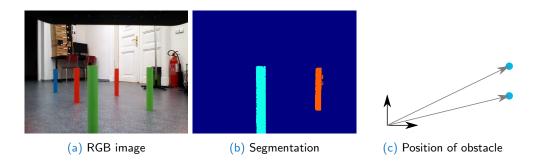


LAR 2024, Depth Estimation

Vladimír Petrík vladimir.petrik@cvut.cz March 13, 2024

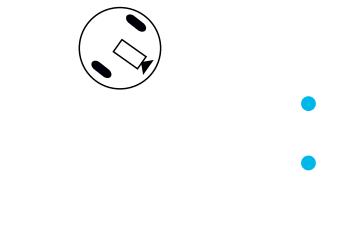
Problem Formulation

- ► Goal: Compute position of obstacles in Cartesian coordinates / Task Space
- Inputs:
 - RGB image with segmentation/labeling (see previous lecture)
 - Depth map
 - Robot odometry (integrated measurements of wheels rotation)

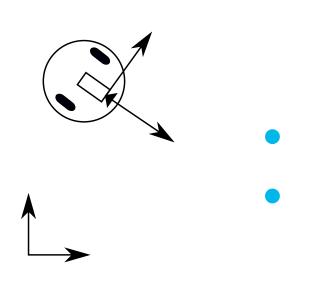


 robot is equipped with RGBD camera

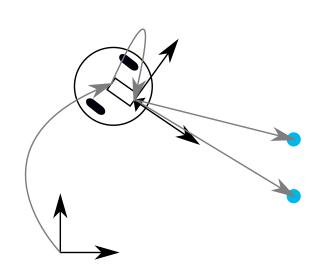
- robot is equipped with RGBD camera
- camera sees the obstacles



- robot is equipped with RGBD camera
- camera sees the obstacles
- multiple coordinate frames



- robot is equipped with RGBD camera
- camera sees the obstacles
- multiple coordinate frames
- transformations:
 - robot has moved from the initial position (*T_o*)
 - camera is not mounted exactly in the middle of robot (*T_c*)
 - obstacles are at position x₁, x₂ w.r.t. camera frame



Transformations

Transformation in 2D can be represented by 3 × 3 matrix (in homogeneous coordinates)

$$T = \begin{pmatrix} R(\theta) & x \\ 0 & y \\ 0 & 0 & 1 \end{pmatrix}, \ R(\theta) = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$$

Transformations

Transformation in 2D can be represented by 3 × 3 matrix (in homogeneous coordinates)

$$T = \begin{pmatrix} R(\theta) & x \\ 0 & y \\ 0 & 0 & 1 \end{pmatrix}, \ R(\theta) = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$$

- For our coordinates: $\mathbf{x}_w = T_o T_c \mathbf{x}_c$
 - x_w position of gate in world coordinate system
 - *x_c* position of gate in camera coordinate system
 - *T_o* computed from odometry data
 - T_c approximated by unit transformation

•
$$\theta = 0, x = 0, y = 0$$

optionally can be calibrated

Odometry Computation

> You define where the world coordinate is placed by resetting the odometry

- Robot computes relative wheels rotation and integrate it to obtain position w.r.t. call of reset
- Integration is not robust, i.e. the errors are integrated too

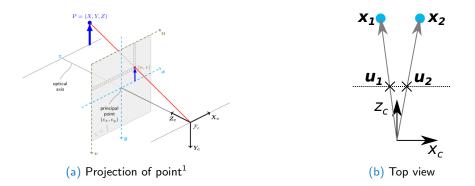
```
reset_odometry() -> None # sets world coordinate to the
# current robot position
get_odometry() -> [x,y,a] # gives relative distance travelled from
# the last call of reset
```


Gate Position in Camera Frame

- We will compute gate positions in camera frame, hereinafter
- It simplifies some of the equations
- > You can then transform them into world coordinates using: $\mathbf{x}_w = T_o T_c \mathbf{x}_c$

