
Writing Program in C
Expressions and Control Structures

(Statements and Loops)

Jan Faigl

Department of Computer Science
Faculty of Electrical Engineering

Czech Technical University in Prague

Lecture 02

B0B36PRG – Programming in C

Jan Faigl, 2024 B0B36PRG – Lecture 02: Writing your program in C 1 / 64

Overview of the Lecture

■ Part 1 – Expressions
Expressions – Literals and Variables

Expressions – Operators

Associativity and Precedence

Assignment K. N. King: chapter 4 and 20

■ Part 2 – Control Structures: Selection Statements and Loops
Statements and Coding Styles

Selection Statements

Loops

Conditional Expression K. N. King: chapters 5 and 6

■ Part 3 – Assignment HW 01

Jan Faigl, 2024 B0B36PRG – Lecture 02: Writing your program in C 2 / 64

Expressions – Literals and Variables Expressions – Operators Associativity and Precedence Assignment

Part I

Part 1 – Expressions

Jan Faigl, 2024 B0B36PRG – Lecture 02: Writing your program in C 3 / 64

Expressions – Literals and Variables Expressions – Operators Associativity and Precedence Assignment

Expressions
■ Expression prescribes calculation value of some given input.
■ Expression is composed of operands, operators, and brackets.
■ Expression can be formed of

■ literals,

■ variables,

■ constants,

■ unary and binary operators,

■ function call,

■ brackets.
■ The order of operation evaluation is prescribed by the operator precedence and asso-

ciativity.

10 + x * y // order of the evaluation 10 + (x * y)
10 + x + y // order of the evaluation (10 + x) + y

* has higher priority than +
+ is associative from the left-to-right

■ The evaluation order can be prescribed by fully parenthesized expression.
Simply: If you are not sure, use brackets.

Jan Faigl, 2024 B0B36PRG – Lecture 02: Writing your program in C 5 / 64

Expressions – Literals and Variables Expressions – Operators Associativity and Precedence Assignment

Literals – Integer and Rational

■ Integer values are stored as one of the integer type (keywords): int, long, short, char and
their signed and unsigned variants. Further integer data types are possible.

■ Rational numbers (data types float and double) can be written with floating point – 13.1;
or with mantissa and exponent – 31.4e-3 or 31.4E-3. Scientific notation

■ Floating point numeric types depends on the implementation (usually as IEEE-754-1985).
Integer literals (values)

Decimal 123 450932

Hexadecimal 0x12 0xFAFF (starts with 0x or 0X)

Octal 0123 0567 (starts with 0)
unsigned 12345U (suffix U or u)
long 12345L (suffix L or l)
unsigned long 12345ul (suffix UL or ul)
long long 12345LL (suffix LL or ll)

Without suffix, the literal is of the type typu int.

Rational literals

■ double – by default, if not explicitly
specified to be another type;

■ float – suffix F or f;

float f = 10.f;
■ long double – suffix L or l.

long double ld = 10.1l;

Jan Faigl, 2024 B0B36PRG – Lecture 02: Writing your program in C 6 / 64

Expressions – Literals and Variables Expressions – Operators Associativity and Precedence Assignment

Literals – Characters and Text Strings
■ Character literal is single (or multiple) character

in apostrophe.
’A’, ’B’ or ’\n’

■ Value of the single character literal is the ASCII
code of the character.

’0’∼ 48, ’A’∼ 65
Value of character out of ASCII (greater than
127) depends on the compiler.

■ Type of the character constant (literal).
■ Character constant is the int type.

char c = ’8’; // Letter of the digit 8
int v = c - ’0’; // Conversion to int value 8

char a = ’O’; // Test a letter is upper case
_Bool upper = (a >= ’A’ && a <= ’Z’);

char i = ’5’; // Test a letter is a digit
_Bool digit = (i >= ’0’ && i <= ’9’);

■ Text string is a sequence of characters enclosed
in quotation marks.
"A string with the end of line \n".

■ String literals separated by white spaces
are joined to single one.

"A string literal" "with the end of the line \n"

is concatenate into
"A string literal with end of the line \n"

■ String literal is stored in the array of the type
char terminated by the null character ’\0’.
A string literal "word" is stored as

’w’ ’o’ ’r’ ’d’ ’\0’

The size of the array must be +1 item longer to
store \0!

Jan Faigl, 2024 B0B36PRG – Lecture 02: Writing your program in C 7 / 64

Expressions – Literals and Variables Expressions – Operators Associativity and Precedence Assignment

Literals – Enumeration
■ By default, values of the enumerated type starts from 0 and each other item increase the value

about one, values can be explicitly prescribed.

enum {
WHITE,
BLACK,
RED,
GREEN,

};

enum {
ERROR_OK = 0, // EXIT_SUCCESS
ERROR_INPUT = 100,
ERROR_RANGE = 101

};

The enumeration values are usually written in uppercase.
■ Type – enumerated constant is the int type.

■ Value of the enumerated literal can be used in loops.
enum { WHITE = 0, BLACK, RED, GREEN, BLUE, NUM_COLORS };

for (int color = WHITE; color < NUM_COLORS; ++color) {
...

}

Jan Faigl, 2024 B0B36PRG – Lecture 02: Writing your program in C 8 / 64

Expressions – Literals and Variables Expressions – Operators Associativity and Precedence Assignment

Variable Definition

■ The variable definition has a general form
declaration-specifiers variable-identifier;

■ Declaration specifiers are following.
■ Storage classes: at most one of the auto, static, extern, register;
■ Type quantifiers: const, volatile, restrict;

None or more type quantifiers are allowed.
■ Type specifiers: void, char, short, int, long, float, double, signed, unsigned.

In addition, struct and union type specifiers can be used. Finally, own types defined by
typedef can be used as well.

float f = 10.1f; // float variable initialized by float literal
const double pi = 3.14; //const double variable initialized to 3.14
unsigned char v = 255; //one byte integer variable with the full range 0..255
const unsigned long l = 100l; //constant long integer variable initialized by long literal
int i; // i variable of the common C integer type int that is not initialized

Jan Faigl, 2024 B0B36PRG – Lecture 02: Writing your program in C 9 / 64

Expressions – Literals and Variables Expressions – Operators Associativity and Precedence Assignment

Operators
■ Operators are selected characters (or sequences of characters) dedicated for writting

expressions.
■ Five types of binary operators can be distinguished.

■ Arithmetic operators – additive (addition/subtraction) and multiplicative (multiplica-
tion/division);

■ Relational operators – comparison of values (less than, greater than, . . .);
■ Logical operators – logical AND and OR;
■ Bitwise operators – bitwise AND, OR, XOR, bitwise shift (left, right);
■ Assignment operator = – a variables (l-value) is on its left side.

