
KUI closing, what next
Tomáš Svoboda

Matěj Hoffmann, Zdeněk Straka, Petr Švarný, Vojtěch Spurný

http://cmp.felk.cvut.cz/~svoboda


Studium
• B4B33RPZ - Rozpoznávání a strojové učení

• více o statistickém rozpoznávání (poslední 2 
přednášky)

• více matematiky, Matlabu …

• B3B33VIR - Vidění robotu

• více k robotice

• hluboké sítě, Python, TensorFlow, AI-Gym …

• Magisterské studium, KyR, OI-Vision, OI-AI …
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https://www.fel.cvut.cz/education/bk/predmety/46/83/p4683806.html
https://www.fel.cvut.cz/cz/education/bk/predmety/46/75/p4675106.html


Projekty, bakalářská práce

• https://cyber.felk.cvut.cz/study/student-projects/

• https://cyber.felk.cvut.cz/research/groups-teams/

• https://cyber.felk.cvut.cz/vras/

• http://mrs.felk.cvut.cz
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https://cyber.felk.cvut.cz/study/student-projects/
https://cyber.felk.cvut.cz/research/groups-teams/
https://cyber.felk.cvut.cz/vras/
http://mrs.felk.cvut.cz
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• 3D mapping by deep convolution neural network…. 
• Control of depth-measuring rays in current map……
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Learning for active 3D mapping

Petricek, Zimmermann, Salansky, Svoboda. Learning for Active 3D Mapping. ICCV, 2017



Czech Technical University in Prague
Faculty of Electrical Engineering, Department of Cybernetics

Dense 3D from very sparse measurements

Petricek, Zimmermann, Salansky, Svoboda. Learning for 
Active 3D Mapping. ICCV, 2017



Learning to attack car data
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Cross-Traffic Detection for Collision Mitigation



Machine	learning	for	robot	motion	control
DR 1.2: Sensing, mapping and low-level memory II T. Svoboda et al.

Figure 4: Left: Controlling robot morphology (flippers) allows for travers-
ing obstacles. Right: Robotic arm inspects terrain below water surface
compensating thus incomplete lidar measurement.

Figure 5: Principle overview: individual blocks in this scheme correspond
to Sections IV-VII.

definition of the reward function.

S(c, ex) =
1Z

0

p(q | c, ex) dq, (3)

that corresponds to the probability of achieving a safe state (q � 0) with
the configuration c. Search for the optimal configuration c⇤ (Equation 2) is
restricted to the safe configurations only:

S(c, ex) > ✏. (4)

If none of the available configurations satisfies the safety condition (Equa-
tion 4), we use the robotic arm to evaluate selected missing terrain features;
see Figure 5 for the pipeline overview. We propose several strategies that
guide the active exploration of missing features in order to achieve a safe
configuration as fast as possible. If all terrain features have already been
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Humanoid/collaborative roboticsFinal
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Figure 1. (A) Humanoid robot Nao [28] and sensors important for the project. The robot will be equipped with artificial skin [25] on the forearms (solution from 
ROBOSKIN project with 180 taxels integrated into forearm shown) and additionally on the belly and face (shown schematically). (B) Project overview. Left 
panel: top: removal of vibrotactile stimuli study in infants [29]; bottom: brain areas involved in peripersonal space representations [7]. 

A conceptual overview of the project is provided in Figure 1B. All work packages will proceed in parallel from project start to end 
(Figure 5). In WP1, embodied computational models of the mechanisms of body representations will be developed. They 
retain the virtues of computational or simulation models (operationalizing the theory and serving as virtual experimental 
laboratory generating predictions [29]), but adding the physical body is crucial, since the spatial and sensorimotor 

characteristics of this body are the very essence of what is being modeled. With the tactile modality as a new ingredient, 
the key scenarios will be self-touch and reaching with whole-body awareness. The modeling will be informed by behavioral 
studies (such as removal of vibrotactile stimuli from different body parts in 3-7 month old infants [30] – pictured in Figure 1B, left) 
as well as data from the neurosciences, capitalizing on existing collaborations.  

In WP2 and WP3, the very same scenarios will be exploited to push the state of the art in robotics. In WP2, “Automatic 

robot self-calibration”, we will improve the open-loop self-touch behavior presented in [16], employing tactile and possibly also 
visual servoing, leading to controlled sliding of one body part over another, resulting in much more effective data collection. The 
datasets thus created will then be used to calibrate complete kinematics of the robot, including the positions of taxels composing 
the artificial skin. Finally, the solutions developed on the Nao robot will be tested on other platforms. In WP3, “Safe physical 

human-robot interaction”, we will realize reaching with simultaneous avoidance relying on visual and tactile information. On the 
perceptual part, we will actively control the gaze and then aim at reconciling the conflicting goals of reaching and “seeing”.  