Camera Model

- camera is approximated by pinhole camera model
 - all points on a ray project to the same pixel
 - from given pixel, you cannot compute Cartesian point (without additional prior knowledge)



¹https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_ reconstruction.html

•
$$\boldsymbol{u}_{H} = K\boldsymbol{x}$$

• \boldsymbol{u}_{H} is pixel in homogeneous coordinates
• if $\boldsymbol{u}_{H} = (u_{H} \quad v_{H} \quad w_{H})^{\top}$, then pixel coordinates are $(u_{H}/w_{H} \quad v_{H}/w_{H})^{\top}$

 $\blacktriangleright u_H = K x$

u_H is pixel in homogeneous coordinates

▶ if $\boldsymbol{u}_{H} = \begin{pmatrix} u_{H} & v_{H} & w_{H} \end{pmatrix}^{\top}$, then pixel coordinates are $\begin{pmatrix} u_{H}/w_{H} & v_{H}/w_{H} \end{pmatrix}^{\top}$

▶ alternatively, we can represent it as: $\lambda (u, v, 1)^{\top} = \lambda u = K x$

 $\blacktriangleright u_H = K x$

• u_H is pixel in homogeneous coordinates

• if $\boldsymbol{u}_H = \begin{pmatrix} u_H & v_H & w_H \end{pmatrix}^{\top}$, then pixel coordinates are $\begin{pmatrix} u_H/w_H & v_H/w_H \end{pmatrix}^{\top}$

▶ alternatively, we can represent it as: $\lambda (u, v, 1)^{\top} = \lambda u = K x$

K is camera matrix

$$\begin{array}{l} \texttt{get_rgb_K(self)} \rightarrow \texttt{K} \\ \texttt{K} = \begin{pmatrix} f_x & 0 & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{pmatrix} \end{array}$$

 $\blacktriangleright u_H = K x$

u_H is pixel in homogeneous coordinates

• if $\boldsymbol{u}_H = \begin{pmatrix} u_H & v_H & w_H \end{pmatrix}^{\top}$, then pixel coordinates are $\begin{pmatrix} u_H/w_H & v_H/w_H \end{pmatrix}^{\top}$

▶ alternatively, we can represent it as: $\lambda (u, v, 1)^{\top} = \lambda u = K x$

K is camera matrix

► get_rgb_K(self) -> K
►
$$K = \begin{pmatrix} f_x & 0 & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{pmatrix}$$

► what does λ represent?

 $\blacktriangleright u_H = K x$

u_H is pixel in homogeneous coordinates

▶ if $\boldsymbol{u}_{H} = \begin{pmatrix} u_{H} & v_{H} & w_{H} \end{pmatrix}^{\top}$, then pixel coordinates are $\begin{pmatrix} u_{H}/w_{H} & v_{H}/w_{H} \end{pmatrix}^{\top}$

▶ alternatively, we can represent it as: $\lambda (u, v, 1)^{\top} = \lambda u = K x$

K is camera matrix

$$\begin{array}{l} \texttt{get_rgb_K(self)} \rightarrow \texttt{K} \\ \texttt{K} = \begin{pmatrix} f_x & 0 & c_x \\ 0 & f_y & c_y \end{pmatrix} \end{array}$$

• what does λ represent?

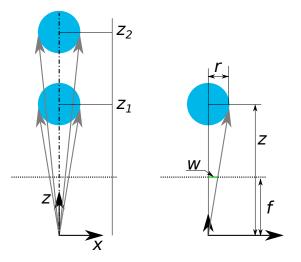
 $(0 \ 0 \ 1)$

- λ is non-zero real number
- ▶ if you know λ value, you can compute Cartesian coordinate $\mathbf{x} = \lambda K^{-1} \mathbf{u}$
- otherwise, only ray is computable

How to Get Depth Information?

- We need either prior knowledge of the scene or depth map
- Example of prior knowledge
 - width of the obstacle in pixels and corresponding z-coordinate for several positions
 - width of the obstacle in meters
 - height of the obstacle
 - etc.

