Writing Program in C
Expressions and Control Structures
(Statements and Loops)

Jan Faigl

Department of Computer Science
Faculty of Electrical Engineering
Czech Technical University in Prague

Lecture 02
BOB36PRG — Programming in C

Overview of the Lecture

= Part 1 — Expressions
= Expressions — Literals and Variables
= Expressions — Operators

= Associativity and Precedence

« Assignment K. N. King: chapter 4 and 20

® Part 2 — Control Structures: Selection Statements and Loops
= Statements and Coding Styles
= Selection Statements
= Loops
= Conditional Expression K- N. King: chapters 5 and 6
= Part 3 — Assignment HW 01

® Part 4 — Coding example (optional)

Part |

Part 1 — Expressions

Jan Faigl, 2024 BOB36PRG — Lecture 02: Writing your program in C 1/75 | Jan Faigl, 2024 BOB36PRG — Lecture 02: Writing your program in C 2 /75 | Jan Faigl, 2024 BOB36PRG — Lecture 02: Writing your program in C 3/75
Expressions — Literals and Variables Expressions — Literals and Variables Expressions — Literals and Variables
Expressions Literals — Integer and Rational Literals — Characters and Text Strings
ExpreS§|on- prescribes calculation value of some given input. . . u Character literal is single (or multiple) character ~ ® Text string is a sequence of characters enclosed
= Expression is composed of operands, operators, and brackets. = Integer values are stored as one of the integer type (keywords): int, long, short, char and in apostrophe in quotation marks
= Expression can be formed of their signed and unsigned variants. Further integer data types are possible. 00 B’ or \a? WA string with the ond of lina \u'.
= Rational numbers (data types float and double) can be written with floating point — 13.1; . . . L .
= |iterals = unary and binary operators, or with mantissa aE\d ex tZEent 31.4e-3 or 31)4E 3 gSp' tific notati ® Value of the single character literal is the ASCII u String literals separated by white spaces
, ! —31.4e- L4E-3. cientific notation e X
. X . P . . code of the character. are joined to single one.
= variables, = function call, u Floating point numeric types depends on the implementation (usually as IEEE-754-1985). 207~ 48, 'A’~ 65 "A string literal" "with the end of the line \n"
Integer literals (values) Rational literals Value of character out of ASCII (greater than is concatenate into
= constants, = brackets. . . 127) depends on the compiler. B . ; . B
. P . Decimal 123 450932 = double — by default, if not explicitly) A string literal with end of the line \n
= The order of operation evaluation is prescribed by the operator precedence and asso- Hexadecimal 0x12 OXFAFF (starts with 0x or 0X) specified to be another type; = Type of the character constant (literal).
ciativity. Octal 0123 0567 (starts with 0) = float - suffix F or f; m Character constant is the int type. = String literal is stored in the array of the type
) unsigned 123450 (suffix U or u) | fleatf =101 char ¢ = '8°; // Letter of the digit 8 char terminated by the null character *\0’.
ig : x : N % orger oi 2}}:6 evaiua:}on %(1)0+*(x)*+y) long 123450 (suffix L or 1) = long double — suffix L or 1. int v = ¢ - ’0’; // Conversion to int value 8 A string literal "word" is stored as
x+y order o e evaluation X y X . o unsigned long 1234501 (suffix UL or u1) long double 1d = 10.11; .) o o e [N
. " has higher priority than + long long 12345LL (suffix LL or 11) char a = 0%; // Test a letter is upper case
+ is associative from the left-to-right Bool upper = (a >= ’A’ && a <= ’2°);
= Th Juati d b ibed by full renthesized ression Without suffix, the literal is of the type typu int - The size of the array must be +1 item longer to
iz X| ion. : : /
e evaluation order can be prescribed by fully parenthesized expressio char i = 787; // Test a letter is a digit store |0!
Simply: If you are not sure, use brackets _Bool digit = (i >= ’0’ && i <= ’97);
Jan Faigl, 2024 BOB36PRG — Lecture 02: Writing your program in C 5 /75 | Jan Faigl, 2024 BOB36PRG — Lecture 02: Writing your program in C 6 /75 | Jan Faigl, 2024 BOB36PRG — Lecture 02: Writing your program in C 7/75
Expressions — Literals and Variables Expressions — Literals and Variables Expressions — Operators
Literals — Enumeration Variable Definition Operators
= By default, values of the enumerated type starts from 0 and each other item increase the value i . m Operators are selected characters (or sequences of characters) dedicated for writting
about one, values can be explicitly prescribed. ® The variable definition has a general form expressions
declaration-specifiers variable-identifier; -p Co L A
enum { enun { » Declaration specifiers are followin = Five types of binary operators can be distinguished.
WHITE, ERROR_OK = O, // EXIT SUCCESS P 8 = Arithmetic operators — additive (addition/subtraction) and multiplicative (multiplica-
BLACK, - ’ - = Storage classes: at most one of the auto, static, extern, register; tion/division);
ERROR_INPUT = 100 H— 3 icte . ! .
RED, FRROR._RANGE = 101’ = Type quantifiers: const, volatile, restrict;) = Relational operators — comparison of values (less than, greater than, ...);
GREEN, . = .)) None or more type. quantifiers ar.e allowed. = Logical operators — logical AND and OR;
}; ’ = Type fSI_)elelel’SI void, cha.r, short, mF', long, float, dou.ble, signed, un31gned. = Bitwise operators — bitwise AND, OR, XOR, bitwise shift (left, right);
The enumeration values are usually written in uppercase. In addition, stbruct jnd unilon type specifiers can be used. Finally, own types defined by » Assignment operator = — a variables (l-value) is on its left side.
i . typedef can be used as well.
= Type — enumerated constant is the int type. ® Unary operators
. . - . i initiali i = Indicatin, sitive/negative value: + and —.
® Value of the enumerated literal can be used in loops. float f = 10.1f; // float variable initialized by float literal g PO /neg; ue: + o))
{ WHITE = 0, BLACK, RED, GREEN, BLUE, NUM_COLORS }; const double pi = 3.14; //const double variable initialized to 3.14 Operator — modifies the sign of the expression.
enum v ’ ! ’ C ’ unsigned char v = 255; //one byte integer variable with the full range 0..255 = Modifying a variable : ++ and ——.
for (int color = WHITE; color < NUM_COLORS; ++color) { const unsigned long 1 = 1001; //constant long integer variable initialized by long literal = Logical negation: !.
int i; // i variable of the common C integer type int that is not initialized = Bitwise negation: ~.
' m Ternary operator — conditional expression 7 :.
Jan Faigl, 2024 BOB36PRG — Lecture 02: Writing your program in C 9 /75 | Jan Faigl, 2024 BOB36PRG — Lecture 02: Writing your program in C 11 /75

