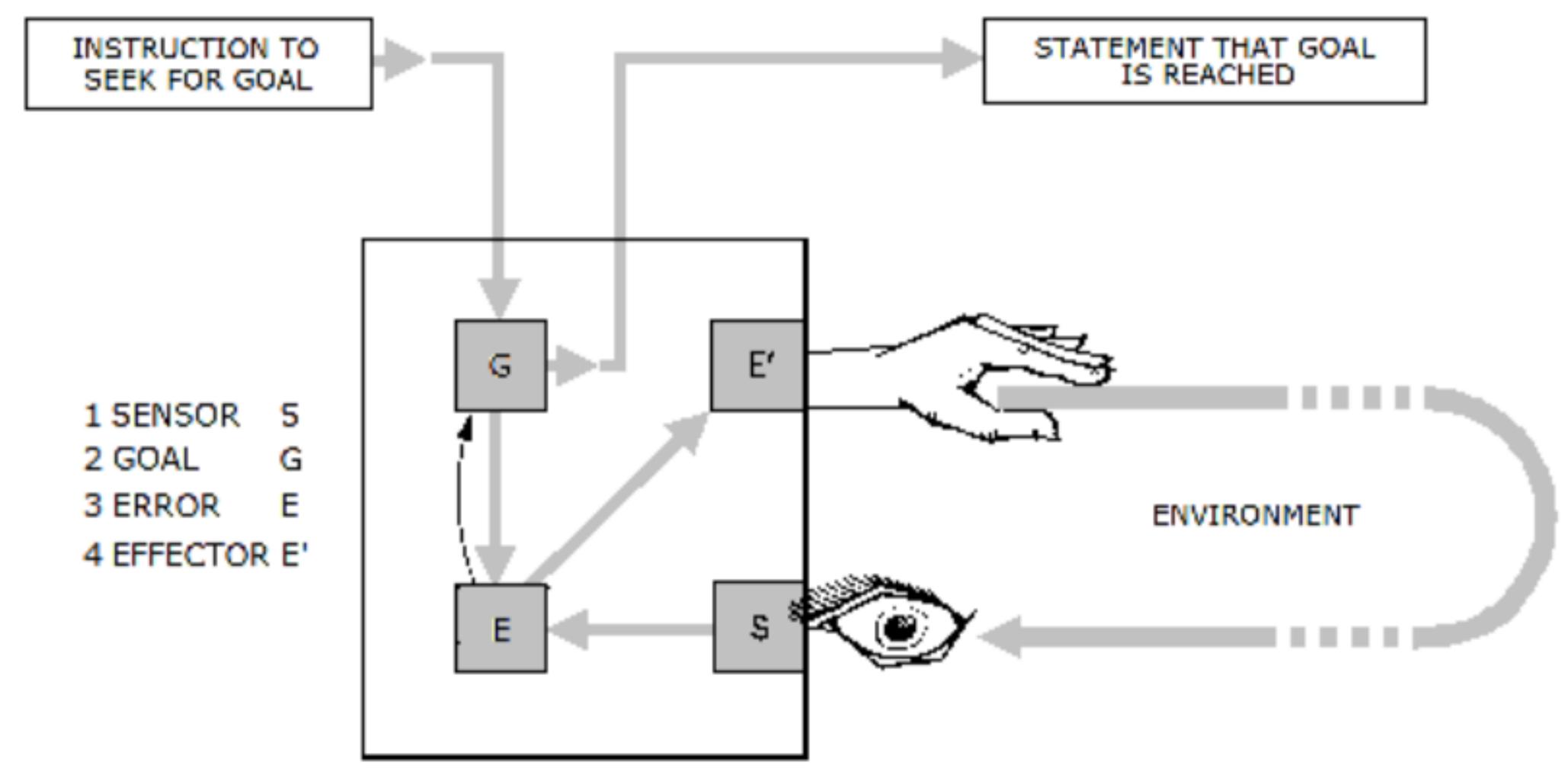
Quest to design intelligent machine Search, Decisions, Games, Learning, ...

Tomáš Svoboda, Petr Pošík, Jana Kostlivá, Kateřina Poláková, Jan Černý, <u>B3B33KUI 2022/2023</u>

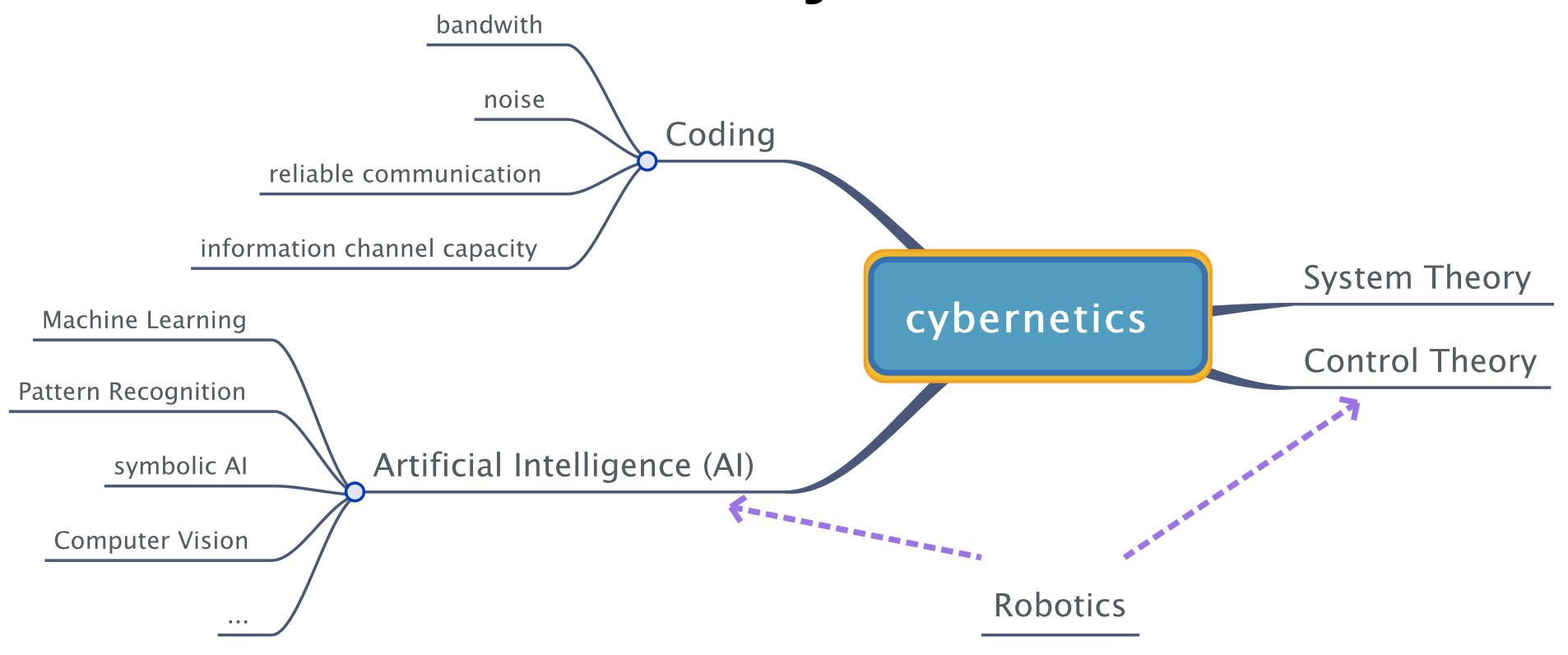
Course target: goal-directed system



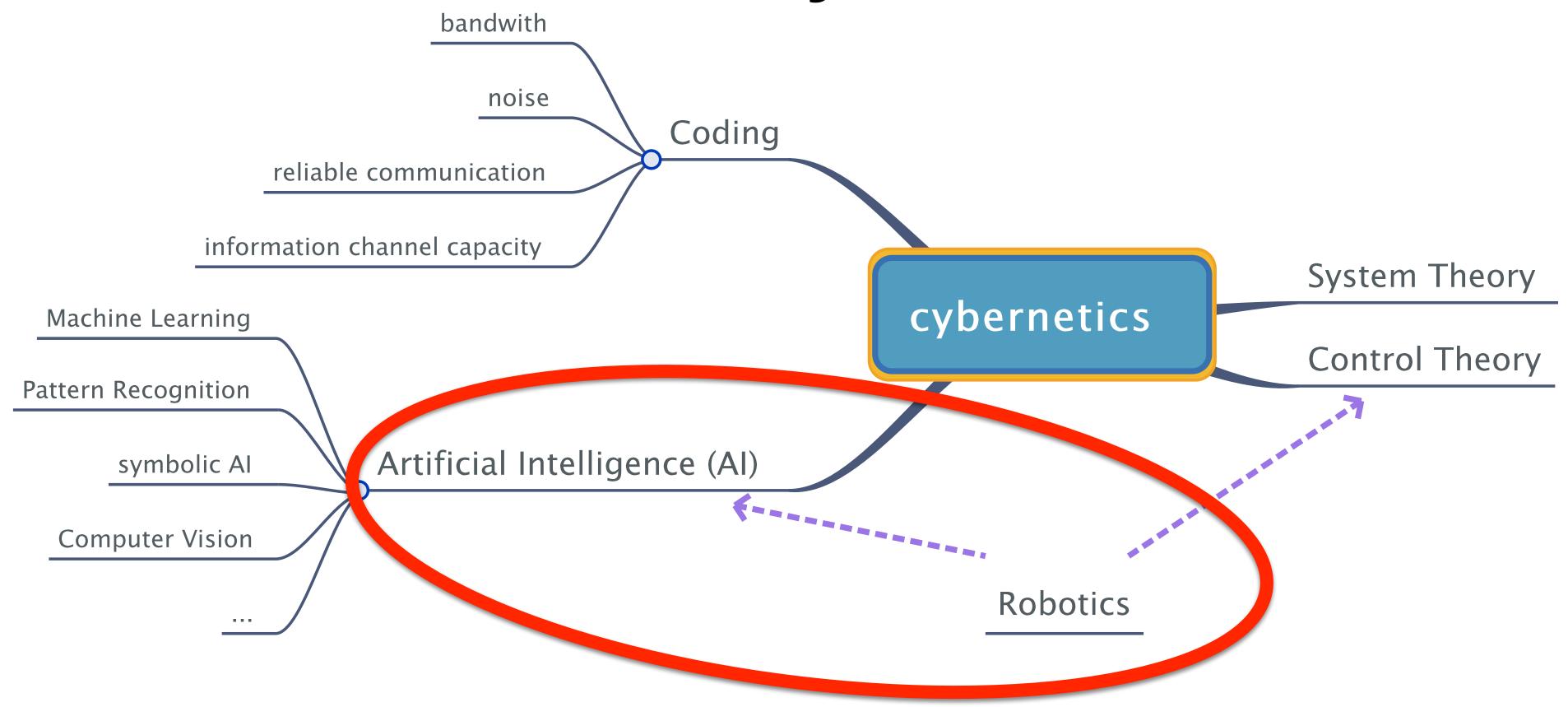
A SIMPLE GOAL-DIRECTED SYSTEM

Pask, Gordon (1972). "Cybernetics". Encyclopædia Britannica.

cybernetics now

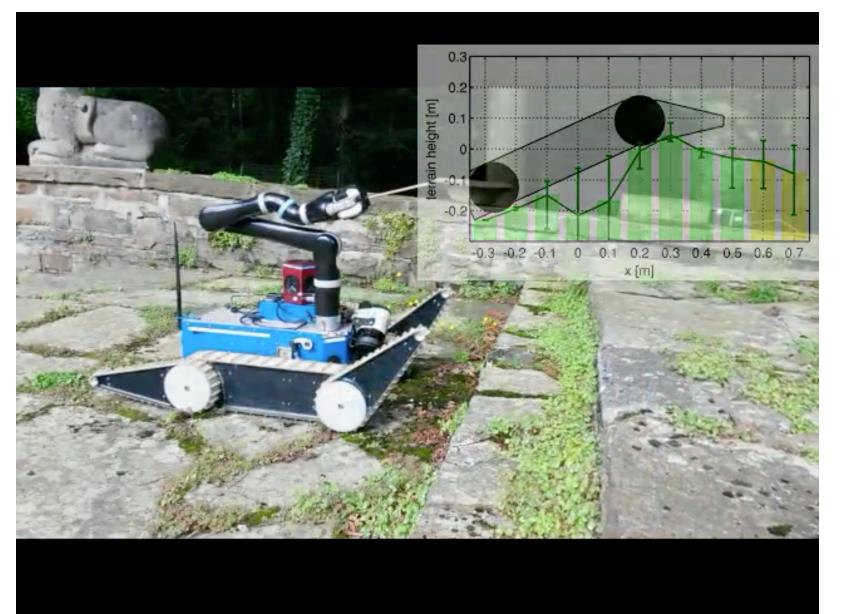


cybernetics now



- our motivation from (intelligent) robotics
- yet basic concepts from cybernetics
- modern terminology will be used

where we stand 50 years later: machine control in unstructured environment

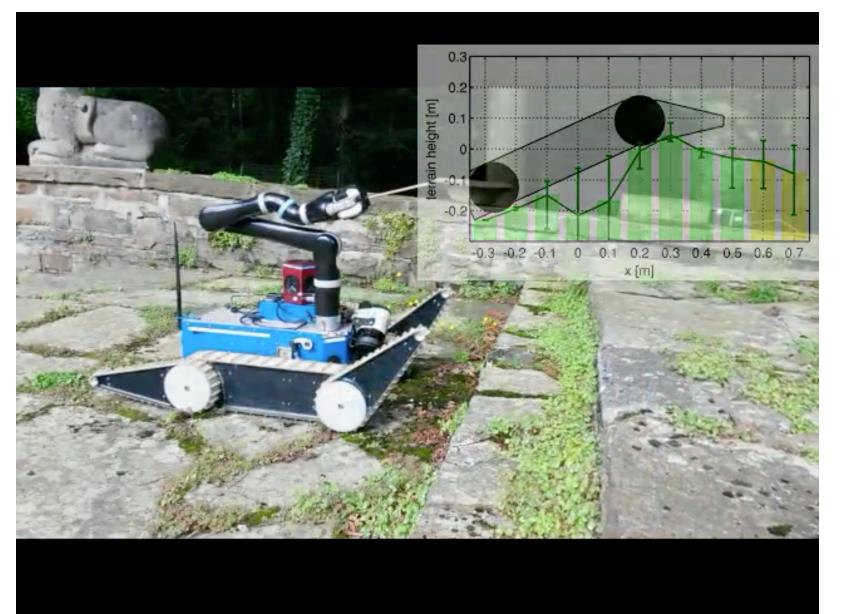


V. Salansky, K. Zimmermann, T. Petricek, T. Svoboda. Pose consistency KKT-loss for weakly supervised learning of robot-terrain interaction model. IEEE Robotics and Automation Letters, 2021, Volume 6, Issue 3.

M. Pecka, K. Zimmermann, M. Reinstein, and T. Svoboda. Controlling Robot Morphology from Incomplete Measurements. In *IEEE Transactions on Industrial Electronics*, Feb 2017, Vol 64, Issue: 2

V. Šalanský, V. Kubelka, K. Zimmermann, M. Reinstein, T. Svoboda. Touching without vision: terrain perception in sensory deprived environments. CVWW 2016

where we stand 50 years later: machine control in unstructured environment



V. Salansky, K. Zimmermann, T. Petricek, T. Svoboda. Pose consistency KKT-loss for weakly supervised learning of robot-terrain interaction model. IEEE Robotics and Automation Letters, 2021, Volume 6, Issue 3.