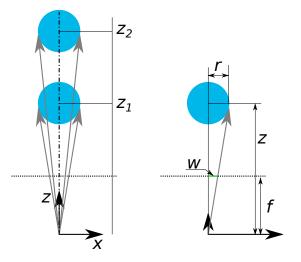
what is relation between width in the image (px) and distance in meters?



what is relation between width in the image (px) and distance in meters?

$$f: w = z: r$$

$$z = rf \frac{1}{w} = k \frac{1}{w}$$



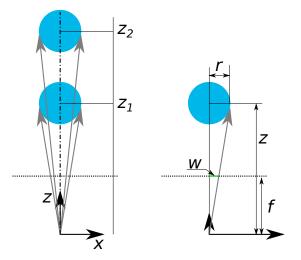
what is relation between width in the image (px) and distance in meters?

$$f: w = z: r$$

$$z = rf \frac{1}{w} = k \frac{1}{w}$$

How to estimate unknown constant?

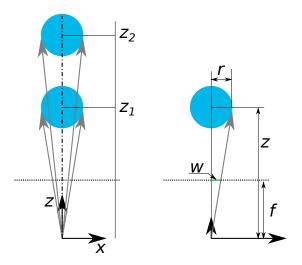
- calibration
- measure (at least) two different positions
- use least square estimation



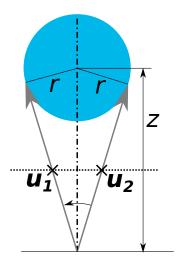
- what is relation between width in the image (px) and distance in meters?
 - f: w = z: r $z = rf\frac{1}{w} = k\frac{1}{w}$

How to estimate unknown constant?

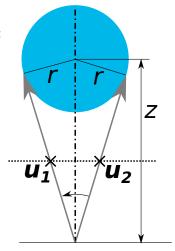
- calibration
- measure (at least) two different positions
- use least square estimation
- This is an approximated computation (ignoring viewing angle)



We know radius of gate is fixed



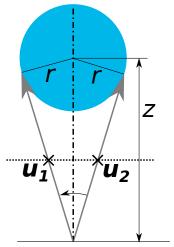
- We know radius of gate is fixed
- From detected pixels u_1 , u_2 , we can compute rays x_1 , x_2 : $\frac{1}{\lambda_i}x_i = K^{-1}u_i$



We know radius of gate is fixed

From detected pixels u_1, u_2 , we can compute rays x_1, x_2 : $\frac{1}{\lambda_i} x_i = K^{-1} u_i$

• Angle between vectors: $\cos \alpha = \frac{\frac{1}{\lambda_1 \lambda_2}}{\frac{1}{\lambda_1 \lambda_2}} \frac{\mathbf{x}_1 \cdot \mathbf{x}_2}{\|\mathbf{x}_1\| \|\mathbf{x}_2\|}$

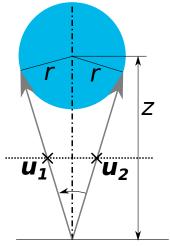


We know radius of gate is fixed

From detected pixels u_1 , u_2 , we can compute rays x_1 , x_2 : $\frac{1}{\lambda_i} x_i = K^{-1} u_i$

• Angle between vectors: $\cos \alpha = \frac{\frac{1}{\lambda_1 \lambda_2}}{\frac{1}{\lambda_1 \lambda_2}} \frac{\mathbf{x}_1 \cdot \mathbf{x}_2}{\|\mathbf{x}_1\| \|\mathbf{x}_2\|}$

• Depth:
$$z = \frac{r}{\sin(\alpha/2)}$$



Using Depth Sensor

- Turtlebots are equipped with RGBD sensors
- In addition to RGB image they provide depth information
- get_depth_image() -> numpy array size depends on the sensor
- Depth corresponds to distance in meters (x, y need to be computed from ray)