Jan Faigl, 2024 BOB36PRG — Lecture 02: Writing your program in C

8/75

Expressions — Operators

Variables, Assignment Operator, and Assignment Statement

= Variables are defined by the type and name.
= Name of the variable are in lowercase.
= Multi-word names can be written with underscore _.
= Each variable is defined at a new line.
int n;
int number_of_items;
int numberOfItems;

Or we can use CamelCase.

= Assignment is setting the value to the variable, i.e., the value is stored at the memory
location referenced by the variable name.
m Assignment operator
(l-value) = (expression)
Expression is literal, variable, function calling, ...
= The side is the so-called I-value — location-value, left-value
It must represent a memory location where the value can be stored.
= Assignment is an expression and we can use it everywhere it is allowed to use the
expression of the particular type.
= Assignment statement is the assignment operator = and ;.

Expressions — Operators

Basic Arithmetic Expressions

® For an operator of the numeric types int and double, the following operators are
defined.
Also for char, short, and £loat numeric types.
= Unary operator for changing the sign —;
= Binary addition + and subtraction —;
® Binary multiplication * and division /.
® For integer operator, there is also
= Binary module (integer reminder) %.
® If both operands are of the same type, the results of the arithmetic operation is the
same type.
® In a case of combined data types int and double, the data type int is converted to
double and the results is of the double type.

Implicit type conversion.

Expressions — Operators

Example — Arithmetic Operators 1/2

1 int a = 10;

2 int b 3;

3 int c 4;

4 int d = 5;

g int result;

7 result = a - b; // subtraction
8 printf("a - b = %i\n", result);
9

10 result = a * b; // multiplication
1 printf("a * b = %i\n", result);

12

13 result = a / b; // integer divison

printf("a / b = %i\n", result);

result = a + b * c; // priority of the operators
printf("a + b * ¢ = %i\n", result);

printf("a * b + ¢ *x d = %i\n", a * b + ¢ * d); // -> 50

printf("(a * b) + (c * d) = %i\n", (a *x b) + (c * d)); // -> 50
21 printf("a * (b + ¢) *x d = %i\n", a * (b + c) * d); // -> 350

lec02/arithmetic_operators.c

Jan Faigl, 2024 BOB36PRG — Lecture 02: Writing your program in C 12 /75 | Jan Faigl, 2024 BOB36PRG — Lecture 02: Writing your program in C 13 / 75 | Jan Faigl, 2024 BOB36PRG — Lecture 02: Writing your program in C 14 /75
Expressions — Operators Expressions — Operators Expressions — Operators
Example — Arithmetic Operators 2/2 Arithmetic Operators Integer Division
1 #include <stdio.h>
2
3 int main(void) ® Operands of arithmetic operators can be of any arithmetic type.
4 . _ The only exception is the operator for the integer reminder % defined for the int type.
5 int x1 = 1 L . . .
6 double y1 = 2.2357; * Multiplication X *y Multiplication of x and y u The results of the division of the operands of the int type is the integer part of the
7 float x2 = 2.5343f; L. R T
8 double y2 = 2; / Division x/y Division of x and y division. Er 732 and 73 i 2
9 . . .g.. s 2 and — S —.
10 printf ("P1 = (%i, %O\n", x1, y1); % Reminder x%hy Reminder from the x / y & 7/3 1 i
i, % , x1, yb); . . . o
1u printf("P1 = (%i, %i)\n", x1, (int)y1); + Addition x+y Sum of x and y = For the integer reminder, it holds x%y = x — (x/y) * y.
12 printf ("P1 = (%f, %f)\n", (double)xl, (double)yl); : : Eg,7%3is1 7% 3is -1 7%-3is1 -7 % -3is-1
13 printf("P1 = (%.3f, %.3)\n", (double)xl, (double)yl); - Subtraction x -y Subtraction x and y & e o 0) N
14 + Unary plus x Value of x ® C99: The result of the integer division of negative values is the value closer to 0.
15 printf ("P2 = (4f, %£)\n", x2, y2); i * 9
16 - Unary minus -x Value of —x = It holds that (a/b)*b + a%b = a.
ot ggxgi: g - gﬁ N g; % ;'n"glg;:ﬁ;t:ochgizmn to float ++ Increment ++x/x++ Incrementation before/after the evaluation For older versions of C, the results depends on the compiler.
2 intf("(P1 - P2)=(%.3f, %0.3f)\n", dx, dy) of the expression
20 rint - = s KU n X H .
n grmtf(.. IP1 2f\n", dx * dx +’dyy,’dy>; - Decrement --x/x-- Decrementation before/after the evalua-
2 N return 0; tion of the expression x
23
lec02/points.c
Jan Faigl, 2024 BOB36PRG — Lecture 02: Writing your program in C 15 / 75 | Jan Faigl, 2024 BOB36PRG — Lecture 02: Writing your program in C 16 / 75 | Jan Faigl, 2024 BOB36PRG — Lecture 02: Writing your program in C 17 / 75

Expressions — Operators

Implementation-Defined Behaviour

= The C standard deliberately leaves parts of the language unspecified.

= Thus, some parts depend on the implementation, such as compiler, environment, or
computer architecture.

E.g., Reminder behavior for negative values and version of the C prior C99.

= The reason for that is the focus of C on efficiency, i.e., match the hardware behavior.