M. Pecka, K. Zimmermann, M. Reinstein, and T. Svoboda. Controlling Robot Morphology from Incomplete Measurements. In *IEEE Transactions on Industrial Electronics*, Feb 2017, Vol 64, Issue: 2

V. Šalanský, V. Kubelka, K. Zimmermann, M. Reinstein, T. Svoboda. Touching without vision: terrain perception in sensory deprived environments. CVWW 2016

CTU-CRAS-NORLAB

@DARPA Subterranean Challenge URBAN CIRCUIT

https://youtu.be/rTP64z52JFE

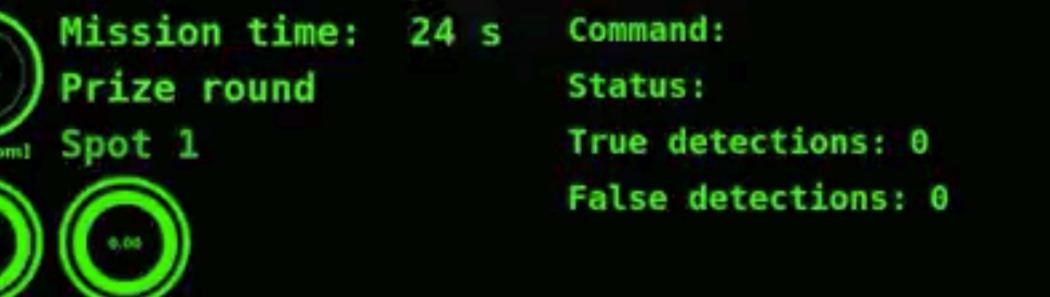
http://robotics.fel.cvijt.cz/cras/darpa-subt/ DARPA SubTerranean Challenge - Urban Circuit, 2020/02

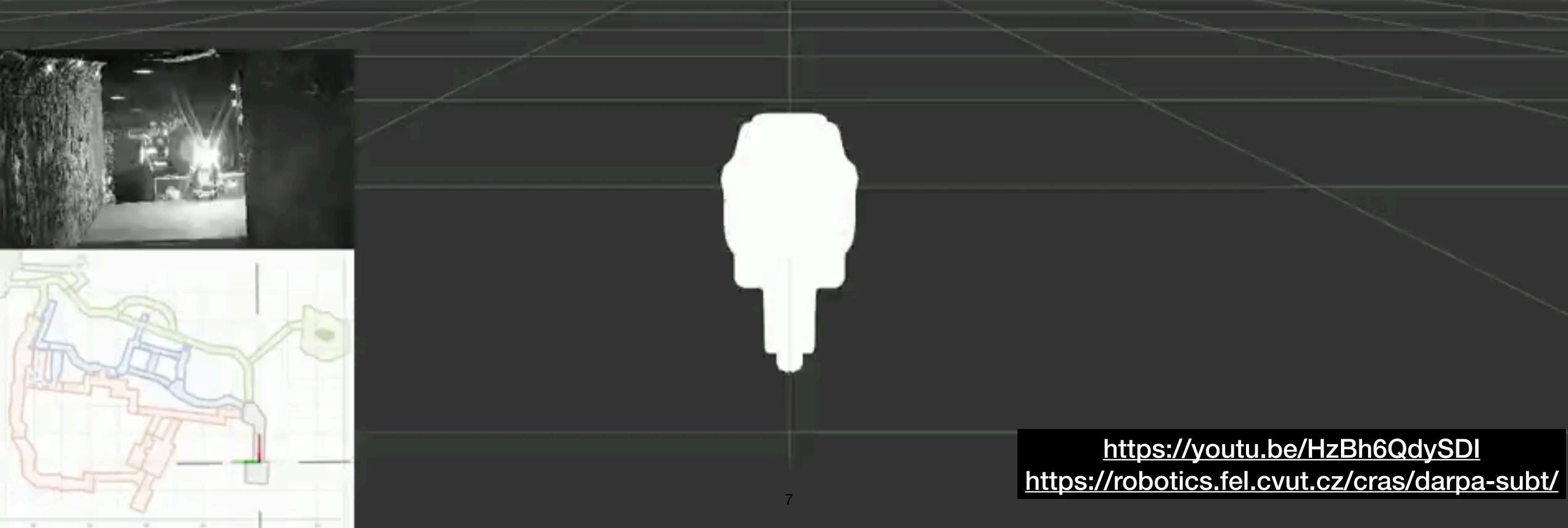
CTU-CRAS-NORLAB

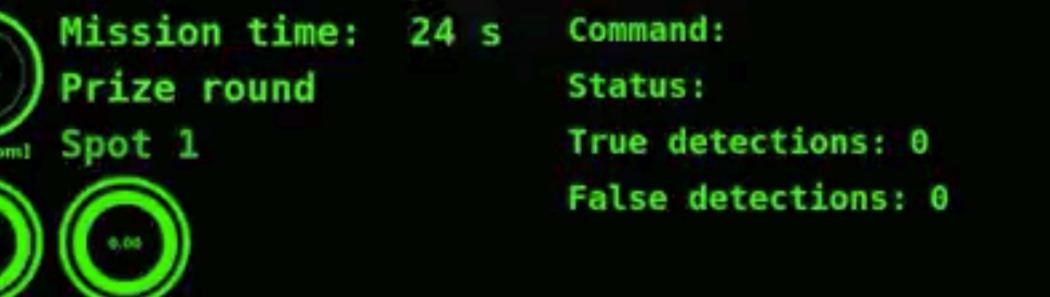
@DARPA Subterranean Challenge URBAN CIRCUIT

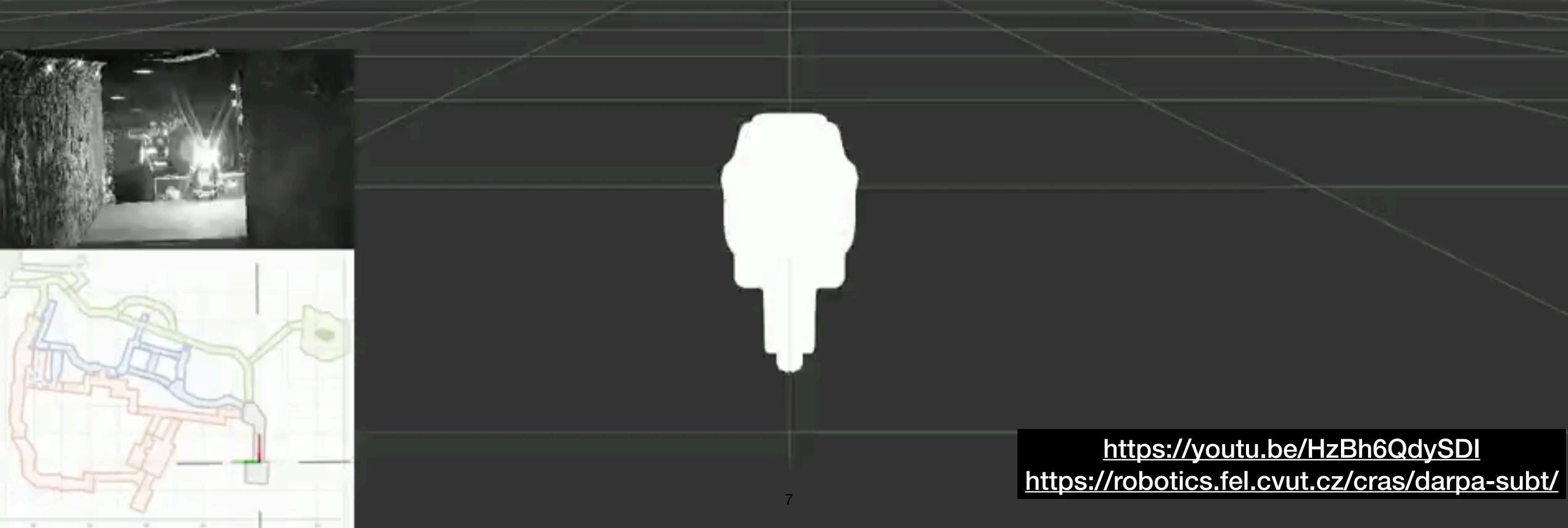
https://youtu.be/rTP64z52JFE

http://robotics.fel.cvijt.cz/cras/darpa-subt/ DARPA SubTerranean Challenge - Urban Circuit, 2020/02



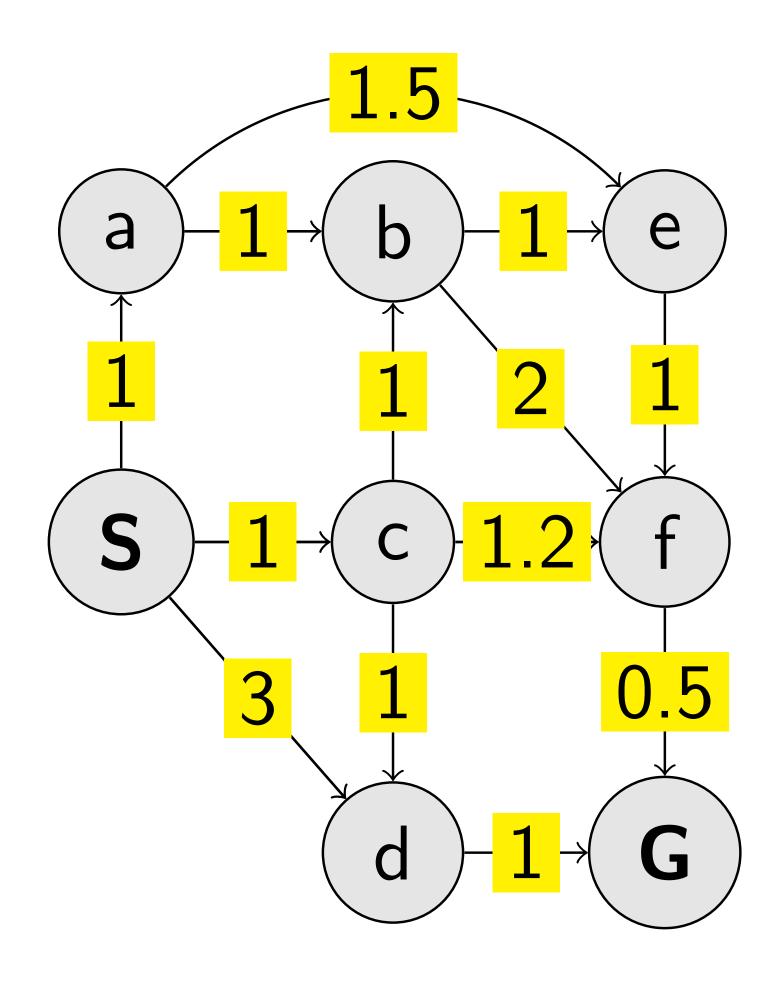


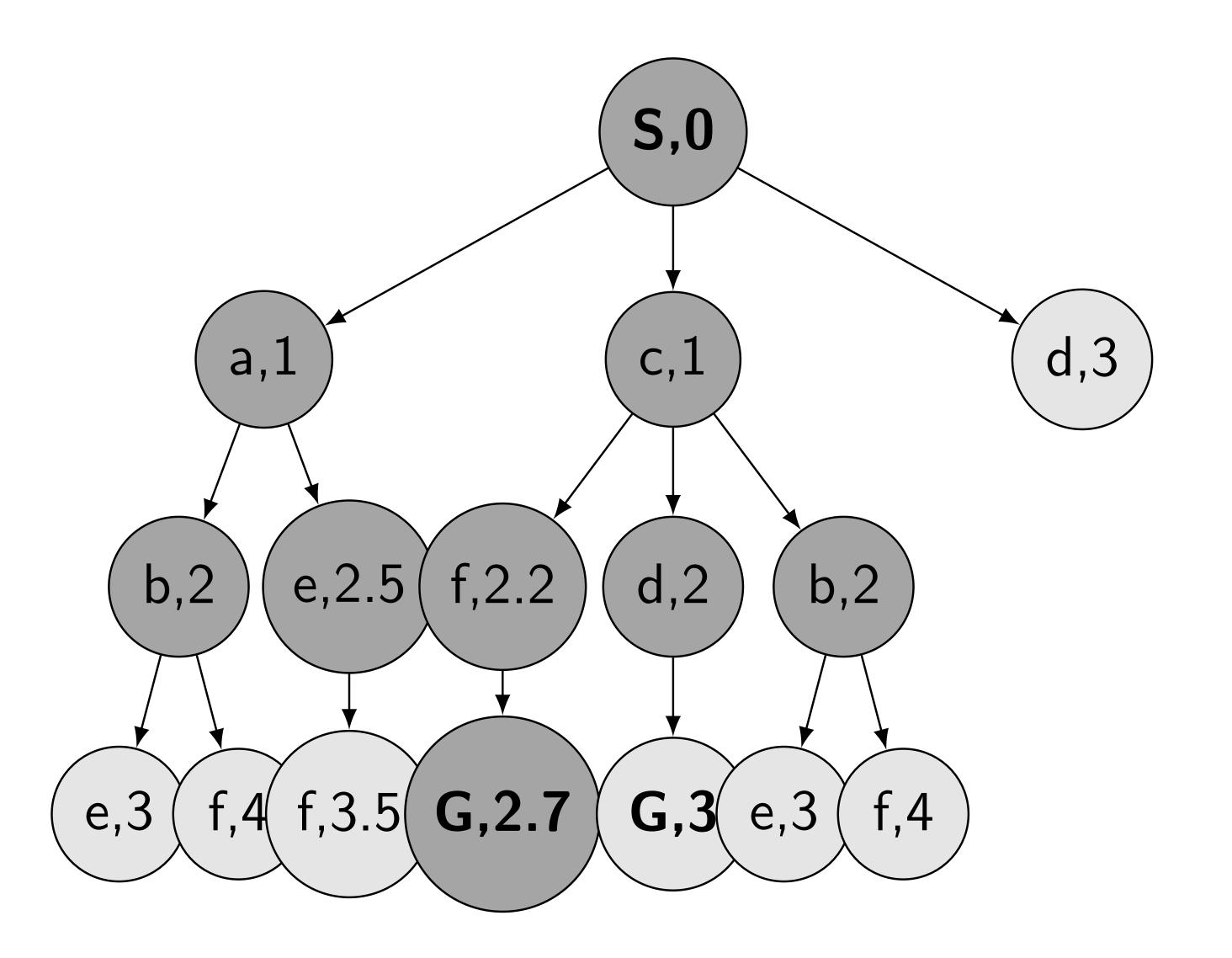




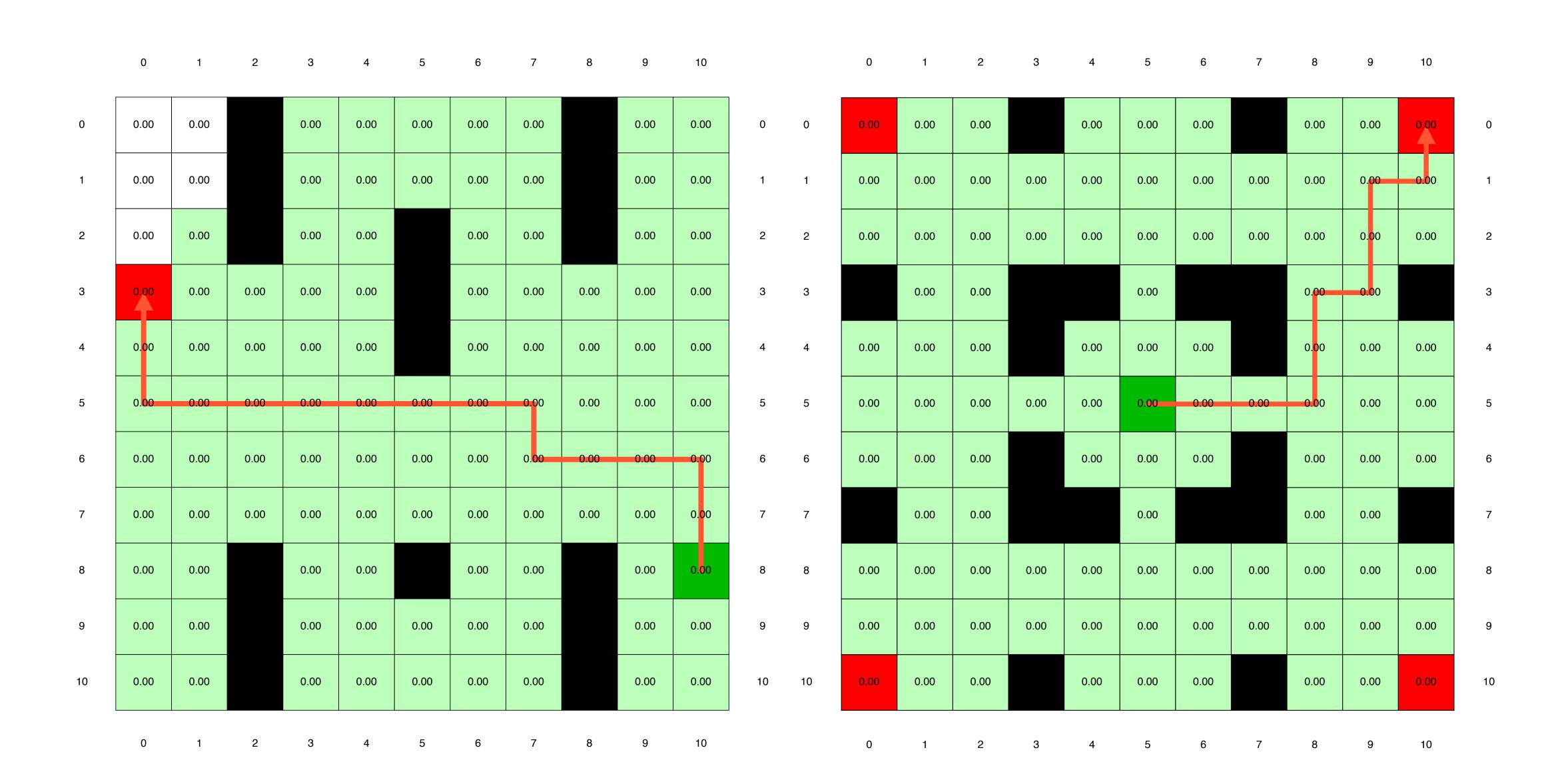
Problem: graph with costs

Complete, optimal search (plan)





Solution: Path (shortest, chapest, ...)