■ Unary operators
■ Indicating positive/negative value: + and −.

Operator − modifies the sign of the expression.
■ Modifying a variable : ++ and −−.
■ Logical negation: !.
■ Bitwise negation: ∼.

■ Ternary operator – conditional expression ? :.
Jan Faigl, 2024 B0B36PRG – Lecture 02: Writing your program in C 11 / 64

Expressions – Literals and Variables Expressions – Operators Associativity and Precedence Assignment

Variables, Assignment Operator, and Assignment Statement
■ Variables are defined by the type and name.

■ Name of the variable are in lowercase.
■ Multi-word names can be written with underscore _. Or we can use CamelCase.
■ Each variable is defined at a new line.

int n;
int number_of_items;
int numberOfItems;

■ Assignment is setting the value to the variable, i.e., the value is stored at the memory
location referenced by the variable name.

■ Assignment operator
⟨l-value⟩ = ⟨expression⟩

Expression is literal, variable, function calling, . . .
■ The side is the so-called l-value – location-value, left-value

It must represent a memory location where the value can be stored.
■ Assignment is an expression and we can use it everywhere it is allowed to use the

expression of the particular type.
■ Assignment statement is the assignment operator = and ;.

Jan Faigl, 2024 B0B36PRG – Lecture 02: Writing your program in C 12 / 64

Expressions – Literals and Variables Expressions – Operators Associativity and Precedence Assignment

Basic Arithmetic Expressions

■ For an operator of the numeric types int and double, the following operators are
defined.

Also for char, short, and float numeric types.
■ Unary operator for changing the sign −;
■ Binary addition + and subtraction −;
■ Binary multiplication * and division /.

■ For integer operator, there is also
■ Binary module (integer reminder) %.

■ If both operands are of the same type, the results of the arithmetic operation is the
same type.

■ In a case of combined data types int and double, the data type int is converted to
double and the results is of the double type.

Implicit type conversion.

Jan Faigl, 2024 B0B36PRG – Lecture 02: Writing your program in C 13 / 64

Expressions – Literals and Variables Expressions – Operators Associativity and Precedence Assignment

Example – Arithmetic Operators 1/2
1 int a = 10;
2 int b = 3;
3 int c = 4;
4 int d = 5;
5 int result;
6
7 result = a - b; // subtraction
8 printf("a - b = %i\n", result);
9

10 result = a * b; // multiplication
11 printf("a * b = %i\n", result);
12
13 result = a / b; // integer divison
14 printf("a / b = %i\n", result);
15
16 result = a + b * c; // priority of the operators
17 printf("a + b * c = %i\n", result);
18
19 printf("a * b + c * d = %i\n", a * b + c * d); // -> 50
20 printf("(a * b) + (c * d) = %i\n", (a * b) + (c * d)); // -> 50
21 printf("a * (b + c) * d = %i\n", a * (b + c) * d); // -> 350

lec02/arithmetic_operators.c

Jan Faigl, 2024 B0B36PRG – Lecture 02: Writing your program in C 14 / 64

Expressions – Literals and Variables Expressions – Operators Associativity and Precedence Assignment

Example – Arithmetic Operators 2/2
1 #include <stdio.h>
2
3 int main(void)
4 {
5 int x1 = 1;
6 double y1 = 2.2357;
7 float x2 = 2.5343f;
8 double y2 = 2;
9

10 printf("P1 = (%i, %f)\n", x1, y1);
11 printf("P1 = (%i, %i)\n", x1, (int)y1);
12 printf("P1 = (%f, %f)\n", (double)x1, (double)y1);
13 printf("P1 = (%.3f, %.3f)\n", (double)x1, (double)y1);
14
15 printf("P2 = (%f, %f)\n", x2, y2);
16
17 double dx = (x1 - x2); // implicit data conversion to float
18 double dy = (y1 - y2); // and finally to double
19
20 printf("(P1 - P2)=(%.3f, %0.3f)\n", dx, dy);
21 printf("|P1 - P2|^2=%.2f\n", dx * dx + dy * dy);
22 return 0;
23 }

lec02/points.c
Jan Faigl, 2024 B0B36PRG – Lecture 02: Writing your program in C 15 / 64

Expressions – Literals and Variables Expressions – Operators Associativity and Precedence Assignment

Arithmetic Operators

■ Operands of arithmetic operators can be of any arithmetic type.
The only exception is the operator for the integer reminder % defined for the int type.

* Multiplication x * y Multiplication of x and y
/ Division x / y Division of x and y
% Reminder x % y Reminder from the x / y
+ Addition x + y Sum of x and y
- Subtraction x - y Subtraction x and y
+ Unary plus +x Value of x
- Unary minus -x Value of −x
++ Increment ++x/x++ Incrementation before/after the evaluation

of the expression x
-- Decrement --x/x-- Decrementation before/after the evalua-

tion of the expression x

Jan Faigl, 2024 B0B36PRG – Lecture 02: Writing your program in C 16 / 64

Expressions – Literals and Variables Expressions – Operators Associativity and Precedence Assignment

Integer Division

■ The results of the division of the operands of the int type is the integer part of the
division.

E.g.. 7/3 is 2 and −7/3 is −2

■ For the integer reminder, it holds x%y = x − (x/y) ∗ y .
E.g., 7 % 3 is 1 -7 % 3 is -1 7 % -3 is 1 -7 % -3 is -1

■ C99: The result of the integer division of negative values is the value closer to 0.
■ It holds that (a/b)*b + a%b = a.

For older versions of C, the results depends on the compiler.

Jan Faigl, 2024 B0B36PRG – Lecture 02: Writing your program in C 17 / 64

Expressions – Literals and Variables Expressions – Operators Associativity and Precedence Assignment

Implementation-Defined Behaviour

■ The C standard deliberately leaves parts of the language unspecified.
■ Thus, some parts depend on the implementation, such as compiler, environment, or

computer architecture.
E.g., Reminder behavior for negative values and version of the C prior C99.

■ The reason for that is the focus of C on efficiency, i.e., match the hardware behavior.

■ Having it in mind, it is best to avoid writing programs that depend on implementation-
defined behavior.

K.N.King: Page 55

That is one example of writting programs that seem to be working and functional and a
program that is correct.

Jan Faigl, 2024 B0B36PRG – Lecture 02: Writing your program in C 18 / 64

Expressions – Literals and Variables Expressions – Operators Associativity and Precedence Assignment

Unary Arithmetic Operators

■ Unary operator (++ and −−) change the value of its operand.
The operand must be the l-value, i.e., an expression that has memory space, where the
value of the expression is stored, e.g., a variable.