= Having it in mind, it is best to avoid writing programs that depend on implementation-
defined behavior.
K.N.King: Page 55

That is one example of writting programs that seem to be working and functional and a

Expressions — Operators
Unary Arithmetic Operators

= Unary operator (++ and ——) change the value of its operand.
The operand must be the 1-value, i.e., an expression that has memory space, where the
value of the expression is stored, e.g., a variable.
® |t can be used as prefix operator, e.g., ++x and ——x;
® or as postfix operator, e.g., x++ and x——.
® |n each case, the final value of the expression is different!

int i; int a; value of i value of a
i=1a=09; 1 9
a=it++; 2 1
a = ++i; 3 3

a = ++(i++); Not allowed! Value of i++ is not the l-value

For the unary operator i++, it is necessary to store the previous value of i and then the

Expressions — Operators

Relational Operators

= Operands of relational operators can be of arithmetic type, pointers (of the same type)
or one operand can be NULL or pointer of the void type.

< Less than x <y 1 if x is less than y; otherwise 0

<= Less than or equal x <=y 1ifxis less then or equal to y; otherwise 0

> Greater than x >y 1if x is greater than y; otherwise 0

>=Greater than or equal x >= y 1 if x is greater than or equal to y; other-
wise 0

== Equal x ==y 1if xis equal to y; otherwise 0

I= Not equal x !'=y 1if xis not equal to y; otherwise 0

program that is correct. variable i is incremented. The expression ++i only increments the value of i. Therefore,
++i can be more efficient.
Jan Faigl, 2024 BOB36PRG — Lecture 02: Writing your program in C 18 /75 | Jan Faigl, 2024 BOB36PRG — Lecture 02: Writing your program in C 19 / 75 | Jan Faigl, 2024 BOB36PRG — Lecture 02: Writing your program in C 20 /75

Expressions — Operators
Logical operators

= Operands can be of arithmetic type or pointers.

= Resulting value 1 means true, O means false.

= In the expressions && (Logical AND) and || (Logical OR), the left operand is evaluated
first.

u |f the results is defined by the left operand, the right operand is not evaluated.

Short-circuiting behavior — it may speed evaluation of complex expressions in runtime.

&& Logical AND x & y 1if x and y is not 0; otherwise 0.

I Logical OR x || y 1if at least one of x, y is not 0;
otherwise 0.
! Logical NOT 'x 1 if x is 0; otherwise 0.

= Operands && a || have the short-circuiting behavior, i.e., the second operand is
not evaluated if the result can be determined from the value of the first operand.

Expressions — Operators

Example — Short-Circuiting Behaviour 1/2

1 #include <stdio.h>
2 #include <stdlib.h>

3

4 int fce_a(int n);

5 int fce b(int n);

6

7 int main(int arge, char vargv[l)

8

9 if (arge > 1 &k fce_a(atoi(argv[1])) &k fce b(atoi(argv[11)))
10 {

11 printf("Both functions fce_a and fce_b pass the test\n");
12 } else {

13 Pprintf("One of the functions does not pass the test\n");
14

15 return 0;

16)

17

18 int fce_a(int n)

19

20 printf("Calling fce_a with the argument *%d’\n", n);

21 return n % 2 == 0;

2 3

23

24 int fee_b(int n)

25

26 printf("Calling fce b with the argument %d’\n", n);

27 return n > 2

28}

lec02/demo-short_circuiting.c

Expressions — Operators

Example — Short-Circuiting Behaviour 2/2 — Tasks

In the example 1ec02/demo-short_circuiting.c
® Test how the logical expressions (a function call) are evaluated.
u |dentify what functions fce_a() and fce_b() are implementing.
= Rename the functions appropriately.
u |dentify the function headers and why they have to be stated above the main function.

® Try to split implementation of the functions to a separate module.