(a) RGB

Point Cloud

Our library:

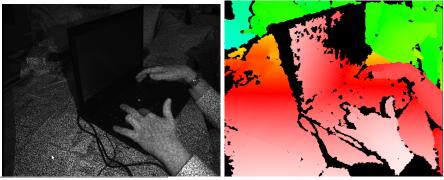
- We also provide point cloud with topology
- get_point_cloud() numpy 480x640x3
- Array has the same dimensions as an RGB image
- Channels correspond to x, y, z-coordinates in camera frame

In general:

- Point clouds are without topology
- Set of points

Troubles with Depth Maps and Point Clouds

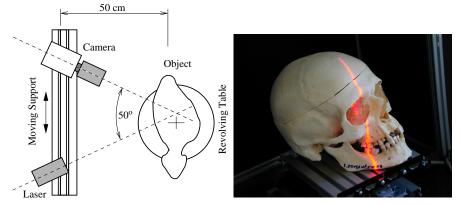
- Depth reconstruction is not perfect (black areas in the image²)
- In python represented by NaN
- Not every pixel in RGB has reconstructed depth value
- RGB and Depth data are not aligned (you need to calibrate them)



²https://commons.wikimedia.org, User:Kolossos

How Depth Sensors Work

- Laser projects pattern and camera recognizes it
- Depth information is computed using triangulation



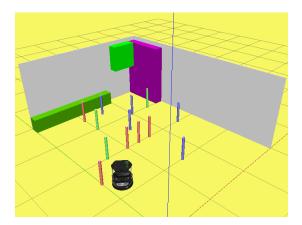
Kinect/Astra/Realsense

- Structured light based sensors
- Projects 2d infra red patterns
- There is one projector and two cameras (RGB + IR)

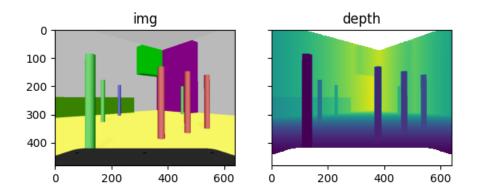
Comparison of Sensors

	Kinect Xbox 360	Orbbec Astra	Realsense R200	Realsense D435
FOV [deg]:	57 × 45	60 × 49.5	59 x 45.5	69.4 × 42.5
Range [m]:	1.5 3.5	0.6 8.0	0.5 3.5 (4.0)	0.105 10
Error XY [mm]:	10 (2.5m)	7.2 (3m)		_
Error Z [mm]:	10 (2.5m)	12.7 (3m)	10 (2m)	_
Resolution [px]:	640×480	640×480	640×480	1280×720

Our scene



Our RGBD data



Sensor range is limited - NaNs for too close and too far away points.

Are RGB/DEPTH aligned?

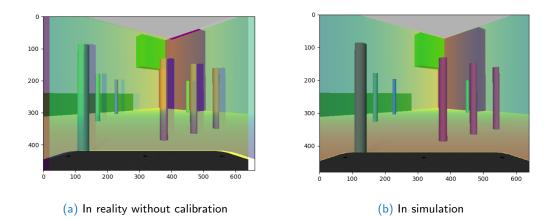
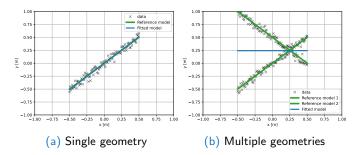


Figure: Overlay of DEPTH data over the RGB image.

Working with noisy data

- We can fit geometry primitives to our observations
 - Observations are noisy
 - Contains outliers and multiple geometries
- Non-linear least square fitting
 - Using SciPy: def line_model(x, slope, bias): return x * slope + bias (best_slope, best_bias), _ = curve_fit(line_model, xdata, ydata)



RANSAC

- Random sample consensus
- Iterative fitting method robust to outliers
 - Choose a small subset of data points
 - Fit a model to the subset
 - Count number of inliers (what is inlier?)
 - Repeat many times and select the best model