■ It can be used as prefix operator, e.g., ++x and −−x;
■ or as postfix operator, e.g., x++ and x−−.
■ In each case, the final value of the expression is different!

int i; int a; value of i value of a
i = 1; a = 9; 1 9
a = i++; 2 1
a = ++i; 3 3
a = ++(i++); Not allowed! Value of i++ is not the l-value

For the unary operator i++, it is necessary to store the previous value of i and then the
variable i is incremented. The expression ++i only increments the value of i. Therefore,
++i can be more efficient.

Jan Faigl, 2024 B0B36PRG – Lecture 02: Writing your program in C 19 / 64

Expressions – Literals and Variables Expressions – Operators Associativity and Precedence Assignment

Relational Operators

■ Operands of relational operators can be of arithmetic type, pointers (of the same type)
or one operand can be NULL or pointer of the void type.

< Less than x < y 1 if x is less than y; otherwise 0
<= Less than or equal x <= y 1 if x is less then or equal to y; otherwise 0
> Greater than x > y 1 if x is greater than y; otherwise 0
>= Greater than or equal x >= y 1 if x is greater than or equal to y; other-

wise 0
== Equal x == y 1 if x is equal to y; otherwise 0
!= Not equal x != y 1 if x is not equal to y; otherwise 0

Jan Faigl, 2024 B0B36PRG – Lecture 02: Writing your program in C 20 / 64

Expressions – Literals and Variables Expressions – Operators Associativity and Precedence Assignment

Logical operators

■ Operands can be of arithmetic type or pointers.
■ Resulting value 1 means true, 0 means false.
■ In the expressions && (Logical AND) and || (Logical OR), the left operand is evaluated

first.
■ If the results is defined by the left operand, the right operand is not evaluated.

Short-circuiting behavior – it may speed evaluation of complex expressions in runtime.

&& Logical AND x && y 1 if x and y is not 0; otherwise 0.
|| Logical OR x || y 1 if at least one of x, y is not 0;

otherwise 0.
! Logical NOT !x 1 if x is 0; otherwise 0.

■ Operands && a || have the short-circuiting behavior, i.e., the second operand is
not evaluated if the result can be determined from the value of the first operand.

Jan Faigl, 2024 B0B36PRG – Lecture 02: Writing your program in C 21 / 64

Expressions – Literals and Variables Expressions – Operators Associativity and Precedence Assignment

Example – Short-Circuiting Behaviour 1/2
1 #include <stdio.h>
2 #include <stdlib.h>
3
4 int fce_a(int n);
5 int fce_b(int n);
6
7 int main(int argc, char *argv[])
8 {
9 if (argc > 1 && fce_a(atoi(argv[1])) && fce_b(atoi(argv[1])))

10 {
11 printf("Both functions fce_a and fce_b pass the test\n");
12 } else {
13 printf("One of the functions does not pass the test\n");
14 }
15 return 0;
16 }
17
18 int fce_a(int n)
19 {
20 printf("Calling fce_a with the argument ’%d’\n", n);
21 return n % 2 == 0;
22 }
23
24 int fce_b(int n)
25 {
26 printf("Calling fce_b with the argument ’%d’\n", n);
27 return n > 2;
28 }

lec02/demo-short_circuiting.c
Jan Faigl, 2024 B0B36PRG – Lecture 02: Writing your program in C 22 / 64

Expressions – Literals and Variables Expressions – Operators Associativity and Precedence Assignment

Example – Short-Circuiting Behaviour 2/2 – Tasks

In the example lec02/demo-short_circuiting.c

■ Test how the logical expressions (a function call) are evaluated.
■ Identify what functions fce_a() and fce_b() are implementing.
■ Rename the functions appropriately.
■ Identify the function headers and why they have to be stated above the main function.
■ Try to split implementation of the functions to a separate module.

Jan Faigl, 2024 B0B36PRG – Lecture 02: Writing your program in C 23 / 64

Expressions – Literals and Variables Expressions – Operators Associativity and Precedence Assignment

Bitwise Operators

■ Bitwise operators treat operands as a series of bits.
Low-Level Programming – A programming language is low level when its programs require at-
tention of the irrelevant. K.N.King: Chapter 20.

& Bitwise AND x & y 1 if x and y is equal to 1 (bit-by-
bit)

| Bitwise inclusive OR x | y 1 if x or y is equal to 1 (bit-by-bit)

ˆ Bitwise exclusive or (XOR) x ˆ y 1 if only x or only y is 1 (bit-by-
bit)

∼ Bitwise complement (NOT) ∼x 1 if x is 0 (bit-by-bit)

<< Bitwise left shift x << y Shift of x by y bits to the left
>> Bitwise right shift x >> y Shift of x by y bits to the right

Jan Faigl, 2024 B0B36PRG – Lecture 02: Writing your program in C 24 / 64

Expressions – Literals and Variables Expressions – Operators Associativity and Precedence Assignment

Bitwise Shift Operators

■ Bitwise shift operators shift the binary representation by a given number of bits to the
left or right.

■ Left shift – Each bit shifted off a zero bit enters at the right.
■ Right shift – Each bit shift off.

■ a zero bit enters at the left – for positive values or unsigned types.
■ for negative values, the entered bit can be either 0 (logical shift) or 1 (arithmetic shift

right). Depends on the compiler.

■ Bitwise shift operators have lower precedence than the arithmetic operators!
■ i << 2 + 1 means i << (2 + 1)

Do not be surprised – parenthesized the expression!

Jan Faigl, 2024 B0B36PRG – Lecture 02: Writing your program in C 25 / 64

Expressions – Literals and Variables Expressions – Operators Associativity and Precedence Assignment

Example – Bitwise Expressions

#include <inttypes.h>

uint8_t a = 4;
uint8_t b = 5;

a dec: 4 bin: 0100
b dec: 5 bin: 0101
a & b dec: 4 bin: 0100
a | b dec: 5 bin: 0101
a ^ b dec: 1 bin: 0001

a >> 1 dec: 2 bin: 0010
a << 1 dec: 8 bin: 1000

lec02/bits.c

Jan Faigl, 2024 B0B36PRG – Lecture 02: Writing your program in C 26 / 64

Expressions – Literals and Variables Expressions – Operators Associativity and Precedence Assignment

Operators for Accessing Memory
Here, for completeness, details in the further lectures.

■ In C, we can directly access the memory address of the variable. We need in scanf()!

■ The access is realized through a pointer. It is an integer value, typically long.

