Transformers

Word and image embeddings with global attention.

Karel Zimmermann
Czech Technical University in Prague
Faculty of Electrical Engineering, Department of Cybernetics

Pre-requisity: Visualizing high-dimensional data

Visualizing high-dimensional embedding in 2D/3D world.

- 1. Randomly initialize \mathbf{y}_i by normal zero-mean noise $\mathcal{N}(0, 0.001)$

2. Compute pair-wise probabilities in
$$\mathbf{x}_i$$
: $p_{ij} = \frac{\exp\left(-\|x_i - x_j\|^2/2\sigma_i^2\right)}{\sum_{k \neq i} \exp\left(-\|x_i - x_k\|^2/2\sigma_i^2\right)}$

3. Compute pair-wise probabilities in \mathbf{y}_i : $q_{ij} = \frac{\left(1 + \|y_i - y_j\|^2\right)^{-1}}{\sum_{k \neq l} \left(1 + \|y_k - y_l\|^2\right)^{-1}}$

$$q_{ij} = rac{\left(1 + \|y_i - y_j\|^2
ight)^{-1}}{\sum_{k
eq l} \left(1 + \|y_k - y_l\|^2
ight)^{-1}}$$

4. Optimize \mathbf{y}_i to get similar distribution $\mathrm{KL}(P\|Q) = \sum_{i \neq j} p_{ij} \log \left(\frac{p_{ij}}{q_{ij}}\right)$

$$ext{KL}(P\|Q) = \sum_{i
eq j} p_{ij} \log \left(rac{p_{ij}}{q_{ij}}
ight)$$

Gaussian distribution t-distr. with heavier-tails (crowding)

Visualizing high-dimensional embedding in 2D/3D world.

Visualizing high-dimensional embedding in 2D/3D world.

- t-SNE (t-distributed Stochastic Neighbor Embedding)
 - Captures non-linear relationships in data
 - Separate clusters based on their high-dimensional proximity
 - \circ Outcome is stochastic and depends of perplexity σ
- o PCA
 - Captures linear relationships in data
 - Deterministic and useful for preprocessing

Transformers in language (NLP)

Word2vec represents words as low-dimensional continuous vectors [Mikolov NIPS 2013]

N-word vocabulary (one-hot enc.)

Karel is the best teacher in the whole world

(NxS)

Male-Female

Male-Female

Word algebra: king - man + woman = queen

Male-Female Verb Tense

Word algebra: king - man + woman = queen

Word2vec represents words as low-dimensional continuous vectors https://dash.gallery/dash-word-arithmetic/

Word algebra: king - man + woman = queen

Word2vec represents words as low-dimensional continuous vectors https://dash.gallery/dash-word-arithmetic/

Word algebra: king - man + woman = queen

Visualizing Word Embeddings using t-SNE

- N N-dim orthonormal vectors projected into n-dim space where n<<N
 (large-scale models BERT, GPT has n=768 −1024)
- o How many orthogonal vectors in "n"-dim space?
- o Can I represent only "n" independent concepts?

How many indepedent concepts do you fit in N-dimensional space?

o How many orthogonal vectors in "n"-dim space?

consequence of Johnson-Lindenstrauss Lemma

Karel is teacher and Mario is plumber.

Which words contributes to meaning of Karel?

Scalar product measures similarity between vectors.

Get attention weights

Attention-weighted sum of values

Outputs:

Avoid for-loop by smart matrix multiplication

encoder Attention($\mathbf{X}, \mathbf{W}_q, \mathbf{W}_k, \mathbf{W}_v$ $S(\mathbf{Q}^{\mathsf{T}}\mathbf{K})\mathbf{V}^{\mathsf{T}}$ Values Keys Queries $|\mathbf{q}_i|$ $\mathbf{W}_k \mathbf{x}_i$ Positional encoding Word embedding

https://colab.research.google.com/github/tensorflow/tensor2tensor/blob/master/tensor2tensor/notebooks/hello_t2t.ipynb

BertViz

Model assumes "she=nurse"

https://www.comet.com/site/blog/explainable-ai-for-transformers/

BertViz (GPT2 model)

Model assumes "she=nurse"

Model assumes "he=doctor"

Transformers in images

Attention in different Vision transformers (visu by gradCAM)

Machine translation

"Vy"

"jste"

"dobří"

"studenti"

- Encoder is standard transformer with self-attention
- Decoder auto-regressively generates output sentence
- Decoder requires special attentions

masked self-att.