3.2 Detailed research plan 
WP 1: Models of body and peripersonal space representations 

Task 1.1: Development of body schema through self-touch. First, an initial model of localization of touch in external space 
combining tactile and proprioceptive information [31] will be developed, building on top of the models we developed so far [32, 
26]. The architecture will then be extended by adding the visual modality (in a simplified manner, focusing on the spatial aspects 
– position rather than appearance) and developing neural network (NN) models that address both coordinate transformations and 
multisensory integration (starting from [33, 34]). Then, we will investigate the developmental hypothesis regarding the learning of 
body schema through spontaneous self-touch [6] and manipulate the experience of the robot to emulate different developmental 
trajectories – different amounts of self-touch exposure at different times and on different body parts. An overview is provided in 
Figure 2: an infant reaching for a tactile stimulus (A), and self-touch in the iCub (B-D) and Nao robot (E). Importantly, we will be 
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with either the bucket or the human partner will be inevitable, but will need to be handled in a most safe and natural way. The 
robot will employ the architecture developed in T3.1, but the gaze will be actively controlled in order to acquire most useful 
information regarding the target and obstacles in the scene. Furthermore, moving the head will not suffice to see the relevant 
objects in the scene. For example, moving the torso forward and leaning over the 
bucket will improve the visibility of objects inside. At the same time, approaching 
with the arms from a different angle will affect the amount of self-occlusion. 
However, both of these factors will directly conflict with a reaching and grasping 
task. The aim of this task will be to bring these conflicting goals under one roof.  
Task 3.3: Object identity effect, natural movements. This task will build on the 
solutions developed above, but specifically aim at reproducing some of the 

qualities that were identified in human reaching movements in the presence of 
obstacles (cf. Task 1.3 for neural controllers addressing this and references to 
literature). These were: (i) slower reaching in the presence of obstacles; (ii) 
modulation by object identity. Solutions to (i) are expected to be straight-forward – trajectory time for reaching can be 
manipulated depending on context. Object identity will first need to be extracted. Possible classes of objects in the scene could 
be: (a) reaching targets; (b) neutral obstacles; (c) obstacles dangerous for the robot; (d) fragile obstacles, which may include 
humans. The neutral obstacles could be further refined into hard/soft, fixed or movable. Object classification will capitalize on 
existing state-of-the-art algorithms and the expertise of the host in object recognition (e.g., [43, 44]). Based on the object 
classification, we will aim at mimicking how humans modulate their behavior and their reaching kinematics (safety margin should 
be larger around dangerous/fragile objects; threatening dynamically approaching objects should trigger faster avoidance). 
Overall, we will seek to arrive at a parsimonious set of parameters/gains that can be adapted and that will modulate the overall 
behavior of the robot. If the robot behavior resembles that of a human in important aspects, it will be perceived as more natural 
and consequently be also more predictable by humans, leading to a safer interaction. 

3.3 Schedule, milestones, publication plan 

An overview of the work plan is in Figure 5 below. Every WP is linearly distributed in time, with the tasks naturally building on the 
previous ones. There is one dependency across WPs (T2.1 and T1.1) and a connection between Tasks 1.3 and 3.3.  
Milestones at month 12. M 1.1: NN model of body schema, including visual modality. M 2.1: First implementation of tactile 
servoing on the Nao robot (month 6 – will be used in T1.1). Full implementation (month 12). M 3.1: Reaching with obstacle 
avoidance using visual and tactile input operational on Nao.  
Publications: 1 conference paper and 1 journal paper on M1.1; 1 conference paper on M2.1.  
Milestones at month 24. M 1.2: NN model of peripersonal space. M 2.2: Automatic self-calibration using visual and tactile 
information working on Nao robot. M 3.2: Motion coordinated with active perception operational on Nao.  
Publications: 1 conference paper on M1.2 and 1 on M3.2; 1 journal paper on M1.2; 1 journal paper on M2.1 and M2.2 together.  
Milestones at month 36. M 1.3 and M 3.3: Quantitative comparison of movement kinematics of humans during reaching with 
obstacle avoidance with performance of neural network controller (T1.2, 1.3) and robotic controller (T3.3). M 2.3: Automatic self-
calibration tested on dual KUKA LWR and Motoman MA1400 setup. 
Publications: 1 conference paper on M1.3 and 1 on M3.3;  3 journal papers – one per milestone. 2 book chapters – one on WP1, 
one on project as a whole.  

Figure 4. Bucket scenario. A robot and a human are 
taking out or inserting objects from a bucket. View 

from the robot’s camera. 
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collaborative manipulation



UAV - Landing on a moving target
Contact: Martin Saska 



coordinate UAVs – Trasure hunt
Contact: Martin Saska 



MBZIRC – Victory 



Large scale image retrieval
Contact: Ondřej Chum, http://cmp.felk.cvut.cz/~chum/

http://cmp.felk.cvut.cz/~chum/
http://cmp.felk.cvut.cz/~chum/
http://cmp.felk.cvut.cz/~chum/


Reading text in the wild
Contact: Jiří Matas, http://cmp.felk.cvut.cz/~matas/

http://cmp.felk.cvut.cz/~matas/
http://cmp.felk.cvut.cz/~matas/
http://cmp.felk.cvut.cz/~matas/
http://cmp.felk.cvut.cz/~matas/
http://cmp.felk.cvut.cz/~matas/
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