It allows great options and also understand data representation and memory access models.
Operator Name Example Result

& Address &x Pointer to x
* Indirection *p Variable (or function) addressed by the

pointer p.
[] Array subscript-

ing
x[i] *(x+i) – item of the array x at the

position i.
. Structure/union

member
s.x Member x of the struct/union s.

-> Structure/union
member

p->x Member x of the struct/union ad-
dressed by the pointer p.

It is not allowed an operand of the & operator is a bit field or variable of the register class,
because it has to be addressable memory space.
Operator of the indirect address * allows to access to the memory using pointers.

Jan Faigl, 2024 B0B36PRG – Lecture 02: Writing your program in C 27 / 64

Expressions – Literals and Variables Expressions – Operators Associativity and Precedence Assignment

Other Operators

Operator Name Example Result

() Function call f(x) Call the function f with the argument x.
(type) Cast (int)x Change the type of x to int.
sizeof Size of the item sizeof(x) Size of x in bytes.
? : Conditional x ? y : z Do y if x != 0; otherwise z.
, Comma x, y Evaluate x and then y, the result is the

result of the last expression.
■ The operand of sizeof() can be a type name or expression.

int a = 10;
printf("%lu %lu\n", sizeof(a), sizeof(a + 1.0));

lec02/sizeof.c

■ Example of the comma operator.
for (c = 1, i = 0; i < 3; ++i, c += 2) {

printf("i: %d c: %d\n", i, c);
}

Jan Faigl, 2024 B0B36PRG – Lecture 02: Writing your program in C 28 / 64

Expressions – Literals and Variables Expressions – Operators Associativity and Precedence Assignment

Cast Operator

■ Changing the variable type in runtime is called type case.
■ Explicit cast is written by the name of the type in (), e.g.,

int i;
float f = (float)i;

■ Implicit cast is made automatically by the compiler during the program compilation.
■ If the new type can represent the original value, the value is preserved by the cast.
■ Operands of the char, unsigned char, short, unsigned short, and the bit field

types can be used everywhere where it is allowed to use int or unsigned int.
C expects at least values of the int type.

■ Operands are automatically cast to the int or unsigned int.

Jan Faigl, 2024 B0B36PRG – Lecture 02: Writing your program in C 29 / 64

Expressions – Literals and Variables Expressions – Operators Associativity and Precedence Assignment

Operators Associativity and Precedence

■ Binary operation op is associative on the set S if
(x op y) op z = x op(y op z), for each x , y , z ∈ S .

■ For not associative operators, it is required to specify the order of evaluation.
■ Left-associative – operations are grouped from the left.

E.g., 10 − 5 − 3 is evaluated as (10 − 5)− 3.
■ Right-associative – operations are grouped from the right.

E.g., 3 + 52 is 28 or 3 · 52 is 75 vs (3 · 5)2 is 225.

■ The assignment is right-associative.
E.g., y=y+8.

First, the whole right side of the operator = is evaluated, and then, the results are assigned
to the variable on the left.

■ The order of the operator evaluation can be defined by the fully parenthesized expression.

Jan Faigl, 2024 B0B36PRG – Lecture 02: Writing your program in C 31 / 64

Expressions – Literals and Variables Expressions – Operators Associativity and Precedence Assignment

Simple Assignment
■ Set the value to the variable.

Store the value into the memory space referenced by the variable name.

■ The form of the assignment operator is
⟨variable⟩ = ⟨expression⟩

Expression is literal, variable, function call, . . .

■ C is statically typed programming language.
■ A value of an expression can be assigned only to a variable of the same type.

Otherwise the type cast is necessary.

■ Example of the implicit type cast.

int i = 320.4; // implicit conversion from ’double’ to ’int’ changes value from
320.4 to 320 [-Wliteral-conversion]

char c = i; // implicit truncation 320 -> 64

■ C is type safe only within a limited context of the compilation, e.g., for
printf("%d\n", 10.1); a compiler reports an error.

■ In general, C is not type safe. In runtime, it is possible to write out of the allocated memory space.

Jan Faigl, 2024 B0B36PRG – Lecture 02: Writing your program in C 33 / 64

Expressions – Literals and Variables Expressions – Operators Associativity and Precedence Assignment

Compound Assignment
■ A short version of the assignment to compute a new value of the variable from itself:

⟨variable⟩ = ⟨variable⟩ ⟨operator⟩ ⟨expression⟩
■ can be written as

⟨variable⟩ ⟨operator⟩ = ⟨expression⟩
Example

int i = 10;
double j = 12.6;

i = i + 1;
j = j / 0.2;

int i = 10;
double j = 12.6;

i += 1;
j /= 0.2;

■ Note that the assignment is an expression.
The assignment of the value to the variable is a side effect.

int x, y;

x = 6;
y = x = x + 6;

Jan Faigl, 2024 B0B36PRG – Lecture 02: Writing your program in C 34 / 64

Expressions – Literals and Variables Expressions – Operators Associativity and Precedence Assignment

Assignment Expression and Assignment Statement

■ The statement performs some action and it is terminated by ;
robot_heading = -10.23;
robot_heading = fabs(robot_heading);
printf("Robot heading: %f\n", robot_heading);

■ Expression has type and value.
23 int type, value is 23
14+16/2 int type, value is 22
y=8 int type, value is 8

■ Assignment is an expression and its value is assigned to the left side.
■ The assignment expression becomes the assignment statement by adding the

semicolon.

Jan Faigl, 2024 B0B36PRG – Lecture 02: Writing your program in C 35 / 64

Expressions – Literals and Variables Expressions – Operators Associativity and Precedence Assignment

Undefined Behaviour

■ There are some statements that can cause undefined behavior according to the C
standard.

■ c = (b = a + 2) - (b - 1);
■ j = i * i++;

■ The program may behaves differently according to the used compiler, but may also
not compile or may not run; or it may even crash and behave erratically or produce
meaningless results.

■ It may also happened if variables are used without initialization.

■ Avoid statements that may produce undefined behavior!
A further detailed example of undefined behavior and code optimization with its analysis
is in Lecture 09.

Jan Faigl, 2024 B0B36PRG – Lecture 02: Writing your program in C 36 / 64

Statements and Coding Styles Selection Statements Loops Conditional Expression

Part II

Part 2 – Control Structures: Selection Statements and
Loops

Jan Faigl, 2024 B0B36PRG – Lecture 02: Writing your program in C 37 / 64

Statements and Coding Styles Selection Statements Loops Conditional Expression

Statement and Compound Statement (Block)
■ Statement is terminated by ;

Statement consisting only of the semicolon is empty statement.