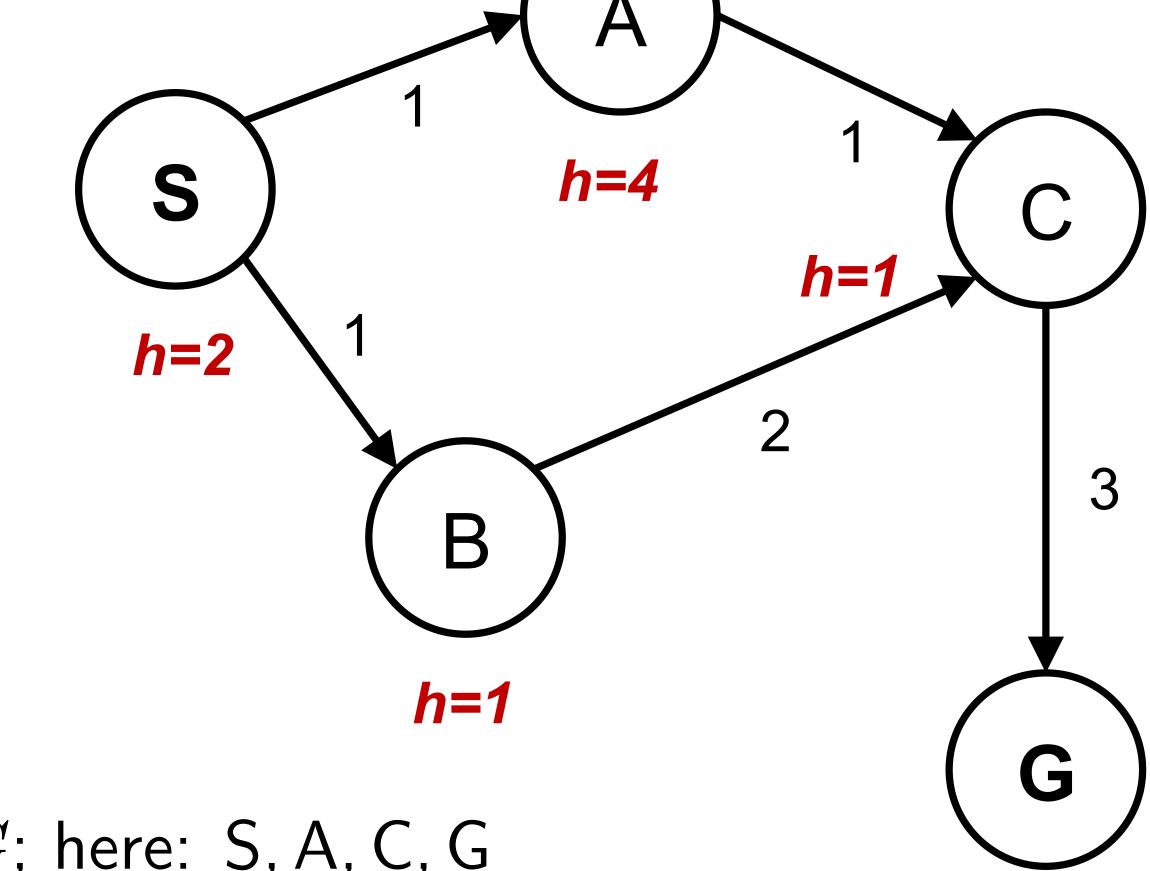
State cost/value: $f(S_t) = g(S_t) + h(S_t)$

Backward value/cost, accumulates as it goes

$$g(S_t) = g(S_{t-1}) + c(S_{t-1}, S_t)$$

$$g(C) = g(A) + c(A, C)$$

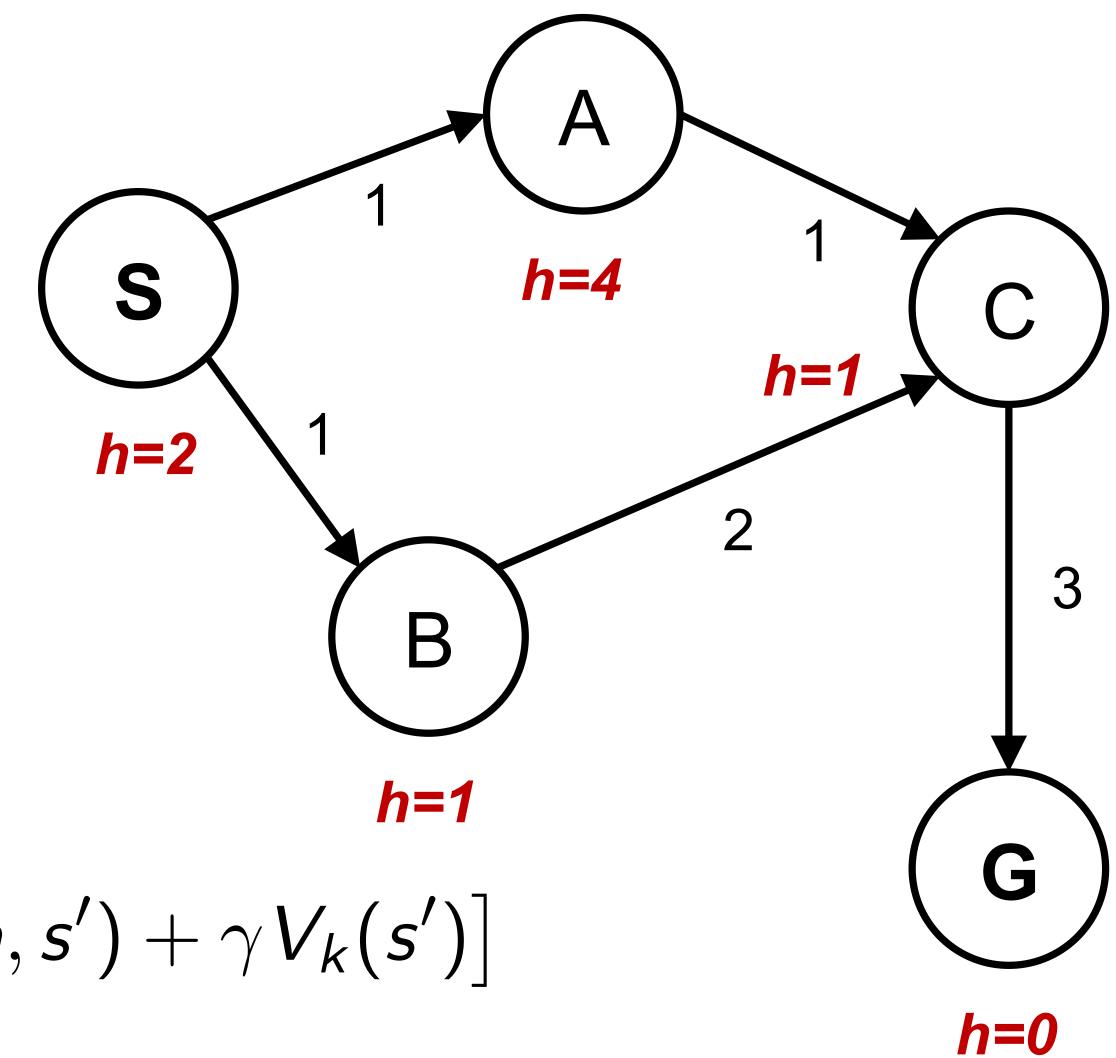
Forward cost, guess of $h(S_t) \approx c(S_t, G)$



Solution minimizes overall cost.

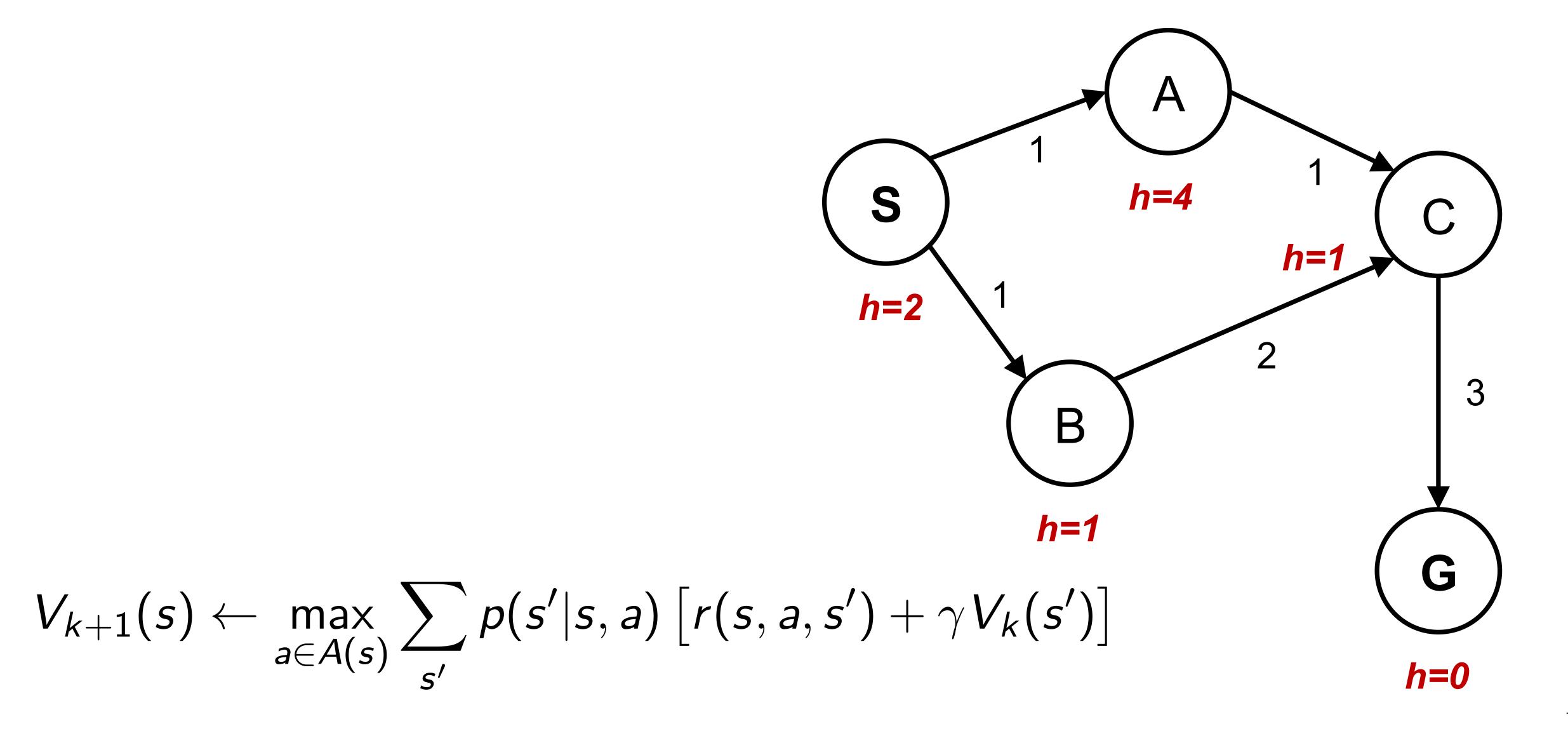
From Start to Goal (terminal):

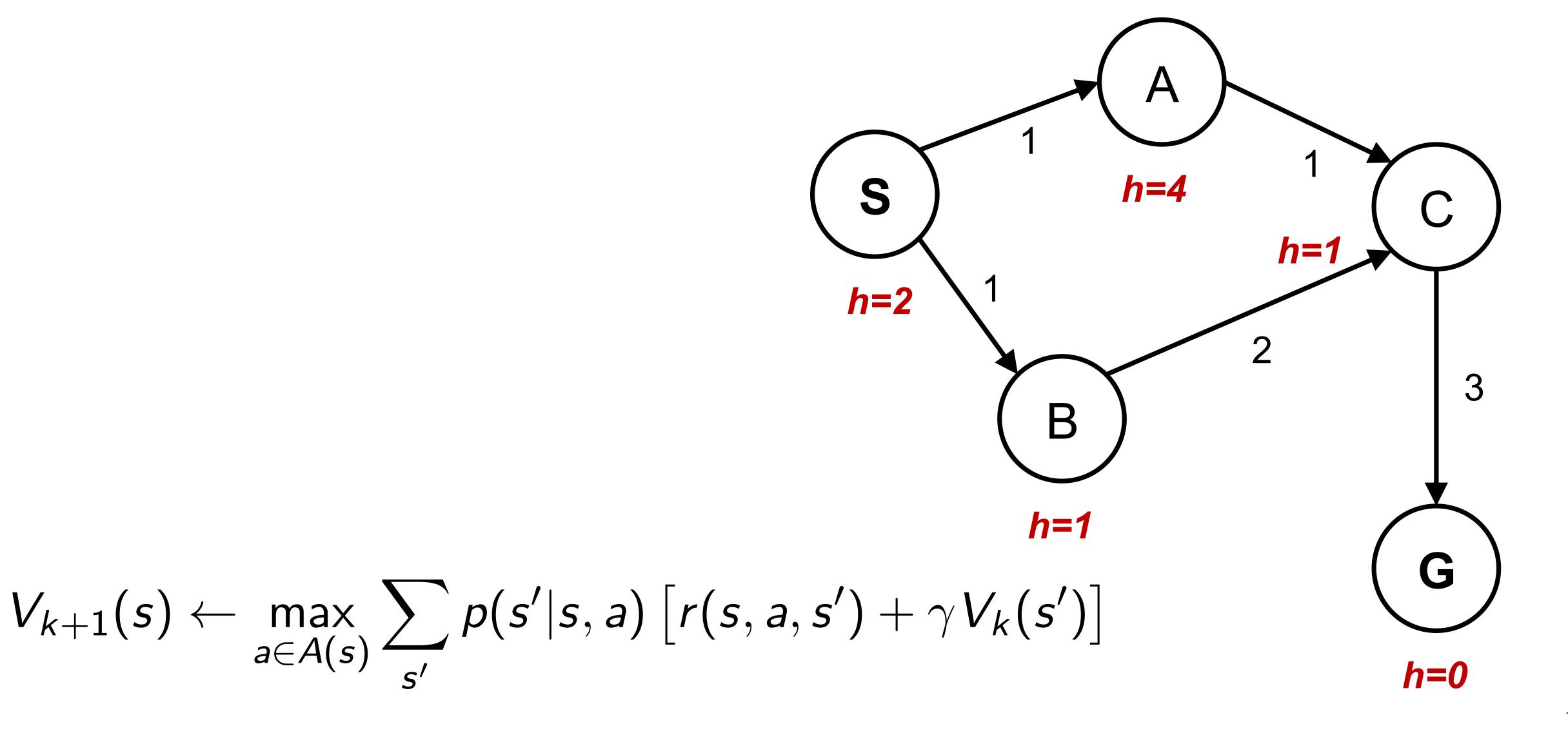
$$\sum_{S}^{G} f(S_t)$$
 Solution: $S_{t=0}, S_1, S_2, \ldots, G$; here: S, A, C, G



