES; ++1) {
print(’*’, n, 1); // print 1 x ’*’
print(’*’, n, n); // print n x ’*’
for (int 1 = LINES; 1 > 0 ; --1) {
print(’*’, n, 1); // print 1 x ’x’
¥
return ret;
¥

70 / 64

Coding Example

Coding Example — Implementation Strategy 4/4

Jan Faigl, 2024

Define return (error) values to make the code
clean (0, 100, 101), e.g., using enum.

Define valid
#define.

range (11,67), e.g., using

Ensure accessing passed arguments to the pro-
gram only if they are passed to the program

Ensure the number of lines n is a valid value or
set the error program return value.

Peform any operation only if arguments (val-
ues) are valid

Split printing 7 lines into two for loops, with
one print line call between the loops

Implement a function to print the line pattern.

B3B36PRG — Lecture 02: Writing your program in C

void print(char c, int n, int k)

for (int i = 0; i < n; ++i) {

putchar((i+1) % (k+1) ? ¢ : * ?);

putchar(’\n’);

The line consists of n characters; so n charac-
ters has to be printed.

Space is placed after each k characters of c.

Multiple of k can be detected by the remainder
after division, the operator %.

We need to handle i starts from 0.

The space is every (k+1)-th character.

71/ 64

Coding Example

Coding Example — Implementation Strategy 4(b)/4

Jan Faigl, 2024

Define return (error) values to make the code
clean (0, 100, 101), e.g., using enum.

Define
#define

valid range (11,67), e.g., using

Ensure accessing passed arguments to the pro-
gram only if they are passed to the program

Ensure the number of lines n is a valid value or
set the error program return value

Peform any operation only if arguments (val-
ues) are valid

Split printing 7 lines into two for loops, with
one print line call between the loops.

Implement a function to print the line pattern.

void print(char ¢, int n, int k)

}

int i, j;
for (i 0; i < mnj; ++i, ++j) {
if (j k) {
putchar(® ?);
i=0;
} else {
putchar(c);

}

putchar(’\n’);

= Use extra counter j for space as every k-th
printed character.
= Enjoy comma operator to increment j

within the for loop.
B3B36PRG — Lecture 02: Writing your program in C

72/ 64

Summary of the Operators and Precedence

Summary of the Operators and Precedence 1/3

Summary of the Operators and Precedence 2/3

Summary of the Operators and Precedence

Summary of the Operators and Precedence

Summary of the Operators and Precedence 3/3

Precedence Operator Associativity Name Precedence Operator Associativity Name
1 ++ L—R Increment (postfix) 3 0 RosL Cast Precedence Operator Associativity Name
—_ Decrementation (postfix) 4 * /% LR Multiplicative 1 7. RosL Conditional
0 Function call 5 Additive
1] Array subscripting 6 Bitwise shift 15 = Assignment
-> Structure/union member I | +=, -= additive
7 Relationa /oy T
2 ++ R—L Increment (prefix)) *=, /=, %= R—L multiplicative
— Decrementation (prefix) 8 Equality bitwise shift
! Logical negation 9 & Bitwise AND Bitwise AND, XOR, OR
~ Bitwise negation 10 " Bitwise exclusive OR (XOR) 15) LR Comma
-+ Unary plus/minus Lo .
R ndlrection 11 | Bitwise inclusive OR (OR) KN, King: Page 735
12 && Logical AND http://en.cppreference.com/w/c/language/operator_precedence
& Address
sizeof Size 13 I Logical OR
Jan Faigl, 2024 B3B36PRG — Lecture 02: Writing your program in C 74 / 64 | Jan Faigl, 2024 B3B36PRG — Lecture 02: Writing your program in C 75 / 64 | Jan Faigl, 2024 B3B36PRG — Lecture 02: Writing your program in C 76 / 64