■ Block consists of sequences of declarations and statements.
■ ANSI C, C89, C90: Declarations must be placed prior other statements.

It is not necessary for C99.

■ Start and end of the block is marked by the curly brackets { and }.
■ A block can be inside other block.

void function(void)
{ /* function block start */

{/* inner block */
for (i = 0; i < 10; ++i)
{
//inner for-loop block
}

}
}

void function(void) { /* function block start */
{ /* inner block */

for (int i = 0; i < 10; ++i) {
//inner for-loop block
}

}
}

Notice the coding styles.

Jan Faigl, 2024 B0B36PRG – Lecture 02: Writing your program in C 39 / 64

Statements and Coding Styles Selection Statements Loops Conditional Expression

Coding Style
■ It supports clarity and readability of the source code.

https://www.gnu.org/prep/standards/html_node/Writing-C.html

■ Formatting of the code is the fundamental step.
Setup automatic formatting in your text editor.■ Appropriate identifiers.

■ Train yourself in coding style even at the cost of slower coding!
■ Readability and clarity is important, especially during debugging!

Notice, sometimes it can be better to start from scratch

■ Recommend coding style.
1 void function(void)
2 { /* function block start */
3 for (int i = 0; i < 10; ++i) {
4 //inner for-loop block
5 if (i == 5) {
6 break;
7 }
8 }
9 }

■ Use English, especially for identifiers.
■ Use nouns for variables.
■ Use verbs for function names.

Lecturer’s preference: indent shift 3, space characters rather than tabular.

Jan Faigl, 2024 B0B36PRG – Lecture 02: Writing your program in C 40 / 64

Statements and Coding Styles Selection Statements Loops Conditional Expression

Coding Style – Code Clarity and Readability
■ There are many different coding styles.
■ Inspire yourself by existing recommendations and by reading representative source codes.

Clean Code - Uncle Bob / Lesson 1
https://youtu.be/7EmboKQH8lM

Google Coding Interview with a High School Student
https://youtu.be/qz9tKlF431k

http://users.ece.cmu.edu/~eno/coding/CCodingStandard.html;
https://www.doc.ic.ac.uk/lab/cplus/cstyle.html;
http://en.wikipedia.org/wiki/Indent_style;
https://google.github.io/styleguide/cppguide.html;
https://www.kernel.org/doc/Documentation/process/coding-style.rst

Jan Faigl, 2024 B0B36PRG – Lecture 02: Writing your program in C 41 / 64

Statements and Coding Styles Selection Statements Loops Conditional Expression

Compound Command and Nesting 1/2
Four nested levels.

1 int get_sum_of_even_numbers(int from, int to)
2 {
3 if (from < to) {
4 int sum = 0;
5 for (int number = from; number <= to; ++number) {
6 if (number % 2 == 0) {
7 sum += number;
8 }
9 } // end for loop

10 return sum;
11 } else {
12 return 0;
13 }
14 }

We aim to have a more readable form.
1 int get_sum_of_even_numbers(int from, int to)
2 {
3 if (from > to) return 0;
4 int sum = 0;
5 for (int number = from; number <= to; ++number) {
6 sum += filter_odd(number);
7 } // end for loop
8 return sum;
9 }

Extraction (new function definition).
1 , , , , , , , ,int filter_odd(int number);
2 , , , , , , , ,
3 , , , , , , , ,int get_sum_of_even_numbers(int from, int to)
4 , , , , , , , ,{
5 , , , , , , , ,if (from < to) {
6 , , , , , , , ,int sum = 0;
7 , , , , , , , ,for (int number = from; number <= to; ++number) {
8 , , , , , , , ,sum += filter_odd(number);
9 , , , , , , , ,} // end for loop

10 , , , , , , , ,return sum;
11 , , , , , , , ,} else {
12 , , , , , , , ,return 0;
13 , , , , , , , ,}
14 , , , , , , , ,}
15 , , , , , , , ,
16 , , , , , , , ,int filter_odd(int number)
17 , , , , , , , ,{
18 , , , , , , , ,if (number % 2 == 0) {
19 , , , , , , , ,return number;
20 , , , , , , , ,}
21 , , , , , , , ,return 0;
22 , , , , , , , ,}

■ Using extraction and inversion techniques, we reduce the nesting depth.
https://youtu.be/CFRhGnuXG-4

Jan Faigl, 2024 B0B36PRG – Lecture 02: Writing your program in C 42 / 64

Statements and Coding Styles Selection Statements Loops Conditional Expression

Compound Command and Nesting 2/2
Inversion (substitution of the input value conditions).

1 , ,int filter_odd(int number);
2 , ,
3 , ,int get_sum_of_even_numbers(int from, int to)
4 , ,{
5 , ,if (from > to) {
6 , , return 0;
7 , ,}
8 , ,int sum = 0;
9 , ,for (int number = from; number <= to; ++number) {

10 , , sum += filter_odd(number);
11 , ,} // end for loop
12 , ,return sum;
13 , ,}
14 , ,
15 , ,int filter_odd(int number)
16 , ,{
17 , ,if (number % 2 == 0) {
18 , , return number;
19 , ,}
20 , ,return 0;
21 , ,}

Final cleanup.
1 ,int filter_odd(int number);
2 ,
3 ,int get_sum_of_even_numbers(int from, int to)
4 ,{
5 , if (from > to) return 0;
6 ,
7 , int sum = 0;
8 , for (int number = from; number <= to; ++number) {
9 , sum += filter_odd(number);

10 , } // end for loop
11 , return sum;
12 ,}
13 ,
14 ,int filter_odd(int number)
15 ,{
16 , return (number % 2 == 0) : number : 0;
17 ,}

■ Using extraction and inversion techniques, we reduce the nesting depth.
https://youtu.be/CFRhGnuXG-4

Jan Faigl, 2024 B0B36PRG – Lecture 02: Writing your program in C 43 / 64

Statements and Coding Styles Selection Statements Loops Conditional Expression

Control Statements

■ Selection Statement
■ Selection Statement: if () or if () ... else
■ Switch Statement: switch () case ...

■ Control Loops
■ for ()
■ while ()
■ do ... while ()

■ Jump statements (unconditional program branching)
■ continue
■ break
■ return
■ goto

Jan Faigl, 2024 B0B36PRG – Lecture 02: Writing your program in C 44 / 64

Statements and Coding Styles Selection Statements Loops Conditional Expression

Selection Statement – if
■ if (expression) statement1; else statement2
■ For expression != 0 the statement1 is executed; otherwise statement2.

The statement can be the compound statement.
■ The else part is optional.
■ Selection statements can be nested and cascaded.