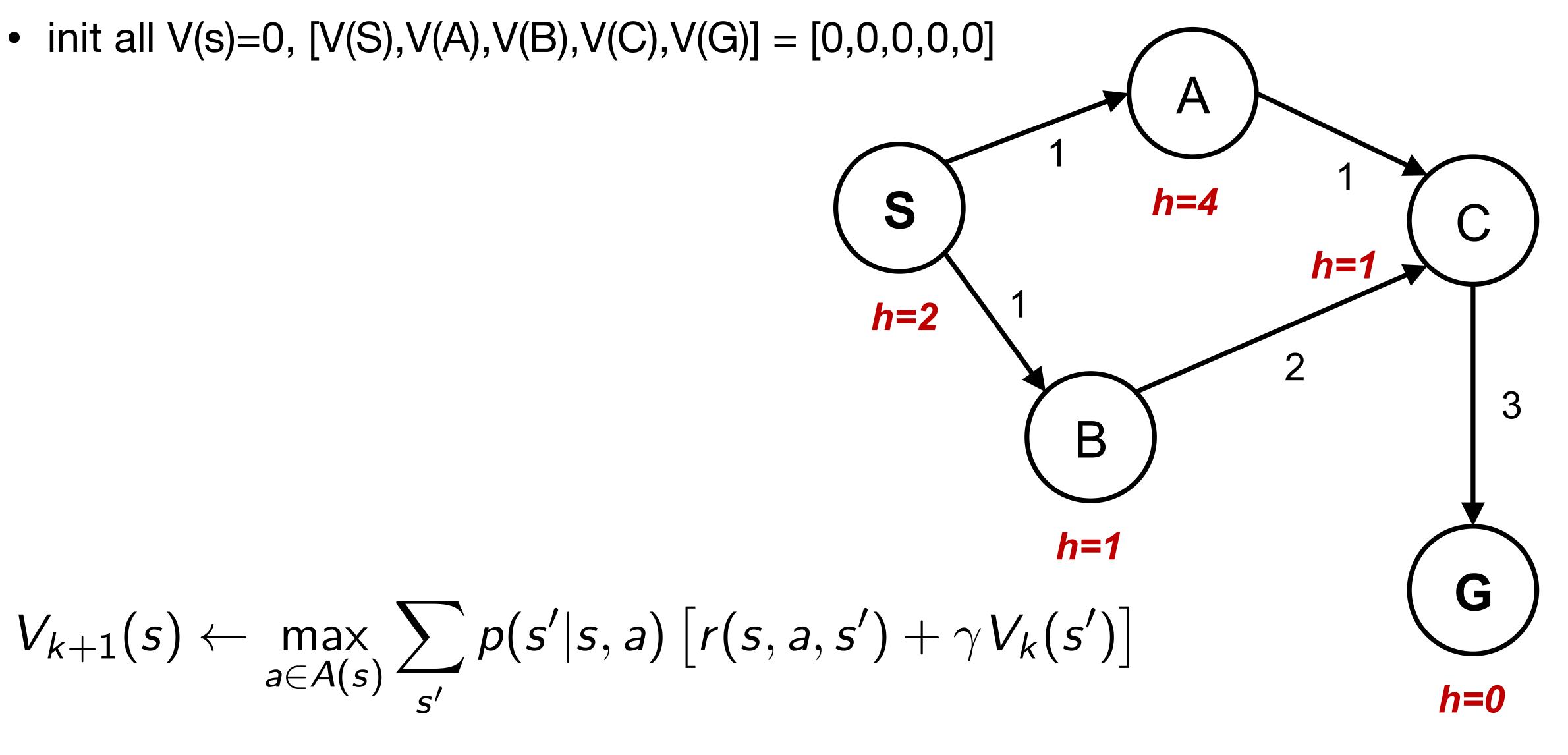
$$V_{k+1}(s) \leftarrow \max_{a \in A(s)} \sum_{s'} p(s'|s,a) \left[r(s,a,s') + \gamma V_k(s') \right]$$

$$h=0$$



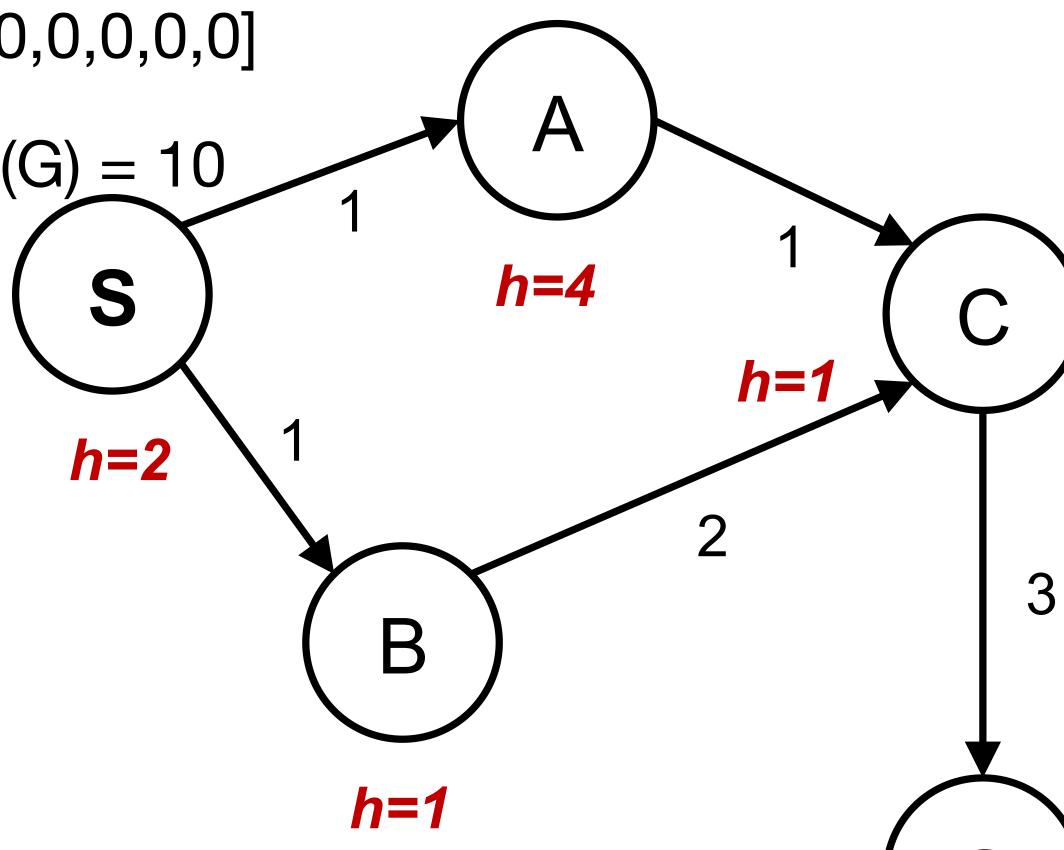


assume deterministic robot, no discounting



assume deterministic robot, no discounting

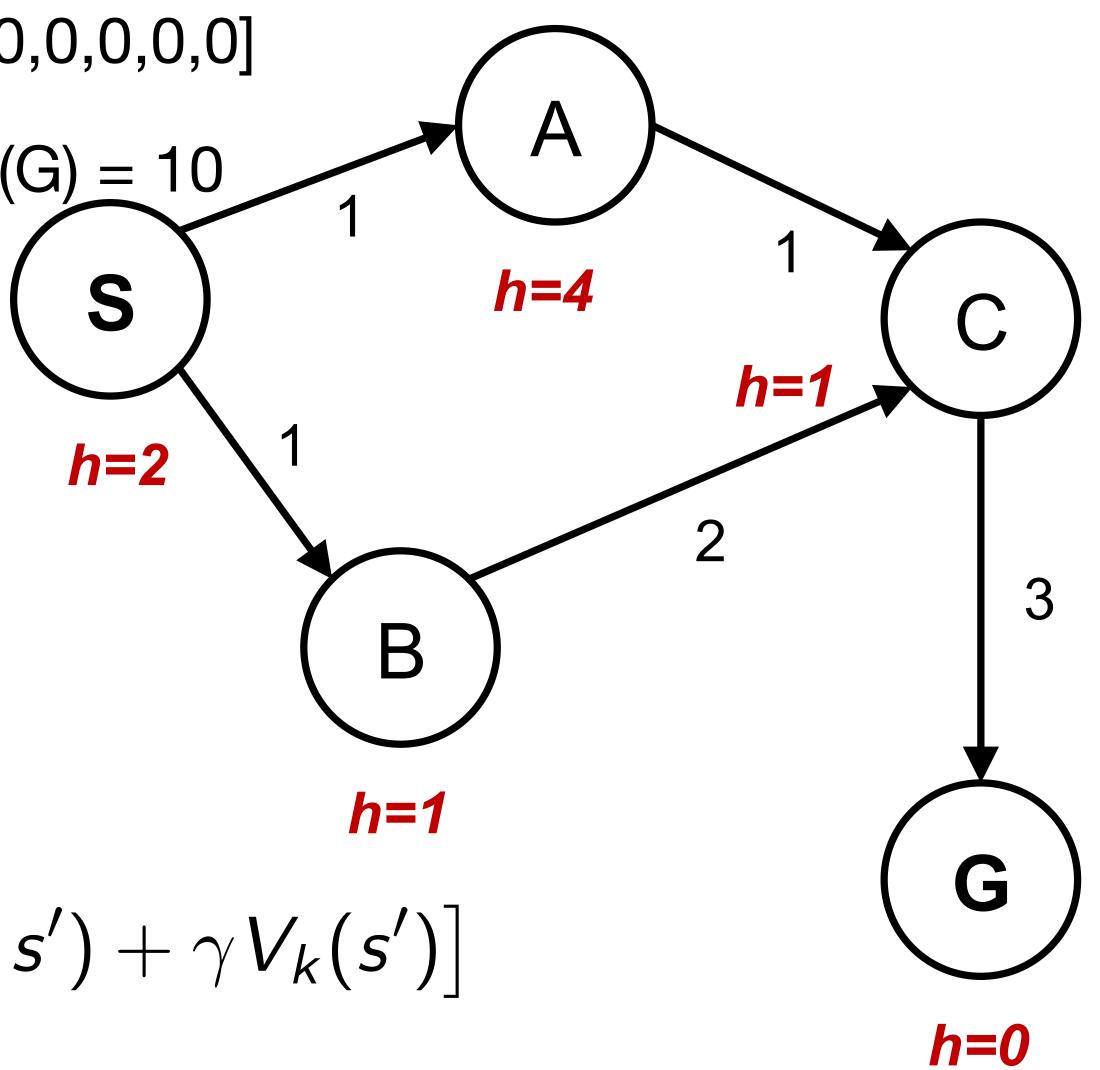
• V(S) = -1, V(A) = -1, V(B) = -2, V(C) = -3, V(G) = 10



$$V_{k+1}(s) \leftarrow \max_{a \in A(s)} \sum_{s'} p(s'|s,a) \left[r(s,a,s') + \gamma V_k(s') \right]$$

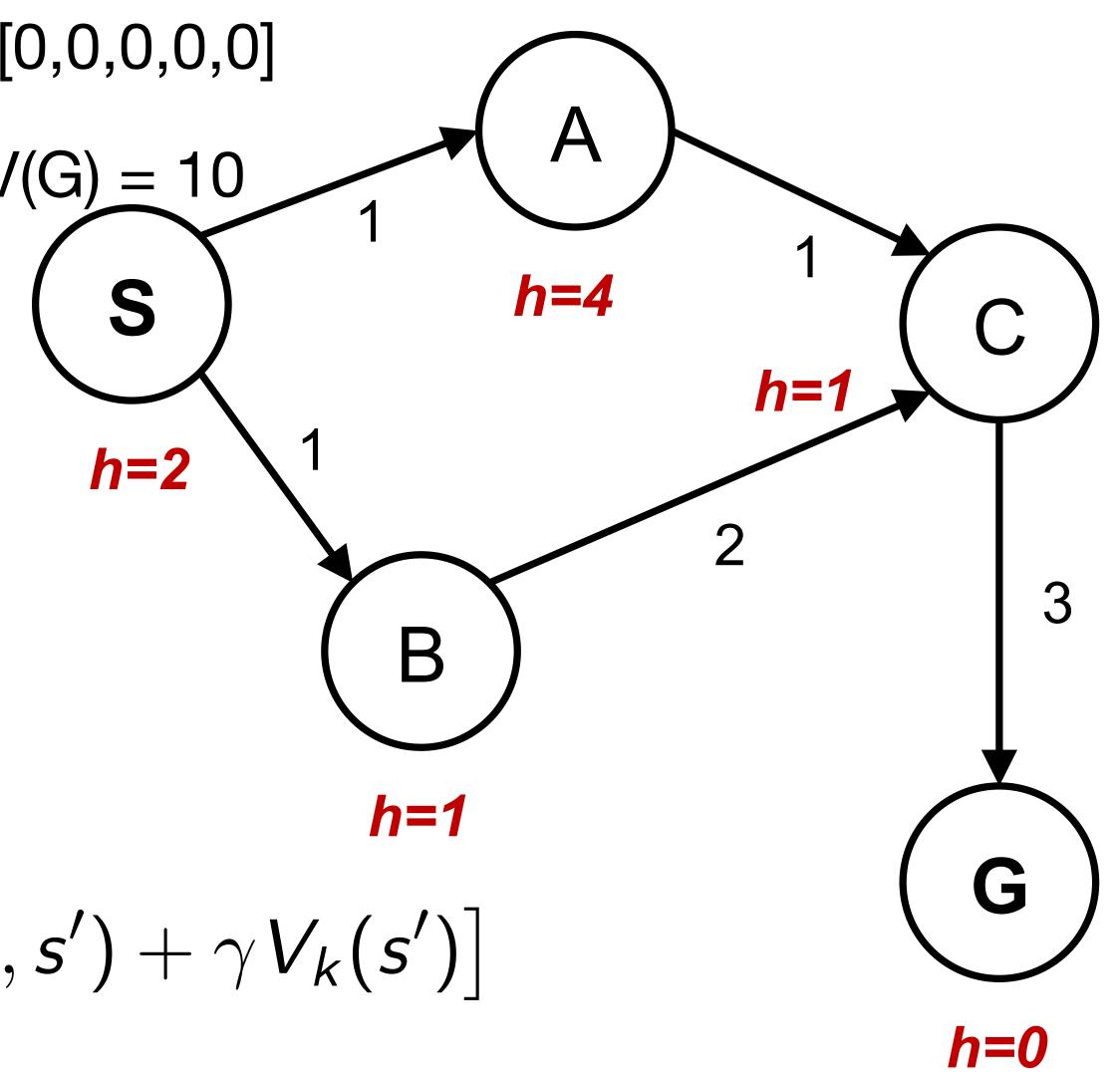
$$h=0$$

- V(S) = -1, V(A) = -1, V(B) = -2, V(C) = -3, V(G) = 10
- [-2, -4, -5, 7, 10]



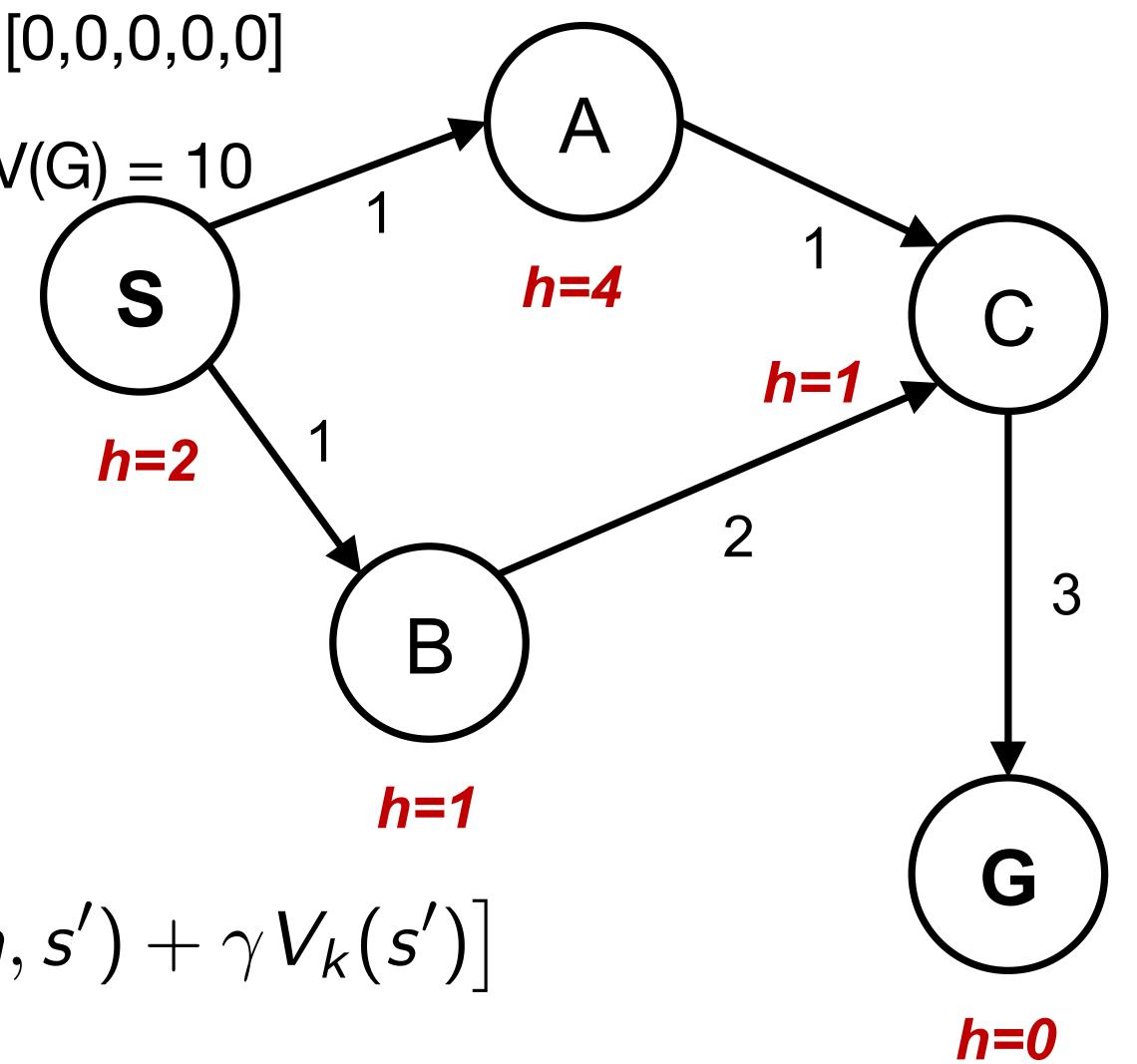
$$V_{k+1}(s) \leftarrow \max_{a \in A(s)} \sum_{s'} p(s'|s,a) \left[r(s,a,s') + \gamma V_k(s') \right]$$