Jan Faigl, 2024 BOB36PRG — Lecture 02: Writing your program in C 21 /75 | Jan Faigl, 2024 BOB36PRG — Lecture 02: Writing your program in C 22 /75 | Jan Faigl, 2024 BOB36PRG — Lecture 02: Writing your program in C 23 /75
Expressions — Operators Expressions — Operators Expressions — Operators
Bitwise Operators Bitwise Shift Operators Example — Bitwise Expressions
#include <inttypes.h>
= Bitwise operators treat operands as a series of bits. L
Low—Lever[,’; ; i }?\IFK e ing I is low level when its programs require at- L] lBlf’iwnse _shhlit operators shift the binary representation by a given number of bits to the wint8_t a = 4;
tenti tl i t. K.N.King: ter 20. . .
ention of the irrelevan ing: apter ert or rig :)))) uint8_t b = 5;
m Left shift — Each bit shifted off a zero bit enters at the right.
& Bitwise AND x &y lifxandyisequal to1 (bit-by- = Right shift — Each bit shift off.)
bit) ® a zero bit enters at the left — for positive values or unsigned types. a dec: 4 b:an. 0100
| Bitwise inclusive OR x|y 1if x ory is equal to 1 (bit-by-bit) = for negative values, the entered bit can be either 0 (logical shift) or 1 (arithmetic shift b dec: 5 bin: 0101
- Bitwise exclusive or (XOR) x "~y lifonlyxoronlyyis1 (bitby- right). Depends on the compiler. a & b dec: 4 bin: 0100
o | o b"_)f . ® Bitwise shift operators have lower precedence than the arithmetic operators! a | bdec: 5 bin: 0101
~ Bitwise complement (NOT) ~% 1 if x is O (bit-by-bit) B << 24 lmeansi << (241) a ~ b dec: 1 bin: 0001
<< Bitwise left shift x <<y Shift of x by y bits to the left Do not be surprised — parenthesized the expression!
>> Bitwise right shift x >> y Shift of x by y bits to the right a >> 1 dec: 2 bin: 0010
a << 1 dec: 8 bin: 1000
lec02/bits.c
Jan Faigl, 2024 BOB36PRG — Lecture 02: Writing your program in C 24 /75 | Jan Faigl, 2024 BOB36PRG — Lecture 02: Writing your program in C 25 /75 | Jan Faigl, 2024 BOB36PRG — Lecture 02: Writing your program in C 26 /75
Expressions — Operators Expressions — Operators Expressions — Operators
Operators for Accessing Memory Other Operators Cast Operator
. Here, for completeness, detail i the further lectures. Operator Name Example Result
= In C, we can directly access the memory address of the variable. We need in scanf)/ = Changing the variable type in runtime is called type case
= The access is realized through a pointer. It is an integer value, typically long 0 Function call £(x) Call the function £ with the argument x. 18Ing the vaniable typ P :
It allows great options and also understand data representation and memory access models. (type) Cast) (int)x Change the type of x to int. ® Explicit cast is written by the name of the type in O, e.g.,
Operator Name Example Result sizeof Size gfthe item sizeof (x) Size of x in bytes.) int i:
?7: Conditional x?7y:z Doyifx != 0;otherwise z. T X
& Address &x Pointer to x s Comma X, y Evaluate x and then y, the result is the float f = (float)i;
* Indirection *p Variable (or function) addressed by the result of the last expression. . . . i . o
pointer p) . = Implicit cast is made automatically by the compiler during the program compilation.
.) o ® The operand of sizeof () can be a type name or expression. . .
1l Array subscript- x[i] *(x+1) — item of the array x at the ® |f the new type can represent the original value, the value is preserved by the cast.
ing position i. int a = 10:]) o
. . ’ ® QOperands of the char, unsigned char, short, unsigned short, and the bit field
Structure/union s.x Member x of the struct/union s. print£("%lu %lu\n", sizeof(a), sizeof(a + 1.0)); P & e g_ ; !
member Lec02/size0f ¢ types can be used everywhere where it is allowed to use int or unsigned int.
-> Structure/union p->x Member x of the struct/union ad- . E le of th " ' C expects at least values of the int type.
member dressed by the pointer p. xample of the comma opera or. X = Operands are automatically cast to the int or unsigned int.
It is not allowed an operand of the & operator is a bit field or variable of the register class, for (¢ =1, 1 =051 <3; ++, c+=2) {
because it has to be addressable memory space printf("i: %d c: %d\n", i, ¢);
Operator of the indirect address * allows to access to the memory using pointers.
Jan Faigl, 2024 BOB36PRG — Lecture 02: Writing your program in C 27 /75 | Jan Faigl, 2024 BOB36PRG — Lecture 02: Writing your program in C 28 / 75 | Jan Faigl, 2024 BOB36PRG — Lecture 02: Writing your program in C 20 /75

Associativity and Precedence

Operators Associativity and Precedence

= Binary operation op is associative on the set S if
(xopy)opz = xop(yopz), for each x,y,z € §.
= For not associative operators, it is required to specify the order of evaluation.
m | eft-associative — operations are grouped from the left.
E.g., 10 — 5 — 3 is evaluated as (10 — 5) — 3.
= Right-associative — operations are grouped from the right.
Eg,3+5%is28 or3-52 is 75 vs (3-5)? is 225.

= The assignment is right-associative.

E.g., y=y+8.
First, the whole right side of the operator = is evaluated, and then, the results are assigned
to the variable on the left.
= The order of the operator evaluation can be defined by the fully parenthesized expression.

Jan Faigl, 2024 BOB36PRG — Lecture 02: Writing your program in C 31/75

Associativity and Precedence

Summary of the Operators and Precedence 1/3

Precedence Operator Associativity Name
1 ++ L—R Increment (postfix)
- Decrementation (postfix)

0 Function call

I Array subscripting

-> Structure/union member

2 ++ R—L Increment (prefix)
— Decrementation (prefix)

! Logical negation

~ Bitwise negation

-+ Unary plus/minus

* Indirection

& Address

sizeof Size

Jan Faigl, 2024 BOB36PRG — Lecture 02: Writing your program in C 32/ 75

Associativity and Precedence

Summary of the Operators and Precedence 2/3

Precedence Operator Associativity Name
3 0 R—L Cast
4 * /% L—R Multiplicative
5 Additive
6 Bitwise shift
7 = Relational
8 Equality
9 & Bitwise AND
10 - Bitwise exclusive OR (XOR)
11 | Bitwise inclusive OR (OR)
12 && Logical AND
13 1] Logical OR

Jan Faigl, 2024 BOB36PRG — Lecture 02: Writing your program in C 33/75

Associativity and Precedence

Summary of the Operators and Precedence 3/3

Precedence Operator Associativity Name
14 ?7: R—L Conditional

15 = Assignment
additive

R—L multiplicative

bitwise shift

Bitwise AND, XOR, OR

15) L—R Comma

Assignment

Simple Assignment
m Set the value to the variable.
Store the value into the memory space referenced by the variable name.
® The form of the assignment operator is
(variable) = (expression)
Expression is literal, variable, function call, ...
= C is statically typed programming language.

= A value of an expression can be assigned only to a variable of the same type.
Otherwise the type cast is necessary.

m Example of the implicit type cast.

int i = 320.4; // implicit conversion from ’double’ to ’int’ changes value from
320.4 to 320 [-Wliteral-conversion]

char ¢ = i; // implicit truncation 320 -> 64

Assignment

Compound Assignment
m A short version of the assignment to compute a new value of the variable from itself:
(variable) = (variable) (operator) (expression)

® can be written as
(variable) (operator) = (expression)

Example
int i = 10; int i = 10;
double j = 12.6; double j = 12.6;
i=1+1; i+=1;
j=370.2 j/=0.2;

= Note that the assignment is an expression.
The assignment of the value to the variable is a side effect.