Why You Shouldn’t Nest Your Code – https://youtu.be/CFRhGnuXG-4.

int max;
if (a > b) {

if (a > c) {
max = a;

}
}

int max;
if (a > b) {

...
} else if (a < c) {

...
} else if (a == b) {

...
} else {

...
}

Jan Faigl, 2024 B0B36PRG – Lecture 02: Writing your program in C 46 / 64

Statements and Coding Styles Selection Statements Loops Conditional Expression

The switch Statement
■ Allows to branch the program based on the value of the expression of the enumerate

(integer) type, e.g., int, char, short, enum.
■ The form is

switch (expression) {
case constant1: statements1; break;
case constant2: statements2; break;
. . .
case constantn: statementsn; break;
default: statementsdef; break;

}
where constants are of the same type as the expression and statementsi is a list of
statements.

■ Switch statements can be nested.
Semantics: First the expression value is calculated. Then, the statements under the same value are executed.
If none of the branch is selected, statementsdef under default branch as performed (optional).

Jan Faigl, 2024 B0B36PRG – Lecture 02: Writing your program in C 47 / 64

Statements and Coding Styles Selection Statements Loops Conditional Expression

The switch Statement – Example

switch (v) {
case ’A’:

printf("Upper ’A’\n");
break;

case ’a’:
printf("Lower ’a’\n");
break;

default:
printf(
"It is not ’A’ nor ’a’\n");
break;

}

if (v == ’A’) {
printf("Upper ’A’\n");

} else if (v == ’a’) {
printf("Lower ’a’\n");

} else {
printf(
"It is not ’A’ nor ’a’\n");

}

lec02/switch.c

Jan Faigl, 2024 B0B36PRG – Lecture 02: Writing your program in C 48 / 64

Statements and Coding Styles Selection Statements Loops Conditional Expression

The Role of the break Statement
■ The statement break terminates the branch. If not presented, the execution continues

with the statement of the next case label.

Example
1 int part = ?
2 switch(part) {
3 case 1:
4 printf("Branch 1\n");
5 break;
6 case 2:
7 printf("Branch 2\n");
8 case 3:
9 printf("Branch 3\n");

10 break;
11 case 4:
12 printf("Branch 4\n");
13 break;
14 default:
15 printf("Default branch\n");
16 break;
17 }

■ part ← 1
Branch 1

■ part ← 2
Branch 2
Branch 3

■ part ← 3
Branch 3

■ part ← 4
Branch 4

■ part ← 5
Default branch

lec02/demo-switch_break.c
Jan Faigl, 2024 B0B36PRG – Lecture 02: Writing your program in C 49 / 64

Statements and Coding Styles Selection Statements Loops Conditional Expression

Loops
■ The for and while loop statements test the controlling expression

before the enter to the loop body.
■ for – initialization, condition, change of the controlling variable

can be a part of the syntax.
for (int i = 0; i < 5; ++i) {

...
}

■ while – controlling variable out of the syntax
int i = 0;
while (i < 5) {

...
i += 1;

}

■ The do loop tests the controlling expression after the first loop
is performed.

int i = -1;
do {

...
i += 1;

} while (i < 5);

true

false

true
false

Jan Faigl, 2024 B0B36PRG – Lecture 02: Writing your program in C 51 / 64

Statements and Coding Styles Selection Statements Loops Conditional Expression

The for Loop
■ The basic form has four parts (three expressions and a single statement).

for (expr1; expr2; expr3) statement
■ All expri are expressions and typically they are used for

1. expr1 – initialization of the controlling variable (side effect of the assignment
expression);

2. expr2 – Test of the controlling expression;
3. If expr2 !=0 the statement is executed; Otherwise the loop is terminated.
4. expr3 – updated of the controlling variable (performed at the end of the loop

■ Any of the expressions expri can be omitted.
■ break statement – force termination of the loop.
■ continue – force end of the current iteration of the loop.

The expression expr3 is evaluated and test of the loop is performed.

■ An infinity loop can be written by omitting the expressions.
for (;;) {...}

Jan Faigl, 2024 B0B36PRG – Lecture 02: Writing your program in C 52 / 64

Statements and Coding Styles Selection Statements Loops Conditional Expression

The continue Statement

■ It transfers the control to the evaluation of the controlling expression.
■ The continue statement can be used inside the body of the loops.

■ for ()
■ while ()
■ do...while ()

■ Examples

int i;
for (i = 0; i < 20; ++i) {

if (i % 2 == 0) {
continue;

}
printf("%d\n", i);

}
lec02/continue.c

for (int i = 0; i < 10; ++i) {
printf("i: %i ", i);
if (i % 3 != 0) {

continue;
}
printf("\n");

} lec02/demo-continue.c

clang demo-continue.c
./a.out
i:0
i:1 i:2 i:3
i:4 i:5 i:6
i:7 i:8 i:9

Jan Faigl, 2024 B0B36PRG – Lecture 02: Writing your program in C 53 / 64

Statements and Coding Styles Selection Statements Loops Conditional Expression

The break Statement – Force Termination of the Loop
■ The program continue with the next statement after the loop.
■ Example in the while loop.

int i = 10;
while (i > 0) {

if (i == 5) {
printf("i reaches 5, leave the loop\n");
break;

}
i--;
printf("End of the while loop i: %d\n", i);

} lec02/break.c

■ Example in the for loop.
for (int i = 0; i < 10; ++i) {

printf("i: %i ", i);
if (i % 3 != 0) {

continue;
}
printf("\n");
if (i > 5) {

break;
}

}

clang demo-break.c
./a.out
i:0
i:1 i:2 i:3
i:4 i:5 i:6

lec02/demo-break.c
Jan Faigl, 2024 B0B36PRG – Lecture 02: Writing your program in C 54 / 64

Statements and Coding Styles Selection Statements Loops Conditional Expression

The goto Statement
■ goto allows transfing the control to the defined label.

It can be used only within a function body.
■ Syntax goto label;.
■ The jump goto can jump only outside of the particular block, it can jump to a

statement.
■ It can be used only within a function block.

