- ||CTU
R

UNIVERSITY
IN PRAGUE

LAR 2024, Depth Estimation

Vladimir Petrik
vladimir.petrik@cvut.cz

March 13, 2024

Problem Formulation

» Goal: Compute position of obstacles in Cartesian coordinates / Task Space
» Inputs:

> RGB image with segmentation/labeling (see previous lecture)
» Depth map
> Robot odometry (integrated measurements of wheels rotation)

=

(a) RGB image b) Segmentation) Position of obstacle

&i2¥ LAR 2024, Depth Estimation
/ Vladimir Petrik 2/22

Coordinate frames

» robot is equipped with RGBD
camera

&i2¥ LAR 2024, Depth Estimation
/\ Vladimir Petrik 3/22

Coordinate frames

» robot is equipped with RGBD
camera

> camera sees the obstacles

®
&i2¥ LAR 2024, Depth Estimation
/\ Vladimir Petrik 3/22

Coordinate frames

» robot is equipped with RGBD
camera

> camera sees the obstacles

» multiple coordinate frames

&2 LAR 2024, Depth Estimation
/ \ 3/22

Vladimir Petrik

Coordinate frames

» robot is equipped with RGBD
camera

> camera sees the obstacles

» multiple coordinate frames

> transformations:

» robot has moved from the
initial position (T,)

P> camera is not mounted
exactly in the middle of
robot (T¢)

» obstacles are at position
X1, X2 W.r.t. camera frame

&2 LAR 2024, Depth Estimation
/ \ 3/22

Vladimir Petrik

Transformations

» Transformation in 2D can be represented by 3 x 3 matrix (in homogeneous
coordinates)

X

R(9)
00 1

> T R(0) = <cos(6’) —sin(@))

sin(f) cos(6)

%?p/‘ LAR 2024, Depth Estimation
/\ "%y Vladimir Petrik 4 /22

Transformations

» Transformation in 2D can be represented by 3 x 3 matrix (in homogeneous
coordinates)

X

R(0)

0 01
» For our coordinates: x, = T, Tcexc

> T = L R(0) = <C°5(9) _Si“(9)>

sin(6) cos(0)

> x, position of gate in world coordinate system
P x. position of gate in camera coordinate system
> T, computed from odometry data
» T. approximated by unit transformation

> =0, x=0,y=0

> optionally can be calibrated

&i2¥ LAR 2024, Depth Estimation
/\ Vladimir Petrik 4/ 22

Odometry Computation

» You define where the world coordinate is placed by resetting the odometry

» Robot computes relative wheels rotation and integrate it to obtain position w.r.t.
call of reset

> Integration is not robust, i.e. the errors are integrated too

reset_odometry() -> None # sets world coordinate to the
current robot position

get_odometry() -> [x,y,al # gives relative distance travelled from
the last call of reset

&i2¥ LAR 2024, Depth Estimation
/\ Vladimir Petrik 5/ 22

Gate Position in Camera Frame

> We will compute gate positions in camera frame, hereinafter
> It simplifies some of the equations

» You can then transform them into world coordinates using: x, = T, TeXc

&i2¥ LAR 2024, Depth Estimation
/\ Vladimir Petrik 6 /22

Camera Model

> camera is approximated by pinhole camera model
» all points on a ray project to the same pixel

> from given pixel, you cannot compute Cartesian point (without additional prior

knowledge)
P=(X,Y,2) x1 x2
/ Uy X u; u,
S
o = Zc
(czrey)
! x X,
(a) Projection of point (b) Top view

1https ://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d

reconstruction.html

&i2¥ LAR 2024, Depth Estimation
/\ Viadimir Petrik

7/22

https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html
https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html

Pinhole Camera Model

> uy = Kx
» uy is pixel in homogeneous coordinates
. T . . T
» ifuy = (uy vy wy) , then pixel coordinates are (up/wy vi/wh)

q&?g‘ LAR 2024, Depth Estimation
/\a"l Vladimir Petrik 8 /22

Pinhole Camera Model

> uy = Kx
» uy is pixel in homogeneous coordinates
. T . . T
» ifuy = (uy vy wy) , then pixel coordinates are (up/wy vi/wh)

. . T
> alternatively, we can represent it as: A (u,v,1) = \u= Kx

&i2¥ LAR 2024, Depth Estimation
/\ Vladimir Petrik 8 /22

Pinhole Camera Model

> uy = Kx
» uy is pixel in homogeneous coordinates
> ifuy = (uy v WH)T, then pixel coordinates are (up/wy VH/WH)T
> alternatively, we can represent it as: A (u, v, 1)T = \u=Kx