K. N. King: Page 735 . s . e int x, y;
http: //en. cpproference . con/u/c/1anguage/ operator. procedence m C is type safe only within a ||m|te<:! context of the compilation, e.g., for ‘-6
printf("%d\n", 10.1); a compiler reports an error. y = x=x + 6;
® In general, C is not type safe. In runtime, it is possible to write out of the allocated memory space.
Jan Faigl, 2024 BOB36PRG — Lecture 02: Writing your program in C 34 /75 | Jan Faigl, 2024 BOB36PRG — Lecture 02: Writing your program in C 36 / 75 | Jan Faigl, 2024 BOB36PRG — Lecture 02: Writing your program in C 37 /75
Assignment Assignment
Assignment Expression and Assignment Statement Undefined Behaviour
= The statement performs some action and it is terminated by ; ® There are some statements that can cause undefined behavior according to the C
' standard.
robot_heading = -10.23; _ _ . Part ||
robot_heading = fabs(robot_heading); " C . V<b ia +2) - (- 1)
printf ("Robot heading: %f\n", robot_heading); LN S .
. ® The program may behaves differently according to the used compiler, but may also Part 2 — Control Structures: Selection Statements and
= Expression has type and value. . o .
) i not compile or may not run; or it may even crash and behave erratically or produce L
23 int type, value is 23 ingl | oops
144-16/2 int type, value is 22 meaningless results.
y=8 int type, value is 8 = |t may also happened if variables are used without initialization.
= Assignment is an expression and its value is assigned to the left side.
® The assignment expression becomes the assignment statement by adding the . . .
. Ig P 8 4 & m Avoid statements that may produce undefined behavior!
semicolon. A further detailed example of undefined behavior and code optimization with its analysis
s in Lecture 09.
Jan Faigl, 2024 BOB36PRG — Lecture 02: Writing your program in C 38 /75 | Jan Faigl, 2024 BOB36PRG — Lecture 02: Writing your program in C 39 /75 | Jan Faigl, 2024 BOB36PRG — Lecture 02: Writing your program in C 40 / 75

Statements and Coding Styles Statements and Coding Styles Statements and Coding Styles
Statement and Compound Statement (Block) Coding Style Coding Style — Code Clarity and Readability
. . X . . = There are many different coding styles.
= Statement is terminated by ; = |t supports clarity and readability of the source code. . Ifyb L g sty dati d by readi . "
. .) : N = Inspire yourself by existing recommendations and by reading representative source codes.
Statement consisting only of the semicolon is empty statement. https://www.gnu.org/prep/standards/html_node/Writing-C.html
= Block consists of sequences of declarations and statements. = Formatting of the code is the fundamental step.
. . . . e Setup automatic formatting in your text editor.
= ANSI C, C89, C90: Declarations must be placed prior other statements. m Appropriate identifiers. g &y .
I f - .))
t is not necessary for C99. = Train yourself in coding style even at the cost of slower coding!
u rt and end of the block is mark he curly brack nd }. . PR . ’ .
Start and end of the block is marked by the curly brackets { and } m Readability and clarity is important, especially during debugging!
= A block can be inside other block. Notice, sometimes it can be better to start from scratch
void function(void) void function(void) { /* function block start */ = Recommend coding style.
{ /* function block start */ { /* inner block */ id function(void)) . . "
{/* inner block */ for (int i = 0; i < 10; ++i) { ; ‘{’O}* fﬁ:ztig: gg;ck start */ u Use English, especially for identifiers.
for (i = 05 i < 105 ++i) //inner for-loop block CoLom DRoeE. - . " — .
P 3 for/j:}nt i p 0,11 < 117(1)' ;u) { = Use nouns for variables. Clean Code - Uncle Bob / Lesson 1 Google Coding Interview with a High School Student
. B 4 inner for-loop bloc . https://youtu.be/7EmboKQHE1M https://youtu.be/qz9tK1F431k
//inner for-loop block 3 5 if (i ==5) { = Use verbs for function names. -
b ¥ 6 break; http://users.ece.cmu.edu/~eno/coding/CCodingStandard.html;
} ’ https://wew.doc. ic.ac.uk/lab/cplus/cstyle.htal;
7 http://en.wikipedia.org/wiki/Indent_style;
¥ Notice the coding styles. g N + Lecturer's preference: indent shift 3, space characters rather than tabular. e ing styte ot
Jan Faigl, 2024 BOB36PRG — Lecture 02: Writing your program in C 42 /75 | Jan Faigl, 2024 BOB36PRG — Lecture 02: Writing your program in C 43 / 75 | Jan Faigl, 2024 BOB36PRG — Lecture 02: Writing your program in C 44 / 75
Statements and Coding Styles Statements and Coding Styles Statements and Coding Styles
Compound Command and Nesting 1/2 Compound Command and Nesting 2/2 Control Statements
Four nested levels. Extraction (new function definition). . _— . . X
. . N Inversion (substitution of the input value conditions). Final cleanup.
1 |int get_sum_of_even_numbers(int from, int to) 1 |int filter_odd(int number);
2 2 - ’ 1 |int filter_odd(int number); 1 |int filter_odd(int number); ® Selecti S
: e co()) ‘ 3 | int get.sun_of even_numbers(int from, int to) ; int t f b (int f: int to) i int get_sum_of_even_numbers(int from, int to) election >tatement
a int sum = 0; int get_sum_of_even_numbers(int from, int to _sun_of_even_
s for Cint nusber = from; mumber <= to; +mumber) €| & |\ it (grom < vo) ¢ F . ® Selection Statement: if () or if () else
s if (oumber % 2 == 0) { . int sum = 03 il =) 5 | if (from > to) return 0; = Switch Statement: switch () case
+= number; _ . o 6 return 0; 6
o ! e | = Control Loops
9 } // end for loop o } // end for loop ’ 8 int sum = 0; B for (int number = from; number <= to; ++number) {
0 return sun; end Zor loop 9 for (int number = from; number <= to; ++number) { 9 sum += filter_odd(number); m for ()
u } else { o return sum; 10 sun += filter_odd(number); 10 } // end for loop = while O
2 return 0; o Jelse 1 } // end for loop 1 return sum; while
= R ;; return 0; - Toturn sum; 2 |} = do while ()
3} 13 13 ' .
* wr | 14 |1ne fitcer.oddCiny munber) = Jump statements (unconditional program branching)
) M":ia":'n":’"‘nvf 22 more ’fi:{’f’!ff:’)’"’- 16 | int filter_odd(int number) . [fitver-odd(int number) . return (number % 2 == 0) : number : O; ® continue
-sun.of _even. . 17 if ber % 2 == 0. w |r
| AT — 18 | if (number % 2 == 0) { i e ® break
H &6 soemrmoe e g i = ETEES 19 ® return
] sum += filter_odd(number); 20 20 return 0;
Ul 2t | retum 0 2 = goto
. : 22
= Using extraction and inversion techniques, we reduce the nesting depth. By using the techniques of extraction and inversion we reduce the nesting depth.
https://youtu.be/CFRhGNUXG-4
Jan Faigl, 2024 BOB36PRG — Lecture 02: Writing your progrdththf ¢/youtu.be/CFRIGnuXG-4 45 / 75 | Jan Faigl, 2024 BOB36PRG — Lecture 02: Writing your program in C 46 / 75 | Jan Faigl, 2024 BOB36PRG — Lecture 02: Writing your program in C 47 / 75
Selection Statements Selection Statements Selection Statements
Selection Statement — if The switch Statement The switch Statement — Example
m if (expression) statement;; else statements = Allows to branch the program based on the value of the expression of the enumerate
® For expression != 0 the statement; is execu_:hed; otherwise :tz;tementg.J (integer) type, e.g., int, char, short, enum. switch (v) { if (v == A°) {
t) .
u The else part is optional. e can be the ® The form is case ’A’: printf ("Upper ’A’\n");
. . . ; " S\ - ; = g
= Selection statements can be nested and cascaded. switch (expression) { | printf ("Upper *A’\n"); }else if (v ==a’) {
Why You Shouldn’t Nest Your Code — https://youtu.be/CFRhGnuXG-4. case constant;: statements;; break; break; printf ("Lower ’a’\n");
1
int max; int max; case constanty: statementsy; break; case ’a’: } else {
if (a > b) { if (a > b) { printf("Lower ’a’\n"); printf(
) . 0Tt i e sao\g") -
if (@ > o) { e case constant,: statements,; break; break; It is not ’A’ mor ’a’\n");
max = a; } else if (a < ¢) { default: statementsyes; break; default: ¥
} e 3 printf (
3 } else if (a == Db) { . . . " ; e S A\t -
o where constants are of the same type as the expression and statements; is a list of It is not ’A’ mor ’a’\n");
} else { statements. break;
e m Switch statements can be nested. Y
} Semantics: First the expression value is calculated. Then, the statements under the same value are executed. 1ec02/switch. c
If none of the branch is selected, statementser under default branch as performed (optional).
Jan Faigl, 2024 BOB36PRG — Lecture 02: Writing your program in C 49 /75 | Jan Faigl, 2024 BOB36PRG — Lecture 02: Writing your program in C 50 / 75 | Jan Faigl, 2024 BOB36PRG — Lecture 02: Writing your program in C 51 /75