- init all V(s)=0, [V(S),V(A),V(B),V(C),V(G)] = [0,0,0,0,0]
- V(S) = -1, V(A) = -1, V(B) = -2, V(C) = -3, V(G) = 10
- [-2, -4, -5, 7, 10]
- [-5, 6, 5, 7, 10]

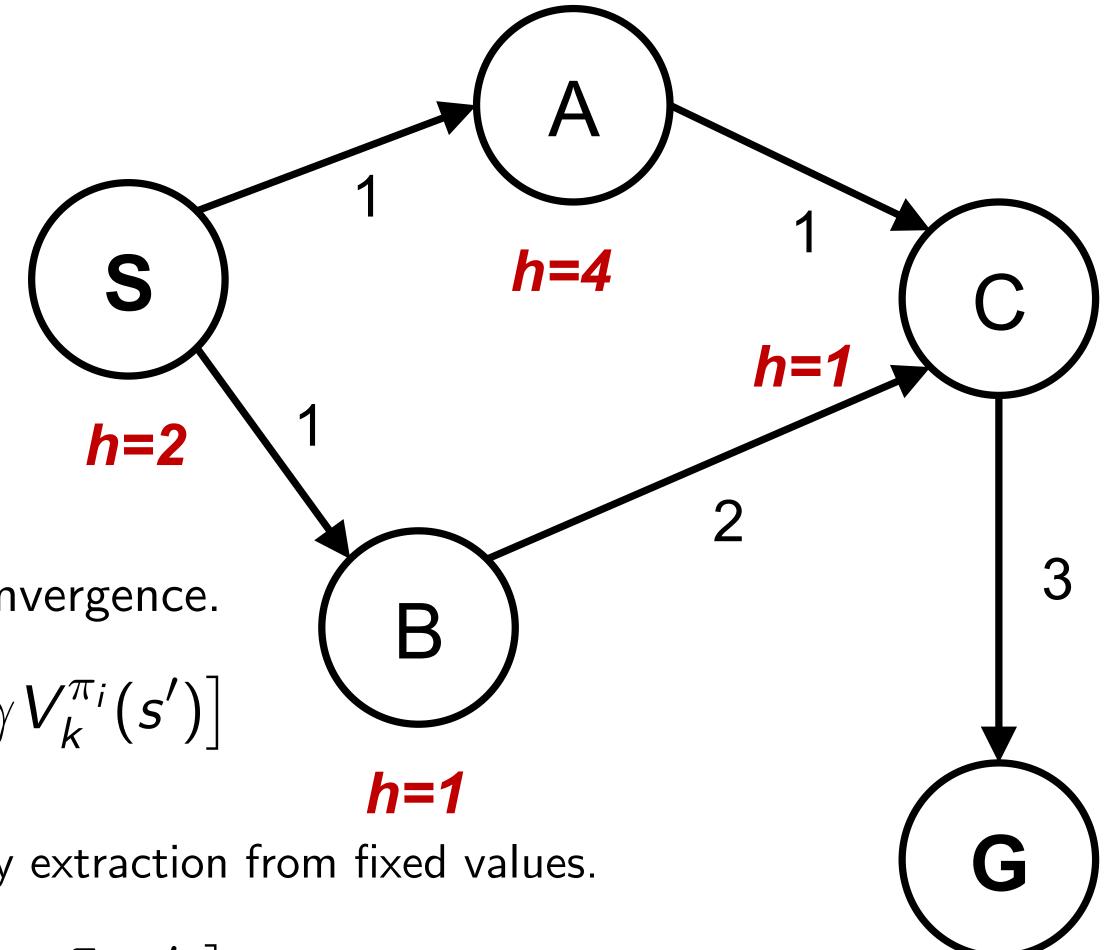


$$V_{k+1}(s) \leftarrow \max_{a \in A(s)} \sum_{s'} p(s'|s,a) \left[r(s,a,s') + \gamma V_k(s') \right]$$

- init all V(s)=0, [V(S),V(A),V(B),V(C),V(G)] = [0,0,0,0,0]
- V(S) = -1, V(A) = -1, V(B) = -2, V(C) = -3, V(G) = 10
- [-2, -4, -5, 7, 10]
- [-5, 6, 5, 7, 10]
- [5, 6, 5, 7, 10]



$$V_{k+1}(s) \leftarrow \max_{a \in A(s)} \sum_{s'} p(s'|s,a) \left[r(s,a,s') + \gamma V_k(s') \right]$$

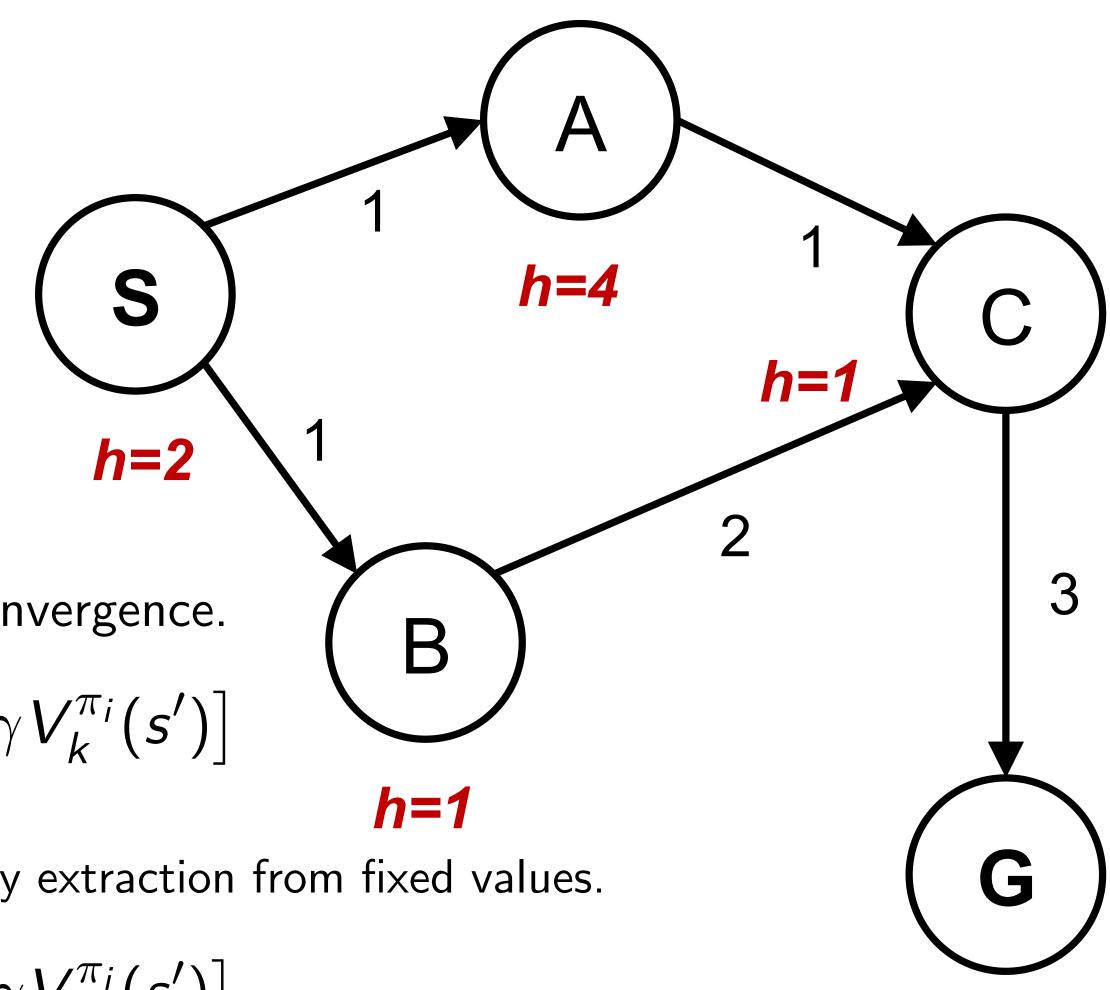


Policy π evaluation. Solve equations or iterate until convergence.

$$V_{k+1}^{\pi_i}(s) \leftarrow \sum_{s'} p(s' \mid s, \pi(s)) \left[r(s, \pi(s), s') + \gamma V_k^{\pi_i}(s') \right]$$

Policy improvement. Look-ahead and keep optimality. Policy extraction from fixed values.

$$\pi_{i+1}(s) = \underset{a \in \mathcal{A}(s)}{\operatorname{arg max}} \sum_{s'} p(s' \mid s, a) \left[r(s, a, s') + \gamma V_k^{\pi_i}(s') \right]$$



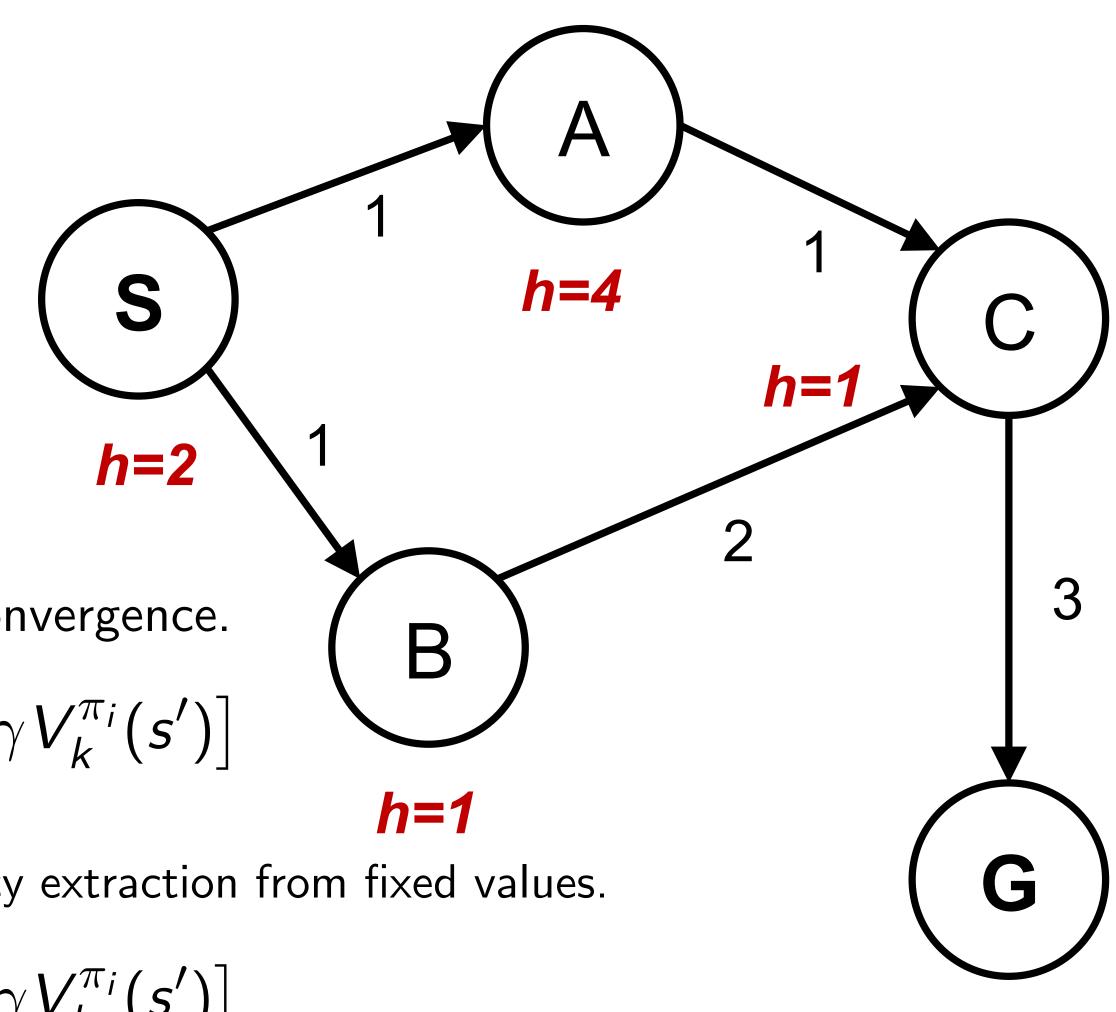
Policy π evaluation. Solve equations or iterate until convergence.

$$V_{k+1}^{\pi_i}(s) \leftarrow \sum_{s'} p(s' \mid s, \pi(s)) \left[r(s, \pi(s), s') + \gamma V_k^{\pi_i}(s') \right]$$

Policy improvement. Look-ahead and keep optimality. Policy extraction from fixed values.

$$\pi_{i+1}(s) = \underset{a \in \mathcal{A}(s)}{\operatorname{arg max}} \sum_{s'} p(s' \mid s, a) \left[r(s, a, s') + \gamma V_k^{\pi_i}(s') \right]$$

assume deterministic robot, no discounting



Policy π evaluation. Solve equations or iterate until convergence.

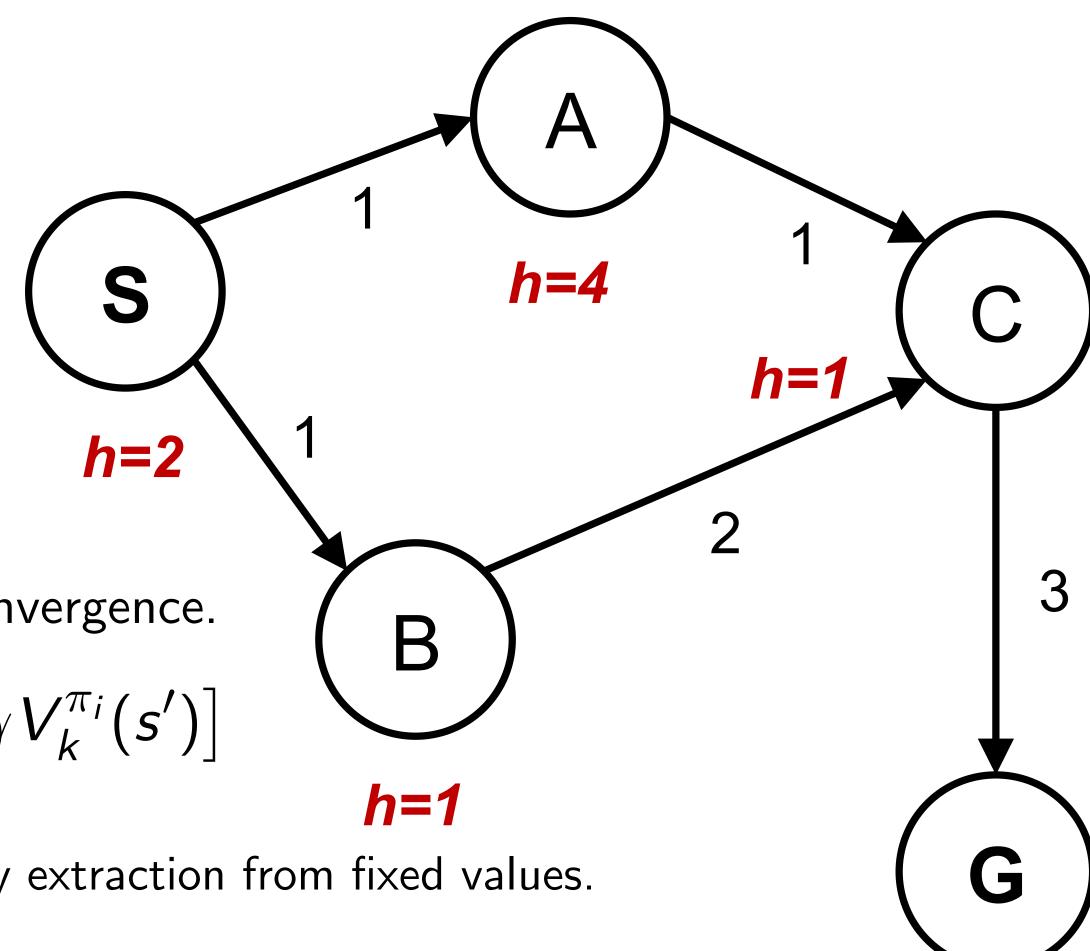
$$V_{k+1}^{\pi_i}(s) \leftarrow \sum_{s'} p(s' \mid s, \pi(s)) \left[r(s, \pi(s), s') + \gamma V_k^{\pi_i}(s') \right]$$