"<SOS>"

"Vy"

"jste"

"dobří"

"studenti"

Self-attention

$$\operatorname{Attention}(Q,K,V) = \operatorname{softmax}\left(rac{QK^{+}}{\sqrt{d_k}}
ight)V$$

Fill in gaps (<unknown> words tokens) in sentences (BERT)

Masked self-attention

$$ext{Attention}(Q,K,V) = \operatorname{softmax}\left(rac{QK^ op}{\sqrt{d_k}} + \operatorname{mask}
ight)V$$

$$ext{Mask} = egin{bmatrix} 0 & -\infty & -\infty \ 0 & 0 & -\infty \ 0 & 0 & 0 \end{bmatrix}$$

- Assures temporal coherence without creating dependence on the correct number of <unknown> words in the input.
- Assures better paralelization and generalization in autoregressive text generation (GPT)

$$\text{Cross-Attention}(Q,K,V) = \operatorname{softmax}\left(\frac{QK^\top}{\sqrt{d_k}}\right)V \quad \begin{array}{c} Q \ \dots \ \text{from decoder} \\ K,V \dots \ \text{from encoder} \end{array} \right)$$

"ever"

[Facebook 2023] https://arxiv.org/pdf/2304.02643.pdf

SAM: Segment anything

Convolution is actually structurally-enforced local attention.

Transformers allow global attention and have to learn it from data.

Attention used for images

Global attention in early layers can be replaced by local attention

(a) Regional Attention

(b) Sparse Attention

(c) Atrous Attention

SAM: Segment anything

Convolution is actually structurally-enforced local attention.

Transformers allow global attention and have to learn it from data.

Change of paradigm:

- **small** datasets => use **simple** models (strong inductive prior such as convolution)
- huge dataset with cheap or free training data => complex model learn everything
- **semi**-supervision / **self**-supervision

Image impainting

Image inpainting

Context encoders CVPR 2016 https://arxiv.org/abs/1604.07379

LUPI

learning using privileged information

Annotated data

LUPI

learning using privileged information

DINO

learning class-level features through the contrastive learning objective applied to the class token

Cropped patches

teacher

DINO

learning class-level features through the contrastive learning objective applied to the class token

Collapse avoided by:

o Sharpening
$$p_k^{(\mathbf{t}_i)} = \frac{\exp(\mathbf{t}_{i,k}/ au_t)}{\sum_j \exp(\mathbf{t}_{i,j}/ au_t)}$$

• Centering $\mathbf{t}_i' = \mathbf{t}_i - \mathbf{c}$

 $\mathcal{L} = \sum \mathrm{KL} ig(\mathrm{softmax}(\mathbf{t}_i) \, \| \, \mathrm{softmax}(\mathbf{s}_i) ig)$

Forces the student to predict context-aware embedding

Pair of stereo images

MonoDepth

Left image

Predicted depth

Right image

Projected Right image

Project **left** image through the **depth** to **right** image using known geometry

Minimize color inconsistency

Co-learning

Two cameras looking at the same scene

Detected humans

Project
detections
from red domain
to blue domain

Learning to mimic other sensor

Conclusions

ConvNets

- enforced local attention
- data-independent fixed attention
- data-independent fixed kernel weights

Transformers

- o learned **global** attention
- data-dependent dynamic attention (different for different content from Q,K)
- data-dependent dynamic weights (different for different content from V)
- Big foundation models (such as SAM) delivered for various modalities images, depthmaps, pointclouds, text, speech
- In order to deliver billions of training data self-supervision is required