Selection Statements

The Role of the break Statement
= The statement break terminates the branch. If not presented, the execution continues
with the statement of the next case label.

Example
1 int part = 7 = part 1
2 switch(part) { Branch 1
3 case 1:
4 printf ("Branch 1\n"); = part < 2
5 break; Branch 2
6 case 2: Branch 3
7 printf ("Branch 2\n");
8 case <
9 printf ("Branch 3\n"); " part ¢~ 3
10 break; Branch 3
11 case 4:
12 printf("Branch 4\n"); = part < 4
13 break; Branch 4
14 default:
15 printf("Default branch\n"); = part « 5
16 break;

1w} Default branch

lec02/demo-switch_break.c

Loops
Loops
= The for and while loop statements test the controlling expression
before the enter to the loop body. false
= for — initialization, condition, change of the controlling variable
can be a part of the syntax. true

for (int i = 0; i < 5; ++i) {

= while — controlling variable out of the syntax
int i = 0;
while (i < 5) {

i+= 1

= The do loop tests the controlling expression after the first loop
is performed.
int i = -1;
do {
i= 1
} while (i < B);

true

Loops

The for Loop
® The basic form has four parts (three expressions and a single statement).
for (expri; exprp; exprs) statement
m All expr; are expressions and typically they are used for
alization of the controlling variable (side effect of the assignment

1. expry —i
expression);

2. expr, — Test of the controlling expression;

3. If expr, !'=0 the statement is executed; Otherwise the loop is terminated.

4. exprs — updated of the controlling variable (performed at the end of the loop

= Any of the expressions expr; can be omitted.
® break statement — force termination of the loop.
® continue - force end of the current iteration of the loop.

The expression exprs is evaluated and test of the loop is performed.