Policy improvement. Look-ahead and keep optimality. Policy extraction from fixed values.

$$\pi_{i+1}(s) = \underset{a \in \mathcal{A}(s)}{\operatorname{arg max}} \sum_{s'} p(s' \mid s, a) \left[r(s, a, s') + \gamma V_k^{\pi_i}(s') \right]$$

assume deterministic robot, no discounting

init: p([S,A,B,C,G]) = [right,go,go,go,exit]



Policy π evaluation. Solve equations or iterate until convergence.

$$V_{k+1}^{\pi_i}(s) \leftarrow \sum_{s'} p(s' \mid s, \pi(s)) \left[r(s, \pi(s), s') + \gamma V_k^{\pi_i}(s') \right]$$

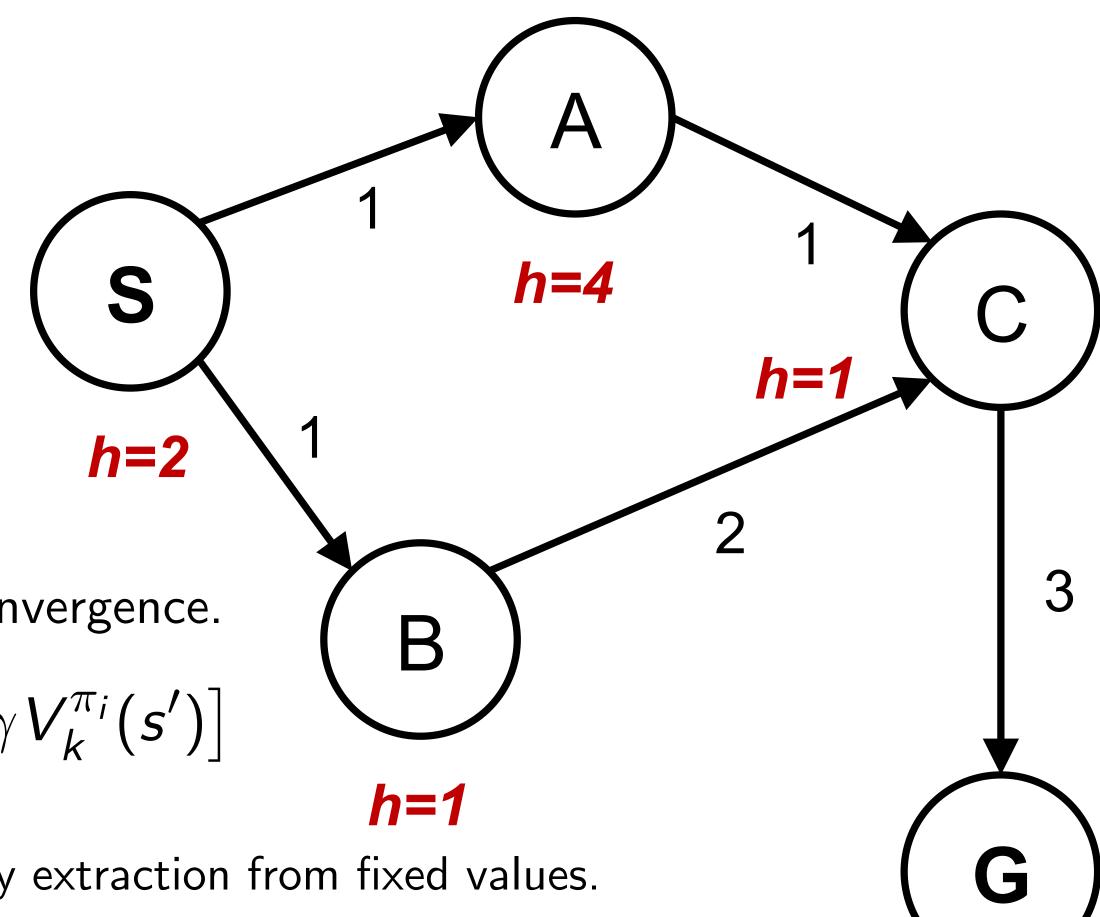
Policy improvement. Look-ahead and keep optimality. Policy extraction from fixed values.

$$\pi_{i+1}(s) = \underset{a \in \mathcal{A}(s)}{\operatorname{arg max}} \sum_{s'} p(s' \mid s, a) \left[r(s, a, s') + \gamma V_k^{\pi_i}(s') \right]$$

assume deterministic robot, no discounting

init: p([S,A,B,C,G]) = [right,go,go,go,exit]

• policy eval => V([]) = [4,6,5,7,10]



Policy π evaluation. Solve equations or iterate until convergence.

$$V_{k+1}^{\pi_i}(s) \leftarrow \sum_{s'} p(s' \mid s, \pi(s)) \left[r(s, \pi(s), s') + \gamma V_k^{\pi_i}(s') \right]$$

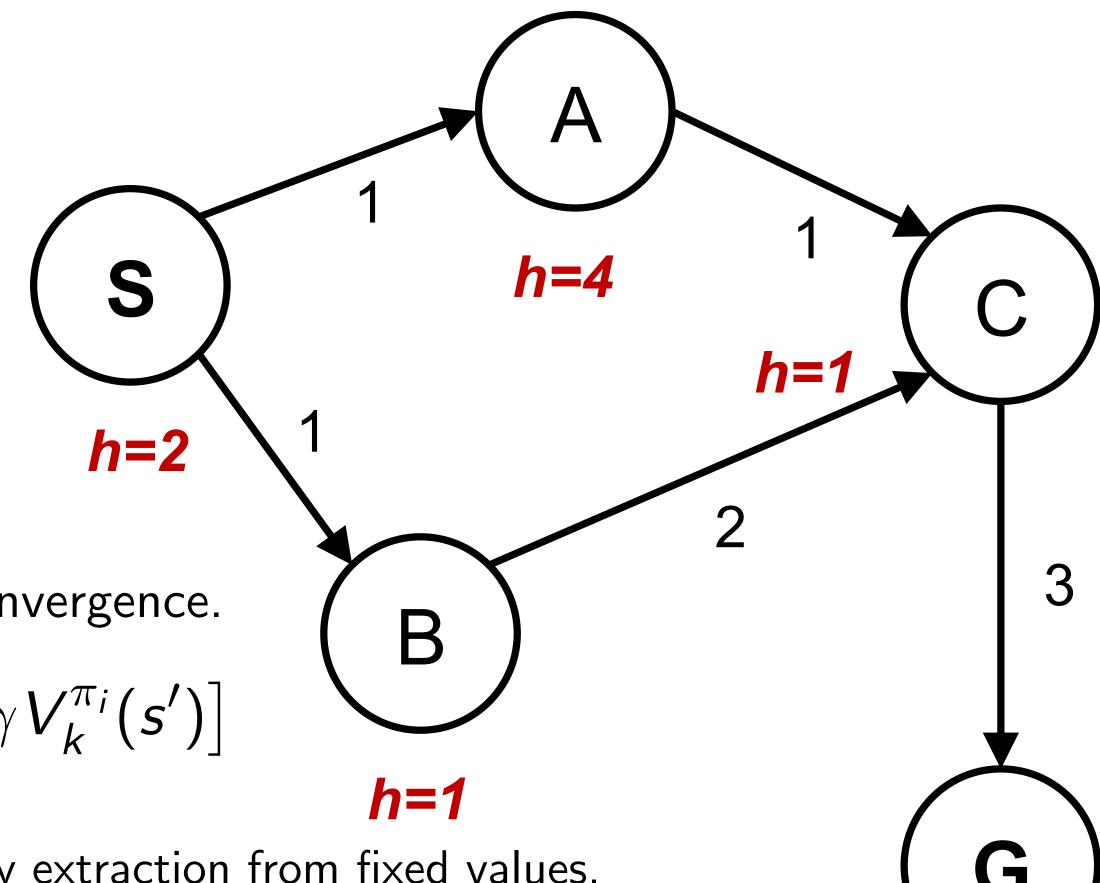
Policy improvement. Look-ahead and keep optimality. Policy extraction from fixed values.

$$\pi_{i+1}(s) = \underset{a \in \mathcal{A}(s)}{\operatorname{arg max}} \sum_{s'} p(s' \mid s, a) \left[r(s, a, s') + \gamma V_k^{\pi_i}(s') \right]$$

assume deterministic robot, no discounting

init: p([S,A,B,C,G]) = [right,go,go,go,exit]

- policy eval => V([]) = [4,6,5,7,10]
- policy update p = [left,go,go,go,exit]



Policy π evaluation. Solve equations or iterate until convergence.

$$V_{k+1}^{\pi_i}(s) \leftarrow \sum_{s'} p(s' \mid s, \pi(s)) \left[r(s, \pi(s), s') + \gamma V_k^{\pi_i}(s') \right]$$

Policy improvement. Look-ahead and keep optimality. Policy extraction from fixed values.

$$\pi_{i+1}(s) = \underset{a \in \mathcal{A}(s)}{\operatorname{arg max}} \sum_{s'} p(s' \mid s, a) \left[r(s, a, s') + \gamma V_k^{\pi_i}(s') \right]$$

assume deterministic robot, no discounting

init: p([S,A,B,C,G]) = [right,go,go,go,exit]

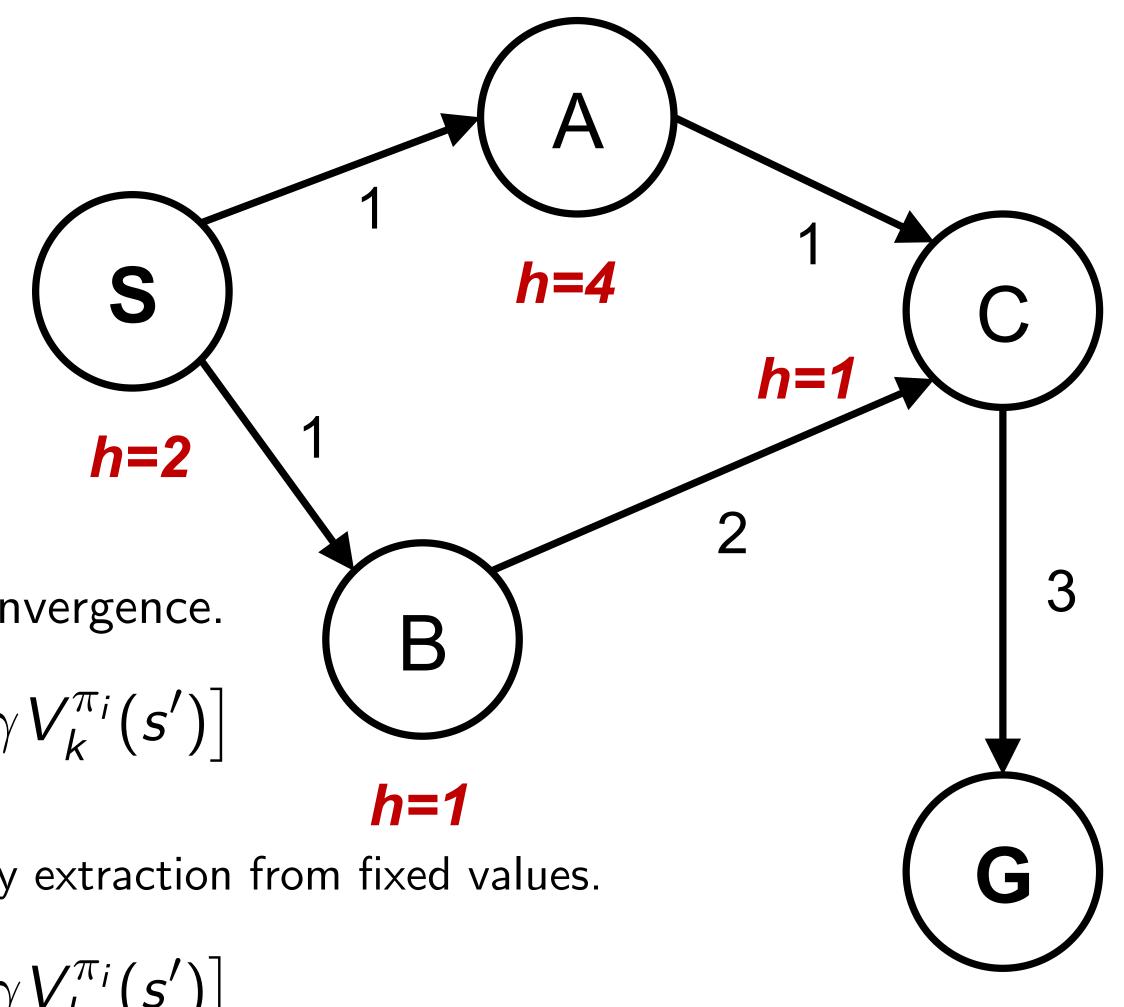
- policy eval => V([]) = [4,6,5,7,10]
- policy update p = [left,go,go,go,exit]
- eval V([]) = [5,6,5,7,10]

Policy π evaluation. Solve equations or iterate until convergence.

$$V_{k+1}^{\pi_i}(s) \leftarrow \sum_{s'} p(s' \mid s, \pi(s)) \left[r(s, \pi(s), s') + \gamma V_k^{\pi_i}(s') \right]$$

Policy improvement. Look-ahead and keep optimality. Policy extraction from fixed values.

$$\pi_{i+1}(s) = \underset{a \in \mathcal{A}(s)}{\operatorname{arg max}} \sum_{s'} p(s' \mid s, a) \left[r(s, a, s') + \gamma V_k^{\pi_i}(s') \right]$$



assume deterministic robot, no discounting

init: p([S,A,B,C,G]) = [right,go,go,go,exit]

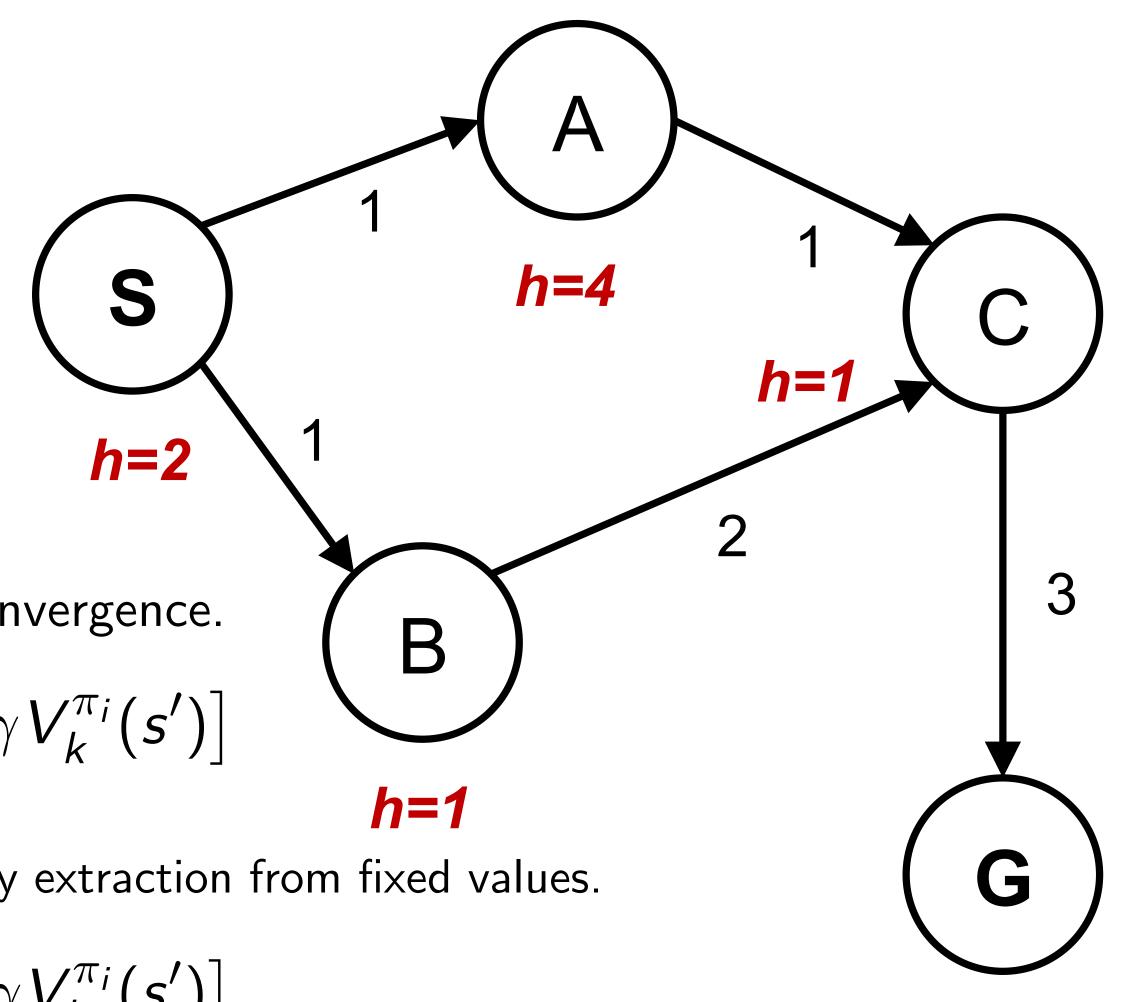
- policy eval => V([]) = [4,6,5,7,10]
- policy update p = [left,go,go,go,exit]
- eval V([]) = [5,6,5,7,10]
- update p = [left,go,go,go,exit]

