Transformers

Word and image embeddings with global attention.

Karel Zimmermann
Czech Technical University in Prague R
Faculty of Electrical Engineering, Department of Cybernetics [
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Pre-requisity: Visualizing high-dimensional data



Visualizing high-dimensional embedding in 2D/3D world.
High-dim vectors x (PCA)

|||||||||||||||||| » i

. Randomly initialize y. by normal zero-mean noise ./(0, 0.001)

exp (—|lz: — z;]|°/207)  Gaussian
D ki €XP (=l — zl[2/207) distribution

2. Compute pair-wise probabilities in x.:  Pij =

o N ¢ U B 7 L I t-distr. with
3. Compute pair-wise probabilities iny.: 4 = S 0+ o — ) neavier-tails
| (crowding)

4. Optimize y. to get similar distribution  KL(P|Q) = Zp,log( )
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Visualizing high-dimensional embedding in 2D/3D world.
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Visualizing high-dimensional embedding in 2D/3D world.

t-SNE
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o t-SNE (t-distributed Stochastic Neighbor Embedding)
o Captures non-linear relationships in data
o Separate clusters based on their high-dimensional proximity
o Qutcome is stochastic and depends of perplexity o

o PCA
o Captures linear relationships in data

o Deterministic and useful for preprocessing



Transformers in language (NLP)
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Word2vec represents words as low-dimensional continuous vectors
[Mikolov NIPS 2013]



N-dim inputs

Word2vec represents words as low-dimensional continuous vectors

N-word vocabulary (one-hot enc.)

Karel I1s the best teacher In the whole world



N-dim inputs

Word2vec represents words as low-dimensional continuous vectors
N-word vocabulary (one-hot enc.) Karel I1s the best teacher in the whole world



Word2vec represents words as low-dimensional continuous vectors
N-word vocabulary (one-hot enc.) Karel I1s the best teacher in the whole world
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Word2vec represents words as low-dimensional continuous vectors
N-word vocabulary (one-hot enc.) Karel I1s the best teacher in the whole world

S input words
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Word2vec represents words as low-dimensional continuous vectors
N-word vocabulary (one-hot enc.) Karel I1s the best teacher in the whole world

S input words
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Word2vec represents words as low-dimensional continuous vectors
N-word vocabulary (one-hot enc.) Karel I1s the best teacher in the whole world

S input words

N-dim inputs
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Word2vec represents words as low-dimensional continuous vectors
N-word vocabulary (one-hot enc.) Karel I1s the best teacher in the whole world

S input words

N-dim inputs

Embedding
2 layer avg Shallow NN N output probs
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Word2vec represents words as low-dimensional continuous vectors

Crime and law
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Disasters and accidents
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Word2vec represents words as low-dimensional continuous vectors
N-word vocabulary (one-hot enc.) Karel I1s the best teacher in the whole world

S input words

N-dim inputs
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Word2vec represents words as low-dimensional continuous vectors

klng T “L.

Male-Female

Word embedding




Word2vec represents words as low-dimensional continuous vectors

king |- @

Male-Female

Word algebra: king - man + woman = queen

Word embedding




Word2vec represents words as low-dimensional continuous vectors
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Word embedding




Word2vec represents words as low-dimensional continuous vectors
https://dash.gallery/dash-word-arithmetic/
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Word algebra: king - man + woman
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Word2vec represents words as low-dimensional continuous vectors
https://dash.gallery/dash-word-arithmetic/
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https://dash.gallery/dash-word-arithmetic/

Word2vec represents words as low-dimensional continuous vectors

Visualizing Word Embeddings using t-SNE
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Word2vec represents words as low-dimensional continuous vectors

o N N-dim orthonormal vectors projected into n-dim space where n<<N
(large-scale models BERT, GPT has n=768 —1024)

o How many orthogonal vectors in “n”-dim space”

o Can | represent only “n” independent concepts”

N-word vocabulary

N-dim
word embedding
W

N-dim one-hot



Angles between randomly generated
10000 vectors In 100-dimensional space
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encoder Queries Keys Values

«[JNNERNN ~HRnaannd ~Uanuana

‘what | search” “what is avallable”™ “content”

Karel I1s teacher and Mario I1s plumber.

Which words contributes II I I I I I I
Ky ks

to meaning of Karel?

q k, k, Kk,
B = B X I
q; T
4, k3 ql kl

Scalar pyoguct measures similarity between vectors.

Ks
K7



encoder Queries Keys Values

«JHNNEDNN < NuRRnanN - QUOARHAL

‘what | search” “what is avallable”™ “content”

“.