= An infinity loop can be written by omitting the expressions.
for (55) {...}

Jan Faigl, 2024 BOB36PRG — Lecture 02: Writing your program in C 52 /75 | Jan Faigl, 2024 BOB36PRG — Lecture 02: Writing your program in C 54 / 75 | Jan Faigl, 2024 BOB36PRG — Lecture 02: Writing your program in C 55 / 75
Loops Loops. Loops
The continue Statement The break Statement — Force Termination of the Loop The goto Statement
= The program continue with the next statement after the loop. ® goto allows transfing the control to the defined label.
= |t transfers the control to the evaluation of the controlling expression. " Exarpple in the while loop. It can be used only within a function body.
) o int i = 10; = Syntax goto label;.
= The continue statement can be used inside the body of the loops. while (i > 0) { }
for O it (i ==8) { ® The jump goto can jump only outside of the particular block, it can jump to a
L] or i "ws "y .
® vhile O for (int i = 0; i < 10; ++i) { Eﬁf;ﬁf(i reaches 5, leave the loop\n"); statement. .]
] printf("i: %i ", i); ® |t can be used only within a function block.
= do...while O i (%310 (i
= Examples continue; printf("End of the while loop i: %d\n", i); N ;‘;ﬁ zfiz 3 2;0_ $<3; e) 1
. . } intf("\n") ; lec02/break.c 3 for (int j = 0; j < 5; ++j) {
;2; ti 2 0; i< 20; ++1) { prin nes) m Example in the for loop. 4 if (J't==1test) E
i GE%2==0 1 1ec02/demo-continue.c for (int i = 0; i < 10; ++i) { clang demo-break.c : goto loop_out;
y comrime clang demo-continue.c B e 7 Eprintf(stdout, "Loop i: %d j: %d\n", i, j);
printf ("%d\n", i); i(a'wt , continue; 14 412 1:3 .
i:2 i:3 . - 10 return 0;
i:4 1:5 i:6 printf ("\n"); 11 loop_out:
lec02/continue.c i:7 1:8 1:9 if él >k§) { 12 fprintf(stdout, "After loop\n"); // goto can jump to a label that
3} Teak; Lec02/d broai represents statement (there must be an address to be jump at).
ec02/demo-break.c 13 return -1;
Jan Faigl, 2024 BOB36PRG — Lecture 02: Writing your program in C 56 /75 |Jan Fa'\gh%ﬂZ‘i BOB36PRG — Lecture 02: Writing your program in C 57 /75 | Jan Faigl, 2024 BOB36PRG — Lecture 02: Writing your program in C lec02/goto.c 58 /75
Loops Loops Loops
Nested Loops Example — isPrimeNumber () 1/2 Example — isPrimeNumber () 2/2
= The break statement terminates the inner loop. ® The value of (int)sqrt((double)n) is not changing in the loop.
for (int i = 0; i < 3; ++i) { i-j: 0-0 #include <stdbool.h> £ ; i = 9. i <= (i . -
. L2 22 . . or (int i = 2; i <= (int)sqrt((double)n); ++i
for (int j = 0; j < 3; ++j) { i-j: 0-1 #include <math.h> ((¢)sqre(()n)) A
printf("i-j: %i-%i\n", i, j); . . .
it (=1 { i-j: 1-0 zBool isPrimeNumber (int n) }
break; i-j: 1-1 _Bool ret = true; = We can use the comma operator to initialize the maxBound variable.
i-j: 2-0 for (int i = 2; i <= (int)sqrt((double)n); ++i) {
3 } i-j: 2-1 if (n % i 0 for (int i = 2, maxBound = (int)sqrt((double)n);
ret = e K .
= The outer loop can be terminated by the goto statement. break; i <= maxBound; ++i) {
for (int i = 0; i < 5; ++i) { i
for (int j = 0; j < 3; ++i) {) = Or, we can declare maxBound as a constant variable.
J J 0-0 .
intf("i-3. Ji-qivat, i, 3): i-j - return ret;)
1;;1121; 2;»{« , i, 30 i-j: 0-1 1ec02/demo-prime.c Bool ret = true:
1 J == =J- - . . . - - 3
goto outer; i-j: 0-2 ® Once the first factor is found, call break to terminate the loop. const int maxBound = (int)sqrt((double)n);
3 It is not necessary to test other numbers. for (int i = 2; i <= maxBound ; ++i) {
outer: 1ec02/demo-goto.c } E.g., Compile and run demo-prime.c: clang demo-prime.c -lm; ./a.out 13.
Jan Faigl, 2024 BOB36PRG — Lecture 02: Writing your program in C 59 /75 | Jan Faigl, 2024 BOB36PRG — Lecture 02: Writing your program in C 60 / 75 | Jan Faigl, 2024 BOB36PRG — Lecture 02: Writing your program in C 61 /75

Conditional Expression

Conditional Expression — Example Greatest Common Divisor

1 int getGreatestCommonDivisor(int x, int y)
2 {

3 int d;

4 if (x <y) {

5 d = x;

6 } else {

7 d=y;

8

) {

¥
9 while ((x %4 d!'=0) |l (y%d'! =
d=d 1

H

12 return d;
13

= The same with the conditional expression expry 7 exprs : exprs can be as follows.

Part |1l
Part 3 — Assignment HW 01

HW 01 — Assignment

Topic: ASCII art
Mandatory: 2 points; Optional: none; Bonus : none
® Motivation: Have a fun with loops and user parametrization of the program.
® Goal: Acquire experience using loops and inner loops.
= Assignment https://cw.fel.cvut.cz/wiki/courses/b3b36prg/hw/hw01
= Read parameters specifying a picture of small house using selected ASCII chars.

https://en.wikipedia.org/wiki/ASCII_art
= Assesment of the input values.