Policy π evaluation. Solve equations or iterate until convergence.

$$V_{k+1}^{\pi_i}(s) \leftarrow \sum_{s'} p(s' \mid s, \pi(s)) \left[r(s, \pi(s), s') + \gamma V_k^{\pi_i}(s') \right]$$

Policy improvement. Look-ahead and keep optimality. Policy extraction from fixed values.

$$\pi_{i+1}(s) = \underset{a \in \mathcal{A}(s)}{\operatorname{arg max}} \sum_{s'} p(s' \mid s, a) \left[r(s, a, s') + \gamma V_k^{\pi_i}(s') \right]$$



assume deterministic robot, no discounting

init: p([S,A,B,C,G]) = [right,go,go,go,exit]

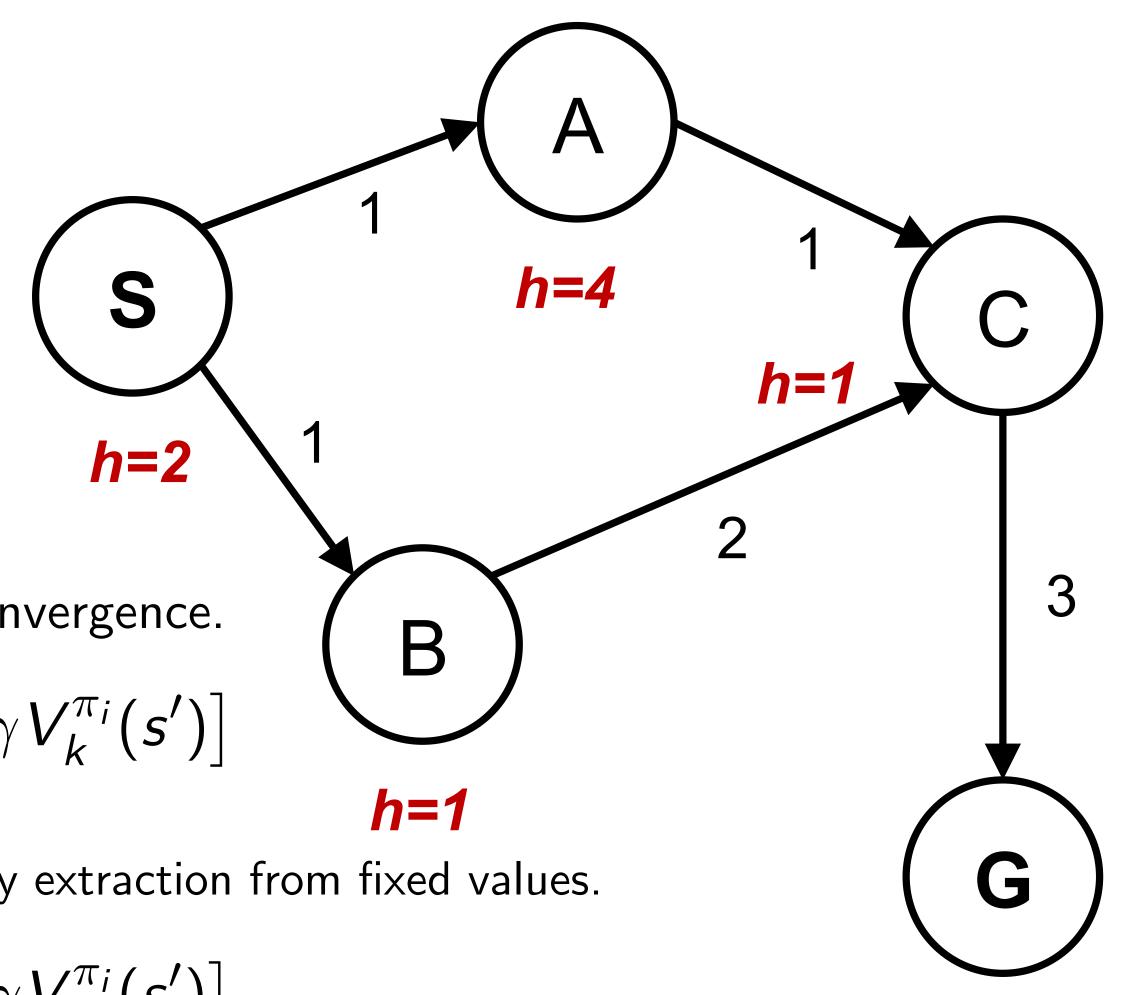
- policy eval => V([]) = [4,6,5,7,10]
- policy update p = [left,go,go,go,exit]
- eval V([]) = [5,6,5,7,10]
- update p = [left,go,go,go,exit]
- no change, stops

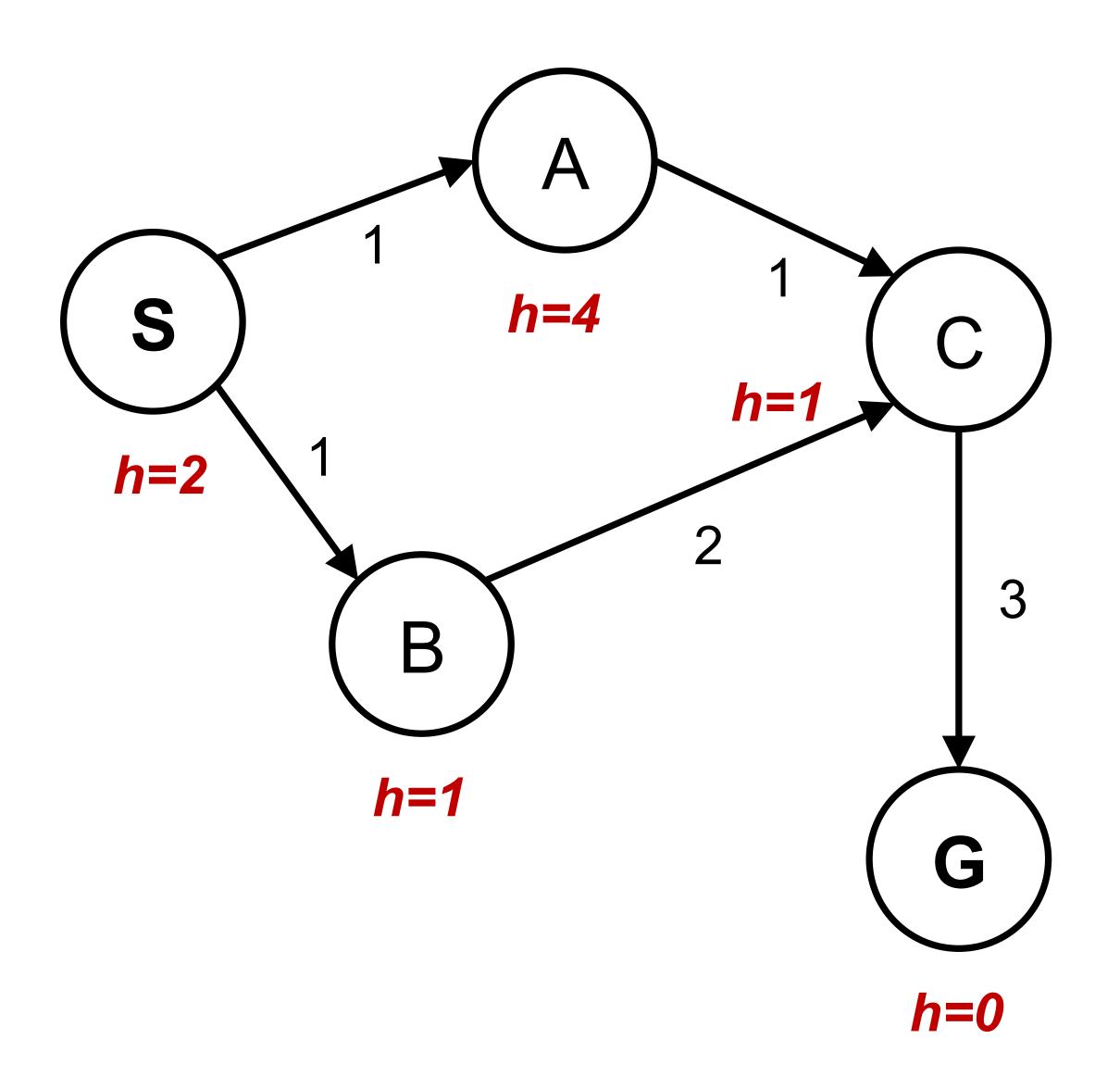
Policy π evaluation. Solve equations or iterate until convergence.

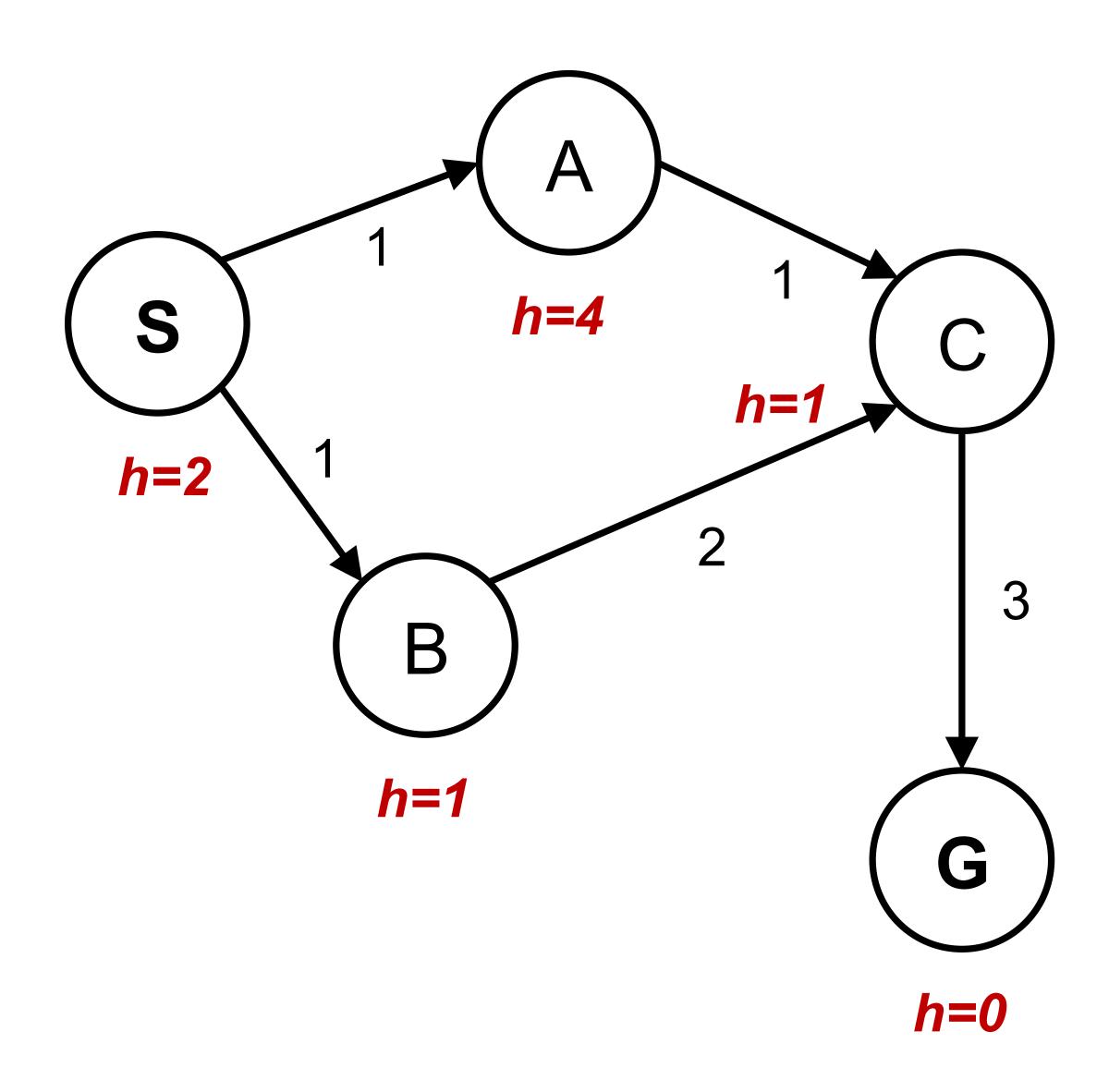
$$V_{k+1}^{\pi_i}(s) \leftarrow \sum_{s'} p(s' \mid s, \pi(s)) \left[r(s, \pi(s), s') + \gamma V_k^{\pi_i}(s') \right]$$

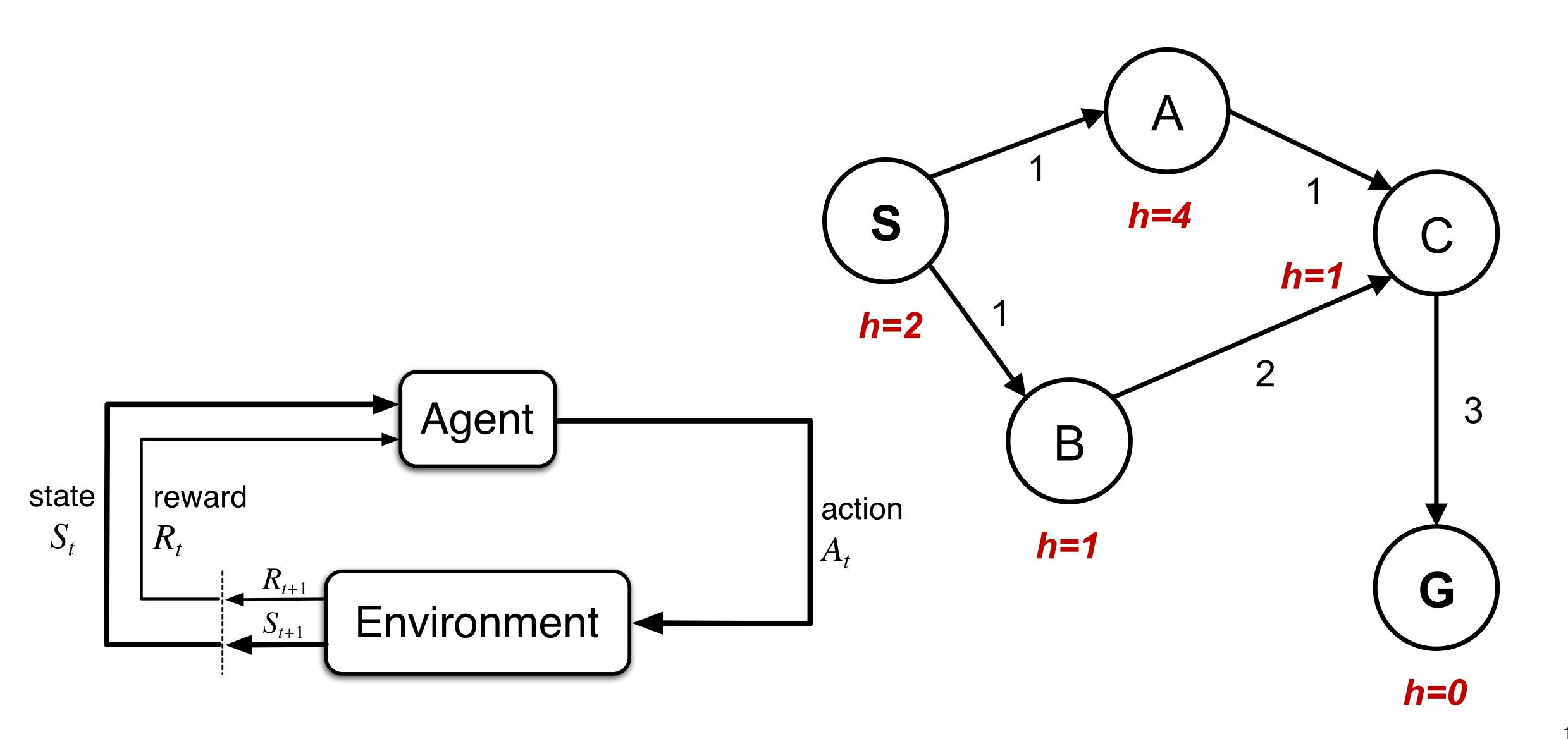
Policy improvement. Look-ahead and keep optimality. Policy extraction from fixed values.