Scalar product measures similarity between vectors.
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encoder Queries Keys Values
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encoder
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man
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<end>
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encoder Queries Keys Values
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encoder
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TwoLayerFCNN(P, W, V)

LayerNorm(Y,y, /)
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encoder

 BENNNNNEEZ

Q
TwoLayerFCNN(P, W, V)
P

skip connection

Positional encoding

Word embedding IIIIIIII




| Bertviz attention weights of
Layer: S § Attention: Input - Input -

I attention head
The_
animal_
didn_ didn_
t_ _
Cross_ Cross_
the_ the_ ‘It=animal” vs “it=street”??
street street
because_ because_
it_ o it
was_ was_
too_ foo
":' ;"e attention weights of

- - green attention head

https://colab.research.google.com/github/tensortlow/tensor2tensor/blob/master/
tensor2tensor/notebooks/hello_t2t.ipynb



https://colab.research.google.com/github/tensorflow/tensor2tensor/blob/master/tensor2tensor/notebooks/hello_t2t.ipynb
https://colab.research.google.com/github/tensorflow/tensor2tensor/blob/master/tensor2tensor/notebooks/hello_t2t.ipynb

BertViz

Layer: |0 v|Attention: | All v

The The
Doctor Doctor
asked asked
the the
Nurse Nurse
a a
guestion guestion
She - She
said said

Model assumes “she=nurse”

https://www.comet.com/site/blog/explainable-ai-for-transformers/



https://www.comet.com/site/blog/explainable-ai-for-transformers/

BertViz (GPT2 model)

Layer: |0 v|Attention: | All

The
Doctor
asked
the
Nurse

a
guestion

She
said

Model assumes “she=nurse”

https://www.comet.com/site/blog/explainable-ai-for-transformers/

The The
Doctor Doctor
asked asked
the the
Nurse Nurse
a a
question question
She He
said asked

| Layer:|(0 v|Attention:|Al

The
Doctor
asked
the
Nurse

a
guestion
He
asked

Model assumes "he=doctor”


https://www.comet.com/site/blog/explainable-ai-for-transformers/

Transtformers in images
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+ BERNNANNZ

Q
TwoLayerFCNN(P, W, V)
P
LayerNorm(Y,y, /)

skip connection

DEIT [Touvron , Facebook Al 2021]
https://arxiv.org/pdf/2012.12877.pdf

skip connection
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— 1 T 1
Positional encoding /f/featureTap I

Image embedding !IIIIIII




Attention in different Vision transtormers (visu by gradCAM)

Swin Transformer ACC-VIT

ACC-ViT

Swin Transformer

ACC-ViT

Input Image Swin Transformer MaxViT

https://arxiv.org/pdi/2406.08859v1



Machine translation
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Contextual

Czech English

embedding
sentence sentence
—_— transformer transformer l
architecture architecture
encoder decoder
o Encoder is standard transtormer with selt-attention
”VY"
“iste” o Decoder auto-regressively generates output sentence
“dobFi” o Decoder requires special attentions

“"studenti”



Contextual

Czech English
embedding J
sentence sentence
— transformer transformer
architecture architecture
encoder decoder
masked self-att. “<S0S>"
“Vy” L]
“Iste" I
“dobf1i” ]
“studenti” ]
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Contextual

Czech English
embedding J
sentence sentence
— transformer transformer
architecture architecture
encoder decoder
masked self-att. “<S0S>"
“Vy " I cross-attention “You”
“jste" I
“dobfi” ]
“studenti” ]



Contextual

Czech English
embedding J
sentence sentence
— transformer transformer
architecture architecture
encoder decoder
masked self-att. “<sos>" K, V, Q
”YOU." K, V, Q
“Vy” K,V L]
“jste” KV I cross-attention O
“dobE1” K,V [
“studenti” K,V ]



Contextual

Czech English
embedding J
sentence sentence
— transformer transformer
architecture architecture
encoder decoder
masked self-att. “<S0S>"
llYoull
“Vy” L]
“Jste” B cross-attention “Hare”
“dob¥1i” I
“studenti” ]



Czech
sentence

e

”VY"
7 j Ste n
“dobri”

“"studenti”

embedding
transformer sentence
transformer | )
architecture architecture

Contextual English

encoder decoder
masked self-att. “<sos>" K, V, O
“you” K,V,Q
“are” K,V,Q
K,V ]
K,V ]
K,V L cross-attention QO
K,V ]



Contextual

Czech English
embedding J
sentence sentence
— transformer trangformer
architecture architecture
encoder decoder
masked self-att. “<S0S>"
llYoull
“are”
“Vy” L]
“Iste" I
“dobri” L cross-attention  “good”
“studenti” ]