1 int test = 3;
2 for (int i = 0; i < 3; ++i) {
3 for (int j = 0; j < 5; ++j) {
4 if (j == test) {
5 goto loop_out;
6 }
7 fprintf(stdout, "Loop i: %d j: %d\n", i, j);
8 }
9 }

10 return 0;
11 loop_out:
12 fprintf(stdout, "After loop\n"); // goto can jump to a label that

represents statement (there must be an address to be jump at).
13 return -1;

lec02/goto.cJan Faigl, 2024 B0B36PRG – Lecture 02: Writing your program in C 55 / 64

Statements and Coding Styles Selection Statements Loops Conditional Expression

Nested Loops
■ The break statement terminates the inner loop.
for (int i = 0; i < 3; ++i) {

for (int j = 0; j < 3; ++j) {
printf("i-j: %i-%i\n", i, j);
if (j == 1) {

break;
}

}
}

i-j: 0-0
i-j: 0-1
i-j: 1-0
i-j: 1-1
i-j: 2-0
i-j: 2-1

■ The outer loop can be terminated by the goto statement.
for (int i = 0; i < 5; ++i) {

for (int j = 0; j < 3; ++i) {
printf("i-j: %i-%i\n", i, j);
if (j == 2) {

goto outer;
}

}
}
outer:

i-j: 0-0
i-j: 0-1
i-j: 0-2

lec02/demo-goto.c
Jan Faigl, 2024 B0B36PRG – Lecture 02: Writing your program in C 56 / 64

Statements and Coding Styles Selection Statements Loops Conditional Expression

Example – isPrimeNumber() 1/2

#include <stdbool.h>
#include <math.h>

_Bool isPrimeNumber(int n)
{

_Bool ret = true;
for (int i = 2; i <= (int)sqrt((double)n); ++i) {

if (n % i == 0) {
ret = false;
break;

}
}
return ret;

} lec02/demo-prime.c

■ Once the first factor is found, call break to terminate the loop.
It is not necessary to test other numbers.

Jan Faigl, 2024 B0B36PRG – Lecture 02: Writing your program in C 57 / 64

Statements and Coding Styles Selection Statements Loops Conditional Expression

Example – isPrimeNumber() 2/2
■ The value of (int)sqrt((double)n) is not changing in the loop.

for (int i = 2; i <= (int)sqrt((double)n); ++i) {
...

}
■ We can use the comma operator to initialize the maxBound variable.

for (int i = 2, maxBound = (int)sqrt((double)n);
i <= maxBound; ++i) {

...
■ Or, we can declare maxBound as a constant variable.

_Bool ret = true;
const int maxBound = (int)sqrt((double)n);
for (int i = 2; i <= maxBound ; ++i) {

...
} E.g., Compile and run demo-prime.c: clang demo-prime.c -lm; ./a.out 13.

Jan Faigl, 2024 B0B36PRG – Lecture 02: Writing your program in C 58 / 64

Statements and Coding Styles Selection Statements Loops Conditional Expression

Conditional Expression – Example Greatest Common Divisor
1 int getGreatestCommonDivisor(int x, int y)
2 {
3 int d;
4 if (x < y) {
5 d = x;
6 } else {
7 d = y;
8 }
9 while ((x % d != 0) || (y % d ! = 0)) {

10 d = d - 1;
11 }
12 return d;
13 }

■ The same with the conditional expression expr1 ? expr2 : expr3 can be as follows.
1 int getGreatestCommonDivisor(int x, int y)
2 {
3 int d = x < y ? x : y;
4 while ((x % d != 0) || (y % d ! = 0)) {
5 d = d - 1;
6 }
7 return d;
8 } lec02/demo-gcd.c

Jan Faigl, 2024 B0B36PRG – Lecture 02: Writing your program in C 60 / 64

Part III

Part 3 – Assignment HW 01

Jan Faigl, 2024 B0B36PRG – Lecture 02: Writing your program in C 61 / 64

HW 01 – Assignment

Topic: ASCII art
Mandatory: 2 points; Optional: none; Bonus : none

■ Motivation: Have a fun with loops and user parametrization of the program.
■ Goal: Acquire experience using loops and inner loops.
■ Assignment https://cw.fel.cvut.cz/wiki/courses/b3b36prg/hw/hw01

■ Read parameters specifying a picture of small house using selected ASCII chars.
https://en.wikipedia.org/wiki/ASCII_art

■ Assesment of the input values.

■ Deadline: 16.03.2024, 23:59 AoE.
AoE – Anywhere on Earth.

Jan Faigl, 2024 B0B36PRG – Lecture 02: Writing your program in C 62 / 64

Topics Discussed

Summary of the Lecture

Jan Faigl, 2024 B0B36PRG – Lecture 02: Writing your program in C 63 / 64

Topics Discussed

Topics Discussed

■ Expressions
■ Operators – Arithmetic, Relational, Logical, Bitwise, and others
■ Operator Associativity and Precedence
■ Assignment and Compound Assignment
■ Implementation-Defined Behaviour
■ Undefined Behaviour

■ Coding Styles
■ Select Statements
■ Loops
■ Conditional Expression

■ Next: Data types, memory storage classes, function call

Jan Faigl, 2024 B0B36PRG – Lecture 02: Writing your program in C 64 / 64

Coding Example Summary of the Operators and Precedence

Part V

Appendix

Jan Faigl, 2024 B0B36PRG – Lecture 02: Writing your program in C 65 / 64

Coding Example Summary of the Operators and Precedence

Coding Example – Assignment

■ Implement a program that prints the pattern
with seven lines.

■ The default width n is 27 characters or it is
read as the first program argument (if given).

■ The width n needs to be odd number, or the
program returns 100.

■ It holds 11 ≤ n ≤ 67, or the program returns
101.

■ On success, the program prints seven lines and
returns 0.

■ Avoid “magic numbers” in the program when-
ever is it possible.

* * * * * * * * * * * * * * * * * *
** ** ** ** ** ** ** ** ** ** ** **
*** *** *** *** *** *** *** *** ***

*** *** *** *** *** *** *** *** ***
** ** ** ** ** ** ** ** ** ** ** **
* * * * * * * * * * * * * * * * * *

■ Convert program argv[1] by atoi(), if given.

■ Decompose the program into printing 7× line.

■ Implement the program infrastructure first.

■ Then, focus on logic to particular lines con-
trolled by a suitably designed expressions.

Jan Faigl, 2024 B0B36PRG – Lecture 02: Writing your program in C 67 / 64

Coding Example Summary of the Operators and Precedence

Coding Example – Implementation Strategy 1/4

■ Define return (error) values to make the code
clean (0, 100, 101), e.g., using enum.

■ Define valid range ⟨11, 67⟩, e.g., using
#define.

■ Ensure accessing passed arguments to the pro-
gram only if they are passed to the program.

■ Ensure the number of lines n is a valid value or
set the error program return value.

■ Peform any operation only if arguments (val-
ues) are valid.

■ Split printing 7 lines into two for loops, with
one print line call between the loops.

■ Implement a function to print the line pattern.

