

Learning 101

Engineering view on learning, issues, regression, classification.

Pre-requisites:

• just an elementary linear algebra

Karel Zimmermann
Czech Technical University in Prague
Faculty of Electrical Engineering, Department of Cybernetics

Which method will you use to build a motion model?

- Which method will you use to build a motion model?
- Algorithm that maps x on y (or prob distr of y)

- Which method will you use to build a motion model?
- Algorithm that maps x on y (or prob distr of y)
- This algorithm has some parameters => how to find them? => trn data+loss+opt

- Which method will you use to build a motion model?
- Algorithm that maps x on y (or prob distr of y)
- This algorithm has some parameters => how to find them? =>

, - NXXXXV motion y \mathbf{X} trn data $\mathcal{D} = \{\mathbf{x}_1, y_1 \dots \mathbf{x}_N, y_N\}$

+loss+opt

Let's implement it!

$$loss = ???$$

• Let's implement it!

loss: $\underset{\cdot}{\operatorname{arg\,min}} \sum_{i} (w_1 x_i + w_0 - y_i)^2$

```
w = np.array([-2.0, 2.0])

opt = for i in range(0, 10):
    loss = np.sum( (w[0] * x + w[1] - y)**2 )
    w = w - 0.1 * grad(loss, w)
```

Which functions can be fitted through overdetermined linear eq?

trn data $\mathcal{D} = \{\mathbf{x}_1, y_1 \dots \mathbf{x}_N, y_N\}$

What do I need to build a motion model?

SOLVED

- Algorithm that maps x on y (or prob distr of y)
- This algorithm has some parameters => how to find them? => loss+trn data+opt
- How to decide that the algorithm works well? => tst data
- What if the algorithm does not work well? What could go wrong?

trn data $\mathcal{D} = \{\mathbf{x}_1, y_1 \dots \mathbf{x}_N, y_N\}$

What can go wrong: inputs x does not allow to predict y

predicting person's age from face image

predicting human character from face pictures

What can go wrong: inputs x does not allow to predict y

A Deep Neural Network Model to Predict Criminality Using Image Processing https://medium.com/@CoalitionForCriticalTechnology/abolish-the-techtoprisonpipeline-9b5b14366b16

What can go wrong: inputs x does not allow to predict y

US Apollo program

Kalman filter

What can go wrong: trn/tst data distribution mismatch

Day/night, summer/winter, USA/China, young/old people, American/Indian English

What can go wrong: trn/tst data distribution mismatch

Day/night, summer/winter, USA/China, young/old people, American/Indian English

What can go wrong: trn/tst data are too similar

Humans subconsciously selects testing data that that are consistent with their proposed solution.

linear function => underfitting

Underfitting:

 bad generalization due to oversimiplified model

log function => good fit

Good model provides:

 good generalization (less sensitive to trn/tst mismatch) robot's motion × × engine torque

trn data tst data

 \mathbf{X}

Overfitting:

 bad generalization due to overcomplex model

Do humans overfit?

complicated function=>overfitting

Do humans overfit? Apofenia=human overfitting

What can go wrong: **learning fails to find good model parameters** due to hyper-parameters, local optima, bad initialization ...

reasonable learning rate

too big learning rate

What can go wrong: inappropriate choice of loss function

What can go wrong: inappropriate choice of loss function

What can go wrong: inappropriate choice of loss function

What can go wrong: inappropriate choice of architecture

Can I treat problem as regression?

Motivation example: classification

- Suffers from:
 - complicated optimization,
 - enforced ordering
 - loss for misclasifying mud-to-water << mud-to-sand)
 - cannot model: "mud or sand but definitely not tarmac".

trn data: $\mathcal{D} = \{\mathbf{x}_1, y_1 \dots \mathbf{x}_N, y_N\}$

trn data: $\mathcal{D} = \{\mathbf{x}_1, y_1 \dots \mathbf{x}_N, y_N\}$

trn data: $\mathcal{D} = \{\mathbf{x}_1, y_1 \dots \mathbf{x}_N, y_N\}$

• 4 functions predicting class probabilities $p(y_1|x,w_1), p(y_2|x,w_2), \dots$

trn data:
$$\mathcal{D} = \{\mathbf{x}_1, y_1 \dots \mathbf{x}_N, y_N\}$$

- 4 functions predicting class probabilities $p(y_1|x,w_1), p(y_2|x,w_2), \ldots$
- that sum up to one over classes for given x $\sum_i p(y_i|x,w) = 1$ Learning:
- Substitute blue points to blue function, etc... => "p"
 - Define loss that pushes "p"-values up
- Can you guess a suitable shape of loss function?
 - loss = -log(p)

Competencies required for the test T1

- Model (or Architecture/Program) with parameters => learning
- Learning = loss + trn data + optimization procedure
- Evaluation = measuring performance (not necessary loss) on tst data
- What could go wrong?
 - inputs x does not allow to predict y
 - trn/tst data distribution mismatch
 - model does not generalize well
 - learning fails to find good parameters
 - inappropriate choice of loss function
 - inappropriate choice of architecture (overfit, underfit, regression/classification)
- Regression vs Classification
- Next lecture: Linear classification of RGB images