Contextual

Czech embedding English
sentence t f sentence

— transformer ranstormer

architecture architecture
encoder decoder
masked self-att. “<S0S>"
llYoull
“are”

"y ] “good”
”jSte" _ ”StU.dentS"
“dob¥1i” I

“studenti” I cross-attention



| | QK'
Self-attention Attention(Q, K, V') = softmax vV

Vi
Fill in gaps (<unknown> words tokens) in sentences (BERT)
KT
Masked self-attention Attention(Q, K, V) = softmax (Q | ma,sk) V
Vi
0 —o0 —o0
Mask = [0 O — 00
0 O 0

o Assures temporal coherence without creating dependence
on the correct number of <unknown> words Iin the input.

o Assures better paralelization and generalization in
autoregressive text generation (GPT)

QKT> v (Q ... from decoder

Cross-Attention(Q, K, V) = softmax (
(@ 5V) N

K,V ... from encoder



lmage captioning

mage English
embedding
t f sentence
transformer rang ormer
architecture architecture
encoder decoder

masked self-att. “<S0S8>"

”BeSt"

“UROB"”

“teacher”
“"ever”

Cross-attention




Image generation
Contextual

!nput embedding English
image sentence
transformer

. A o
architecture architecture
encoder decoder
Text encoder Generative model
(BERT, GPT) (Diffusion, VQ-VAE, GAN)

“<S05>"
11 Best {4
“UROB"”

]
]
“teacher” ]
]

“"ever”




SAM: Segment anything

encoder T decoder
aYge Semantic
embedding segmentatio
transformer |
architecture
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points box text

[Facebook 2023] https://arxiv.org/pdf/2304.02643.pdt
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SAM: Segment anything

Convolution is actually structurally-enforced local attention.

Transformers allow global attention and have to learn it from data.

num of segmentation masks

1B

3M
2M
™

400X

A 4

[ PR —
SA-1B Openlmages V5 LVIS COCO ADE20k

[Facebook 2023] https://arxiv.org/pdf/2304.02643.pdt
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Attention used for images

Global attention in early layers can be replaced by local attention

.y
.
-
> ‘

(a) Regional Attention (b) Sparse Attention (c) Atrous Attention

https://arxiv.org/pdi/2406.08859v1



SAM: Segment anything
Convolution is actually structurally-enforced local attention.
Transformers allow global attention and have to learn it from data.
Change of paradigm:
o small datasets => use simple models (strong inductive prior such as convolution)

o huge dataset with cheap or free training data => complex model learn everything

o semi-supervision / self-supervision
1B

A

400X

A 4

3M
2M

SA-1B Openlmages V5 LVIS COCO ADE20k
[Facebook 2023] https://arxiv.org/pdf/2304.02643.pdf 62
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Image impainting

Input Image REeCONStructec
| i Image
mage embedding
— [ltransformer/CNN . transformer/CNN |
i architecture architecture
encoder decoder m




Image inpainting

Context encoders CVPR 2016 https://arxiv.org/abs/1604.07379



LUP

learning using privileged information

, _y 777

Annotated data

Train teacher on easier task
—> [aptop with the access to privileged
iNnformation




LUP

learning using privileged information

S, —p bike Train student on teacher’s
2 outputs on not annotated data
Unannotated data

—» pike Useteacher to classity
unannotated data.




DINO

\earning class-level features through
the contrastive learning objective
applied to the class token




DINO

learning class-level features through
the contrastive learning objective
Aett=? S applied to the class token
#——4~" | Collapse avoided by:

(t:) exp(tix/7¢)

o Sharpening 7" = s (e, /n)
o Centering  t.=t; —

- e

T\

L = ZKL softma,x (t;) || softmax sz))

/ ™\

t t,

P 9

Forces the student to predict
context-aware embedding



Pair of stereo images MonoDepth

Projected Project left image
Right image 2 through the depth
~ to right image using
KNoOwn geometry

Predicted depth

| eft Image

Minimize color inconsistency



Two cameras
looking at the
same scene

xg ‘

Co-learning
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Learning to mimic other sensor
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Conclusions

o ConvNets
o enforced local attention
o data-independent fixed attention
o data-independent fixed kernel weights

o Transformers
o |earned global attention

o data-dependent dynamic attention (different for different content from Q,K)
o data-dependent dynamic weights (different for different content from V)

o Big foundation models (such as SAM) delivered for various modalities images,
depthmaps, pointclouds, text, speech

o |n order to deliver billions of training data self-supervision is required