> K is camera matrix

> get_rgb K(self) -> K

. 0 ¢
> K=(0 f, ¢
0 0 1

/“%:?p/‘ LAR 2024, Depth Estimation

Vladimir Petrik 8 /22

Pinhole Camera Model

> uy = Kx
» uy is pixel in homogeneous coordinates
> ifuy = (uy v WH)T, then pixel coordinates are (up/wy VH/WH)T
> alternatively, we can represent it as: A (u, v, 1)T = \u=Kx
> K is camera matrix
> get_rgb K(self) -> K

. 0 ¢
> K=(0 f, ¢
0 0 1

» what does A represent?

&i2¥ LAR 2024, Depth Estimation
/\ Vladimir Petrik 8 /22

Pinhole Camera Model

> uy = Kx
» uy is pixel in homogeneous coordinates
> ifuy = (uy v WH)T, then pixel coordinates are (up/wy VH/WH)T
> alternatively, we can represent it as: A (u, v, 1)T =\u=Kx
> K is camera matrix
> get_rgb K(self) -> K

. 0 ¢
> K=[0 f, ¢
0 0 1

» what does A represent?

»> X is non-zero real number
> if you know X value, you can compute Cartesian coordinate x = AK ~lu
> otherwise, only ray is computable

&i2¥ LAR 2024, Depth Estimation
/\ Vladimir Petrik 8 /22

How to Get Depth Information?

» We need either prior knowledge of the scene or depth map
» Example of prior knowledge

» width of the obstacle in pixels and corresponding z-coordinate for several positions
width of the obstacle in meters

height of the obstacle

etc.

vvyy

&i2¥ LAR 2024, Depth Estimation
/\ Vladimir Petrik 9 /22

Using Regression

> what is relation between width in the
image (px) and distance in meters?

~*

2§ LAR 2024, Depth Estimation
Vladimir Petrik 10 / 22

Using Regression

> what is relation between width in the
image (px) and distance in meters?
> fiw=2z:r
> z=rfl =kl

~*

2§ LAR 2024, Depth Estimation
Vladimir Petrik 10 / 22

Using Regression

» what is relation between width in the
image (px) and distance in meters?
> fw==z:r
> z=rfl =kl
» How to estimate unknown constant?
» calibration

> measure (at least) two different
positions Z
P use least square estimation
w
>

2 LAR 2024, Depth Estimation
Vladimir Petrik

10 / 22

Using Regression

» what is relation between width in the
image (px) and distance in meters?
> fw==z:r
> z=rfl =kl
» How to estimate unknown constant?
» calibration

> measure (at least) two different
positions
P use least square estimation

» This is an approximated computation
(ignoring viewing angle)

~*

“LH/‘ LAR 2024, Depth Estimation
/ J g Vladimir Petrik

10 / 22

Using Prior Knowledge of Fixed Width

> We know radius of gate is fixed

LAR 2024, Depth Estimation
Vladimir Petrik 11/ 22

Using Prior Knowledge of Fixed Width

> We know radius of gate is fixed
> From detected pixels uy, up, we can compute rays xi, Xo:

1 _ -1
)\—iX,' =K u;

LAR 2024, Depth Estimation
Vladimir Petrik 11/ 22

Using Prior Knowledge of Fixed Width

> We know radius of gate is fixed

> From detected pixels uy, up, we can compute rays xi, Xo:
1, _ -1
)\—iX,' =K u;

1
N x-
> Angle between vectors: cosa = 212 i%
A1A2

2 LAR 2024, Depth Estimation
Vladimir Petrik

11/ 22

Using Prior Knowledge of Fixed Width

> We know radius of gate is fixed

> From detected pixels uy, up, we can compute rays xi, Xo:

1 _ k-1
)\—iX,' =K u;
1
A1 X1°X2

Slr2 XL
pepey ||X1H||X2||

> Angle between vectors: cosa =

» Depth: z = Wgﬂ)

2 LAR 2024, Depth Estimation
Vladimir Petrik

11/ 22

Using Depth Sensor

» Turtlebots are equipped with RGBD sensors
» In addition to RGB image they provide depth information
> get_depth_image() -> numpy array size depends on the sensor

» Depth corresponds to distance in meters (x,y need to be computed from ray)

(b) Depth

&i2¥ LAR 2024, Depth Estimation
/\ Vladimir Petrik 12 / 22

Point Cloud

» Our library:
> We also provide point cloud with topology
> get _point_cloud() numpy 480x640x3
» Array has the same dimensions as an RGB image
» Channels correspond to x, y, z-coordinates in camera frame

» In general:
» Point clouds are without topology
> Set of points

&i2¥ LAR 2024, Depth Estimation
/\ Vladimir Petrik 13 /22

Troubles with Depth Maps and Point Clouds

» Depth reconstruction is not perfect (black areas in the image?)