#include <stdio.h> //for putchar()
#include <stdlib.h> //for atoi()

enum {
ERROR_OK = 0,
ERROR_INPUT = 100,
ERROR_RANGE = 101

};

#define MIN_VALUE 11
#define MAX_VALUE 67

#define LINES 3

// Print line of the with n using character
in c and space; with k continuous
characters c followed by space.

void print(char c, int n, int k);
Jan Faigl, 2024 B0B36PRG – Lecture 02: Writing your program in C 68 / 64

Coding Example Summary of the Operators and Precedence

Coding Example – Implementation Strategy 2/4

■ Define return (error) values to make the code
clean (0, 100, 101), e.g., using enum.

■ Define valid range ⟨11, 67⟩, e.g., using
#define.

■ Ensure accessing passed arguments to the pro-
gram only if they are passed to the program.

■ Ensure the number of lines n is a valid value or
set the error program return value.

■ Peform any operation only if arguments (val-
ues) are valid.

■ Split printing 7 lines into two for loops, with
one print line call between the loops.

■ Implement a function to print the line pattern.

...
int main(int argc, char *argv[])
{

int ret = ERROR_OK;
int n = argc > 1 ? atoi(argv[1]) : 27; //
convert argv[1] or use default value

ret = n % 2 == 0 ? ERROR_INPUT : ret; //
ensure n is odd number
if (!ret &&

(n < MIN_VALUE || n > MAX_VALUE)) {
ret = ERROR_RANGE; //ensure n is in the

closed interval [MIN_VALUE, MAX_VALUE]
}
...
return ret;

}

Jan Faigl, 2024 B0B36PRG – Lecture 02: Writing your program in C 69 / 64

Coding Example Summary of the Operators and Precedence

Coding Example – Implementation Strategy 3/4

■ Define return (error) values to make the code
clean (0, 100, 101), e.g., using enum.

■ Define valid range ⟨11, 67⟩, e.g., using
#define.

■ Ensure accessing passed arguments to the pro-
gram only if they are passed to the program.

■ Ensure the number of lines n is a valid value or
set the error program return value.

■ Peform any operation only if arguments (val-
ues) are valid.

■ Split printing 7 lines into two for loops, with
one print line call between the loops.

■ Implement a function to print the line pattern.

// print a line with n characters with the
pattern: k-times c, then space.

// the line ends by new line character ’\n’.
void print(char c, int n, int k);

int main(int argc, char *argv[])
{ ...

if (!ret) { // only if ret == ERROR_OK
for (int l = 1; l <= LINES; ++l) {

print(’*’, n, l); // print l x ’*’
}
print(’*’, n, n); // print n x ’*’
for (int l = LINES; l > 0 ; --l) {

print(’*’, n, l); // print l x ’x’
}

}
return ret;

}
Jan Faigl, 2024 B0B36PRG – Lecture 02: Writing your program in C 70 / 64

Coding Example Summary of the Operators and Precedence

Coding Example – Implementation Strategy 4/4

■ Define return (error) values to make the code
clean (0, 100, 101), e.g., using enum.

■ Define valid range ⟨11, 67⟩, e.g., using
#define.

■ Ensure accessing passed arguments to the pro-
gram only if they are passed to the program.

■ Ensure the number of lines n is a valid value or
set the error program return value.

■ Peform any operation only if arguments (val-
ues) are valid.

■ Split printing 7 lines into two for loops, with
one print line call between the loops.

■ Implement a function to print the line pattern.

void print(char c, int n, int k)
{

for (int i = 0; i < n; ++i) {
putchar((i+1) % (k+1) ? c : ’ ’);

}
putchar(’\n’);

}

■ The line consists of n characters; so n charac-
ters has to be printed.

■ Space is placed after each k characters of c.
■ Multiple of k can be detected by the remainder

after division, the operator %.
■ We need to handle i starts from 0.
■ The space is every (k+1)-th character.

Jan Faigl, 2024 B0B36PRG – Lecture 02: Writing your program in C 71 / 64

Coding Example Summary of the Operators and Precedence

Coding Example – Implementation Strategy 4(b)/4

■ Define return (error) values to make the code
clean (0, 100, 101), e.g., using enum.

■ Define valid range ⟨11, 67⟩, e.g., using
#define.

■ Ensure accessing passed arguments to the pro-
gram only if they are passed to the program.

■ Ensure the number of lines n is a valid value or
set the error program return value.

■ Peform any operation only if arguments (val-
ues) are valid.

■ Split printing 7 lines into two for loops, with
one print line call between the loops.

■ Implement a function to print the line pattern.

void print(char c, int n, int k)
{

int i, j;
for (i = j = 0; i < n; ++i, ++j) {

if (j == k) {
putchar(’ ’);
j = 0;

} else {
putchar(c);

}
}
putchar(’\n’);

}

■ Use extra counter j for space as every k-th
printed character.

■ Enjoy comma operator to increment j
within the for loop.

Jan Faigl, 2024 B0B36PRG – Lecture 02: Writing your program in C 72 / 64

Coding Example Summary of the Operators and Precedence

Summary of the Operators and Precedence 1/3
Precedence Operator Associativity Name

1 ++ L→R Increment (postfix)
−−−−−− Decrementation (postfix)
() Function call
[] Array subscripting
. −−−> Structure/union member

2 ++ R→L Increment (prefix)
−−−−−− Decrementation (prefix)
! Logical negation
∼∼∼ Bitwise negation
−−− + Unary plus/minus
* Indirection
& Address
sizeof Size

Jan Faigl, 2024 B0B36PRG – Lecture 02: Writing your program in C 74 / 64

Coding Example Summary of the Operators and Precedence

Summary of the Operators and Precedence 2/3
Precedence Operator Associativity Name

3 () R→L Cast
4 *, /, % L→R Multiplicative
5 + −−−−−− Additive

6 >>, << Bitwise shift

7 <, >, <=, >= Relational

8 ==, != Equality

9 & Bitwise AND

10 ˆ Bitwise exclusive OR (XOR)

11 | Bitwise inclusive OR (OR)

12 && Logical AND

13 || Logical OR

Jan Faigl, 2024 B0B36PRG – Lecture 02: Writing your program in C 75 / 64

Coding Example Summary of the Operators and Precedence

Summary of the Operators and Precedence 3/3

Precedence Operator Associativity Name

14 ? : R→L Conditional

15 =

R→L

Assignment

+=, -= additive

*=, /=, %= multiplicative

<<=, >>= bitwise shift

&=, ˆ=, |= Bitwise AND, XOR, OR

15 , L→R Comma

K. N. King: Page 735
http://en.cppreference.com/w/c/language/operator_precedence

Jan Faigl, 2024 B0B36PRG – Lecture 02: Writing your program in C 76 / 64