Jan Faigl, 2024 BOB36PRG — Lecture 02: Writing your program in C

70 /75

Jan Faigl, 2024

BOB36PRG — Lecture 02: Writing your program in C

71/

75

Jan Faigl, 2024

1 int getGreatestCommonDivisor(int x, int y) .
2 ® Deadline: 16.03.2024, 23:59 AoE.
3 intd=x<y?x:y; _
4 while ((x%d!1=0 11 (yhdt=0){ Aok - Anywhere on Earth.
5 d=4d-1;
6
7 return d;
s)} lec02/demo-ged. ¢
Jan Faigl, 2024 BOB36PRG — Lecture 02: Writing your program in C 63 /75 | Jan Faigl, 2024 BOB36PRG — Lecture 02: Writing your program in C 64 / 75 | Jan Faigl, 2024 BOB36PRG — Lecture 02: Writing your program in C 65 / 75
Coding Example Coding Example
Coding Example — Assignment Coding Example — Implementation Strategy 1/4
= Impl h . h = Define return (error) values to make the code ~ #include <stdio.h> //for putchar()
mpement ? program that prints the pattern k ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok k% clean (0. 100, 101)’ e.g., using enum. #include <stdlib.h> //for atoi()
Pa t |V with seven lines. Kk Rk Rk Rk KK KK Kk Rk Rk Rk kK KK
r ® Define valid range (11,67), e usin
® The default width n is 27 characters or it is TR RRR XORK XK AR ok ok ok e N ge (1L,67), e, & enum {
read as the first program argument (if given) #define. ERROR_OK = 0,
Part 4 — Codlng EXamp'e 8 ’ sokk kokok kokok skokok skskok kokok ook koksk kokok » Ensure accessing passed arguments to the pro- ERROR_INPUT = 100,
= The width n needs to be odd number, or the sk Kk kk Rk Rk kk Rk kK kk Rk kK ok . &P € P ERROR_RANGE = 101
. gram only if they are passed to the program. .
(Opt|ona|) program returns 100. ok ok ok k kK K K K K K K ok ok k K K X H
m Ensure the number of lines n is a valid value or
® |t holds 11 < n < 67, or the program returns C b L0 if ai set the error program return value #define MIN_VALUE 11
101. = Convert program argv[1] by atoi (), if given. prog - #define MAX_VALUE 67
. . i inti i m Peform any operation only if arguments (val-
= On success, the program prints seven lines and = Decompose the program into printing 7x line. ues) are vayh'd . v € (#define LINES 3
returns 0. = Implement the program infrastructure first.
hen f logi cular i = Split printing 7 lines into two for loops, with // Print line of the with n using character
® Avoid “magic numbers” in the program when- ™ Then, focus on logic t? particular ines con- one print line call between the loops. in ¢ and space; with k continuous
ever is it possible. trolled by a suitably designed expressions. _) . characters c followed by space.
= |mplement a function to print the line pattern. void print(char c, int n, int k);
Jan Faigl, 2024 BOB36PRG — Lecture 02: Writing your program in C 66 / 75 | Jan Faigl, 2024 BOB36PRG — Lecture 02: Writing your program in C 68 / 75 | Jan Faigl, 2024 BOB36PRG — Lecture 02: Writing your program in C 60 / 75
Coding Example Coding Example Coding Example
Coding Example — Implementation Strategy 2/4 Coding Example — Implementation Strategy 3/4 Coding Example — Implementation Strategy 4/4
m Define return (error) values to make the code = Define return (error) values to make the code // print a line with n characters with the m Define return (error) values to make the code void prinmt(char c, int n, int k)
clean (0, 100, 101), e.g., using enum. int main(int argc, char *argv(]) clean (0, 100, 101), e.g., using enum. pattern: k-times c, then space. clean (0, 100, 101), e.g., using enum.
{ . . // the line ends by new line character ’\n’. for (int i = 0; i < n; ++i) {
m Define valid range (11,67), e.g., using int ret = ERROR_OK; = Define wvalid range (11.67), eg, using void print(char c, int n, int k); m Define valid range (11,67), e.g., using putchar((i+1) % (k+1) 7 ¢ : > *);
#define. int n = argc > 1 ? atoi(argv[1]) : 27; // #define #define.
. convert argv[1] or use default value int main(int argc, char *argv[]) . utchar (’\n’);
= Ensure accessing passed arguments to the pro- B = Ensure accessing passed arguments to the pro- ... & & m Ensure accessing passed arguments to the pro- } P ’
gram only if they are passed to the program. ret =n % 2 == 0 ? ERROR_INPUT : ret; // gram only if they are passed to the program if (iret) { // only if ret == ERROR_OK gram only if they are passed to the program.
= Ensure the number of lines n is a valid value or ins{liretn&zs odd number = Ensure the number of lines n is a valid value or forpgzz(}: 11; 11? %NEZH:?X{,*, ® Ensure the number of lines nis a valid value or @ The line consists of n characters; so n charac-
1 re B B 3
set the error program return value .
set the error program return value. (a < MIN_VALUE || n > MAX_VALUE)) { prog set the error program return value. ters has to be printed.
m Peform any operation only if arguments (val- ret = ERROR_RANGE; //ensure n is in the m Peform any operation only if arguments (val- printC’*’, n, n); // print n x ’x’ = Peform any operation only if arguments (val- ® Space is placed after each k characters of c.
ues) are valid closed interval [MIN_VALUE, MAX_VALUE] ues) are valid for (int 1 = LINES; 1 > 0 ; --1) { ues) are valid = Multiple of k can be detected by the remainder
} print(°+’, n, 1); // print 1 x ’x’ tter divisi h B
= Split printing 7 lines into two for loops, with = Split printing 7 lines into two for loops, with m Split printing 7 lines into two for loops, with after division, the operator 7.
one print line call between the loops return ret; one print line call between the loops. } one print line call between the loops = We need to handle i starts from 0.
. . | return ret; .
= Implement a function to print the line pattern. = Implement a function to print the line pattern } = Implement a function to print the line pattern. ® The space is every (k+1)-th character.

BOB36PRG — Lecture 02: Writing your program in C 72/ 75

Coding Example Topics Discusse Topics Discussed
Coding Example — Implementation Strategy 4(b)/4 Topics Discussed
m Define return (error) values. to make the code x{roid print(char ¢, int n, int k) = Expressions

clean (0, 100, 101), e.g., using enum. iwt 4, §; = Operators — Arithmetic, Relational, Logical, Bitwise, and others
m Define valid range (11,67), e.g., using for (i = j = 0; i < n; ++i, ++j) { = Operator Associativity and Precedence

#define. if (5 =1k { = Assignment and Compound Assignment

. putchar(’ ’); Summary Of the Lecture = |Implementation-Defined Behaviour
m Ensure accessing passed arguments to the pro- A X -
. j=0; = Undefined Behaviour
gram only if they are passed to the program. } else { Coding Styl
. = Codin tyles

m Ensure the number of lines n is a valid value or putchar (c) ; & ot

set the error program return value. m Select Statements

. . |
m Peform any operation only if arguments (val- putchar (’\n’); Loops
ues) are valid. } = Conditional Expression
m Split printing 7 lines into two for loops, with ™ USF ex“’i counter j for space as every k-th
one print line call between the loops. printed character. ® Next: Data types, memory storage classes, function call
. . . = Enjoy comma operator to increment j
= |Implement a function to print the line pattern.

within the for loop.
Jan Faigl, 2024 BOB36PRG — Lecture 02: Writing your program in C 73 /75 | Jan Faigl, 2024 BOB36PRG — Lecture 02: Writing your program in C 74 / 75 | Jan Faigl, 2024 BOB36PRG — Lecture 02: Writing your program in C 75 / 75