» In python represented by NaN

> Not every pixel in RGB has reconstructed depth value

» RGB and Depth data are not aligned (you need to calibrate them)

https: //commons.wikimedia.org, User:Kolossos

&i2¥ LAR 2024, Depth Estimation
/\J Vladimir Petrik 14 / 22

How Depth Sensors Work

P Laser projects pattern and camera recognizes it

» Depth information is computed using triangulation

i 50cm |
Camera
A Object

T o

~~ 8

'_

50° 2

5

Phe [=]

)

ke 14

/,‘%%‘ LAR 2024, Depth Estimation

Vladimir Petrik 15 / 22

Kinect/Astra/Realsense

» Structured light based sensors
» Projects 2d infra red patterns
» There is one projector and two cameras (RGB + IR)

&i2¥ LAR 2024, Depth Estimation
/\ Vladimir Petrik 16 / 22

Comparison of Sensors

Tl ,"mwm““‘\
? ’ AACHD
Kinect Xbox 360 | Orbbec Astra | Realsense R200 | Realsense D435
FOV [deg]: 57 x 45 60 x 49.5 59 x 45.5 69.4 x 42.5
Range [m]: 15...35 0.6...8.0 05...35(4.0) | 0.105...10
Error XY [mm]: 10 (2.5m) 7.2 (3m) — -
Error Z [mm]: 10 (2.5m) 12.7 (3m) 10 (2m) -
Resolution [px]: 640x480 640x480 640x480 1280x720
/‘@J?%‘ LAR 2024, Depth Estimation
YWY Viadimir Petrik 17 / 22

Our scene

18 / 22

LAR 2024, Depth Estimation

Vladimir Petrik

feRe

Our RGBD data

depth

T T
0 200 400 600 0 200 400 600

» Sensor range is limited - NaNs for too close and too far away points.

/“@‘ LAR 2024, Depth Estimation
F

Vladimir Petrik 19 / 22

Are RGB/DEPTH aligned?

(a) In reality without calibration (b) In simulation

Figure: Overlay of DEPTH data over the RGB image.

LAR 2024, Depth Estimation
Vladimir Petrik 20 / 22

Working with noisy data

» We can fit geometry primitives to our observations
> Observations are noisy
» Contains outliers and multiple geometries
» Non-linear least square fitting
» Using SciPy:
def line_model(x, slope, bias):
return x * slope + bias
(best_slope, best_bias), _ = curve_fit(line_model, xdata, ydata)

% data
s Reference model
—— fitted model

yim
g
g

yiml
s

% x data
— Reference model 1
e Reference model 2
— fitted model

-~ -1
-100 -075 -050 -025 000 025 050 075 100 -100 -0.75 -0.50 -025 000 025 050 075 100
xm] xIm]

(a) Single geometry (b) Multiple geometries

&i2¥ LAR 2024, Depth Estimation
/\ Vladimir Petrik 21/ 22

RANSAC

» Random sample consensus

> |terative fitting method robust to outliers

» Choose a small subset of data points
> Fit a model to the subset
» Count number of inliers - (what is inlier?)

» Repeat many times and select the best model

075
050
025
E 000
—0.25
H % data
-0.50 <3 e Reference model 1
= Reference model 2
-07s = Ransacl
o Ransacl Inliers
-1

075
050
025
0.00
—025 % data
== Reference model 1
== Reference model 2
050 & = Ransacl
© Ransacl Inliers
-07s = Ransac2
© Ransac2 Inliers

~100 -0.75 -050 -025 000 025 050 075
xm]

(a) RANSAC - First fit

1.00

-1
-100 -0.75 -050 -025 000 025 050 075
xIm]

(b) RANSAC - Second fit

1.00

o)
lhs

2 LAR 2024, Depth Estimation
Vladimir Petrik

22 /22