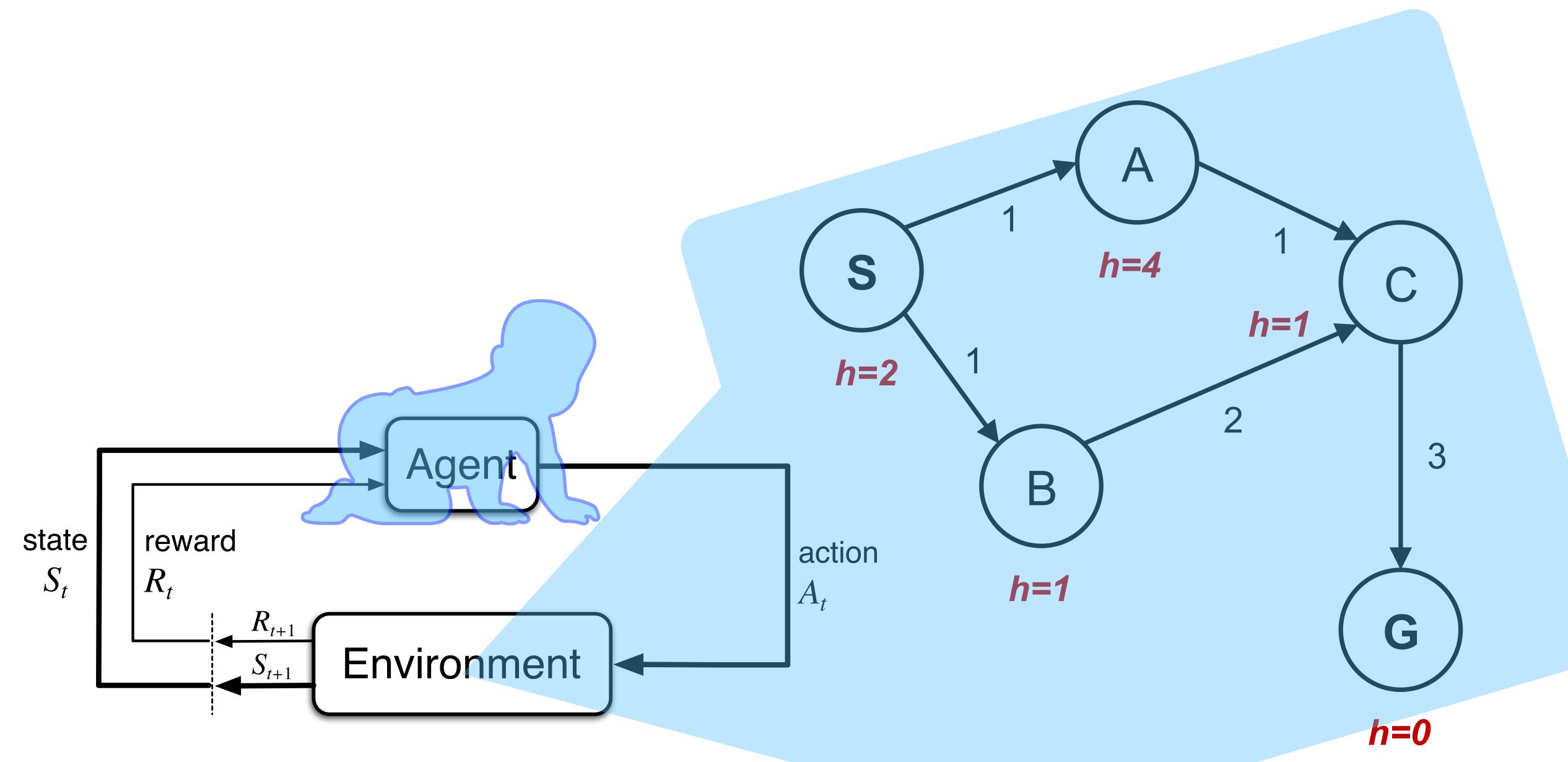
$$\pi_{i+1}(s) = \underset{a \in \mathcal{A}(s)}{\operatorname{arg max}} \sum_{s'} p(s' \mid s, a) \left[r(s, a, s') + \gamma V_k^{\pi_i}(s') \right]$$

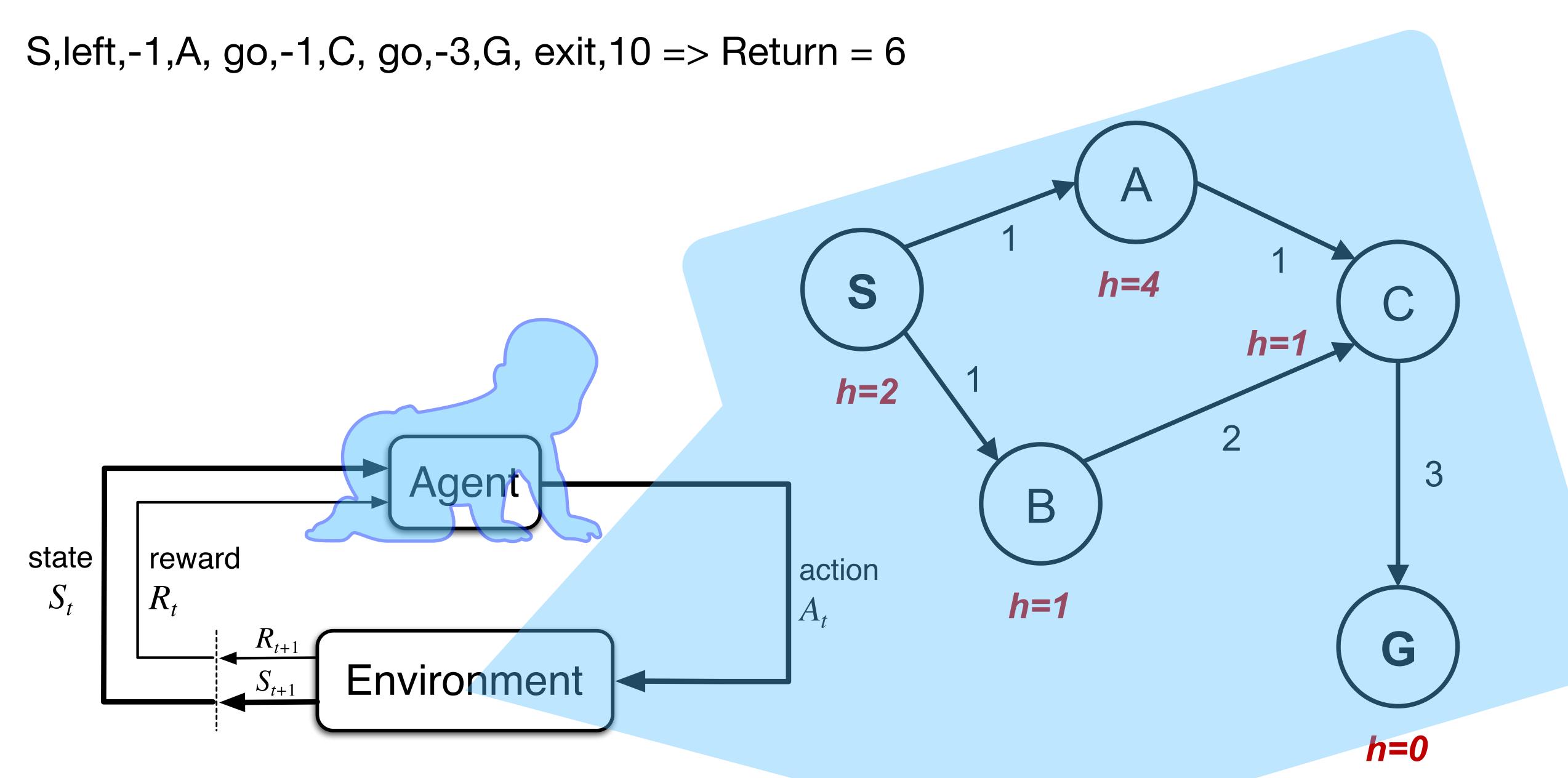


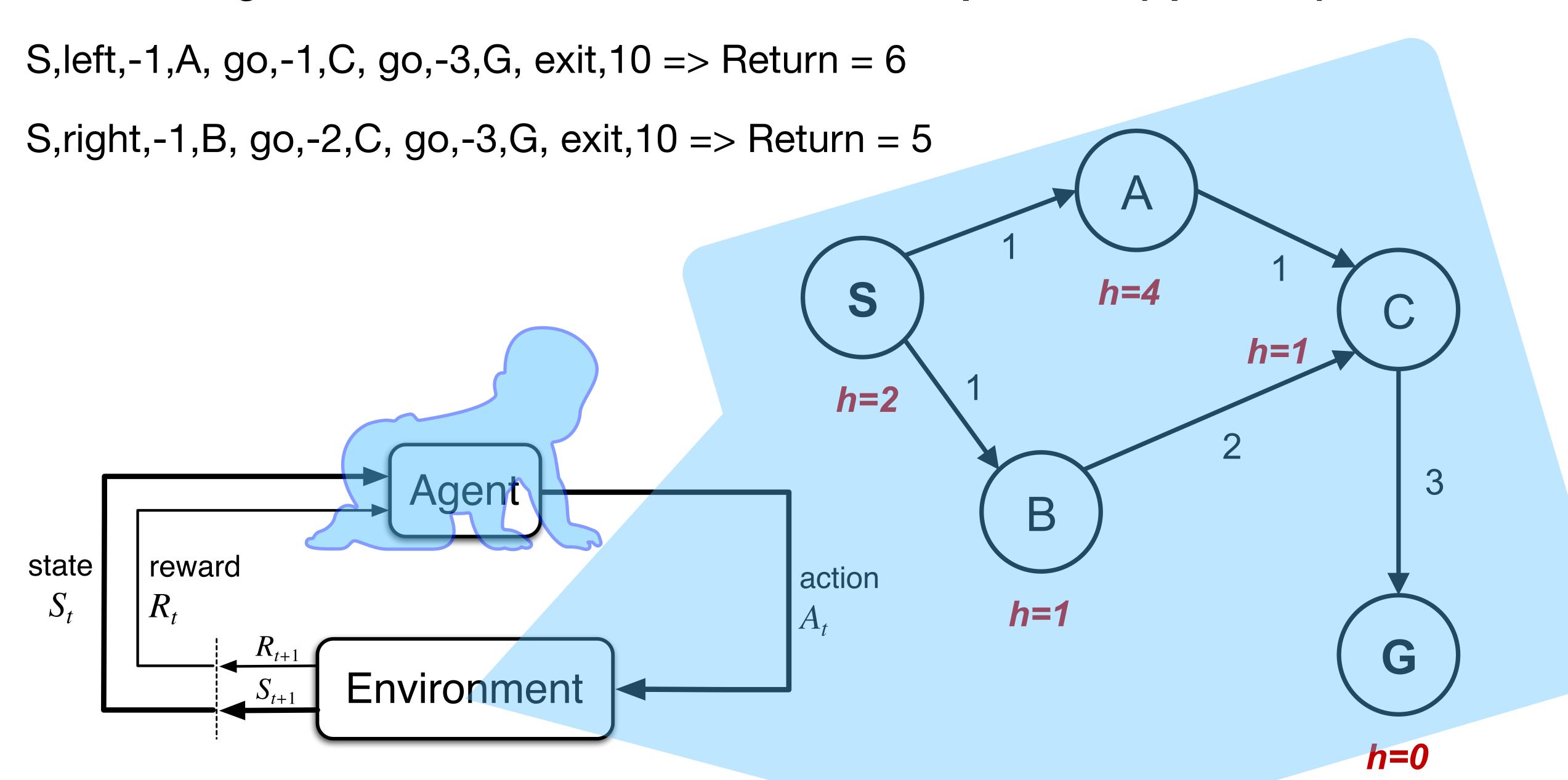


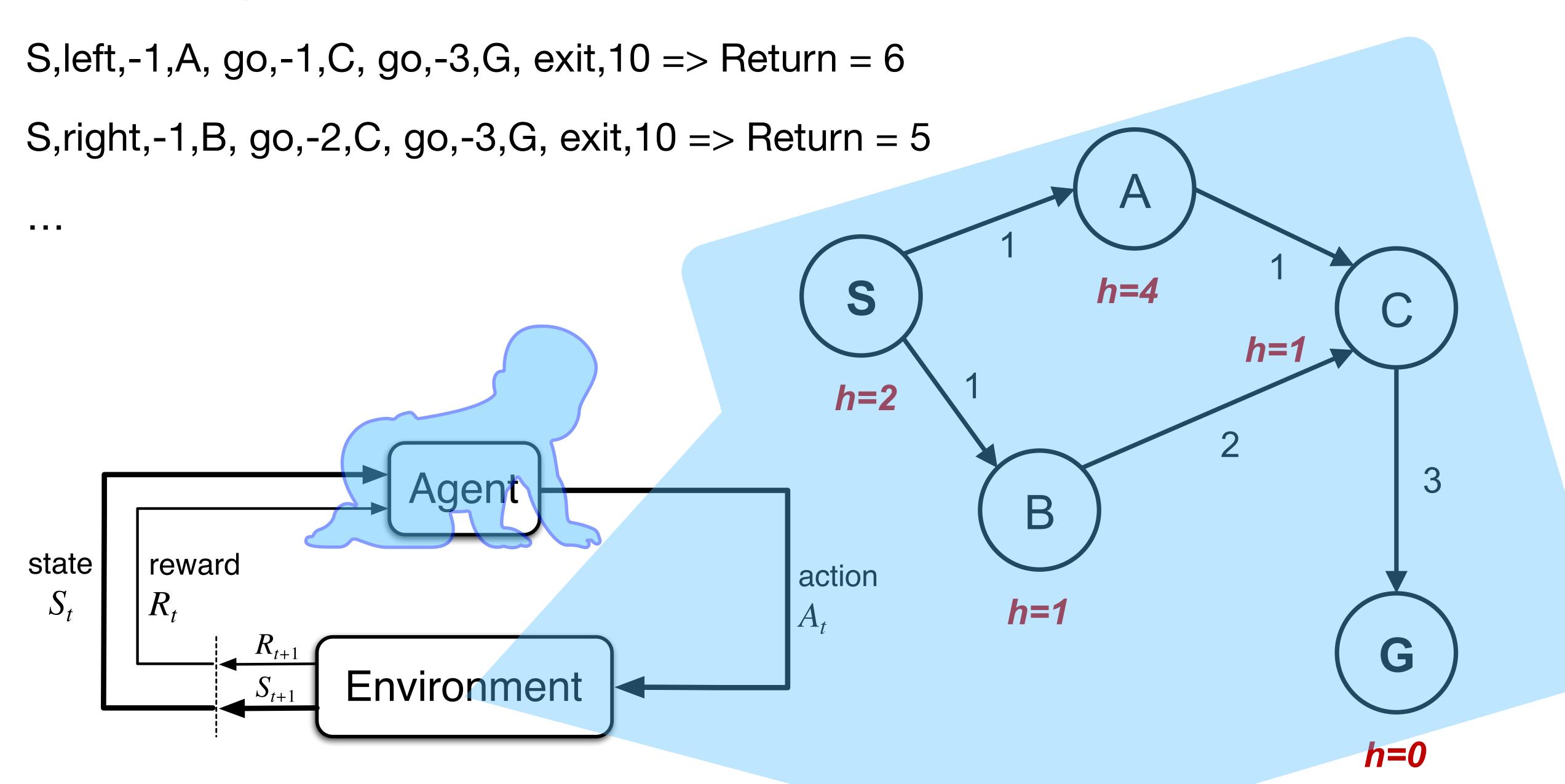


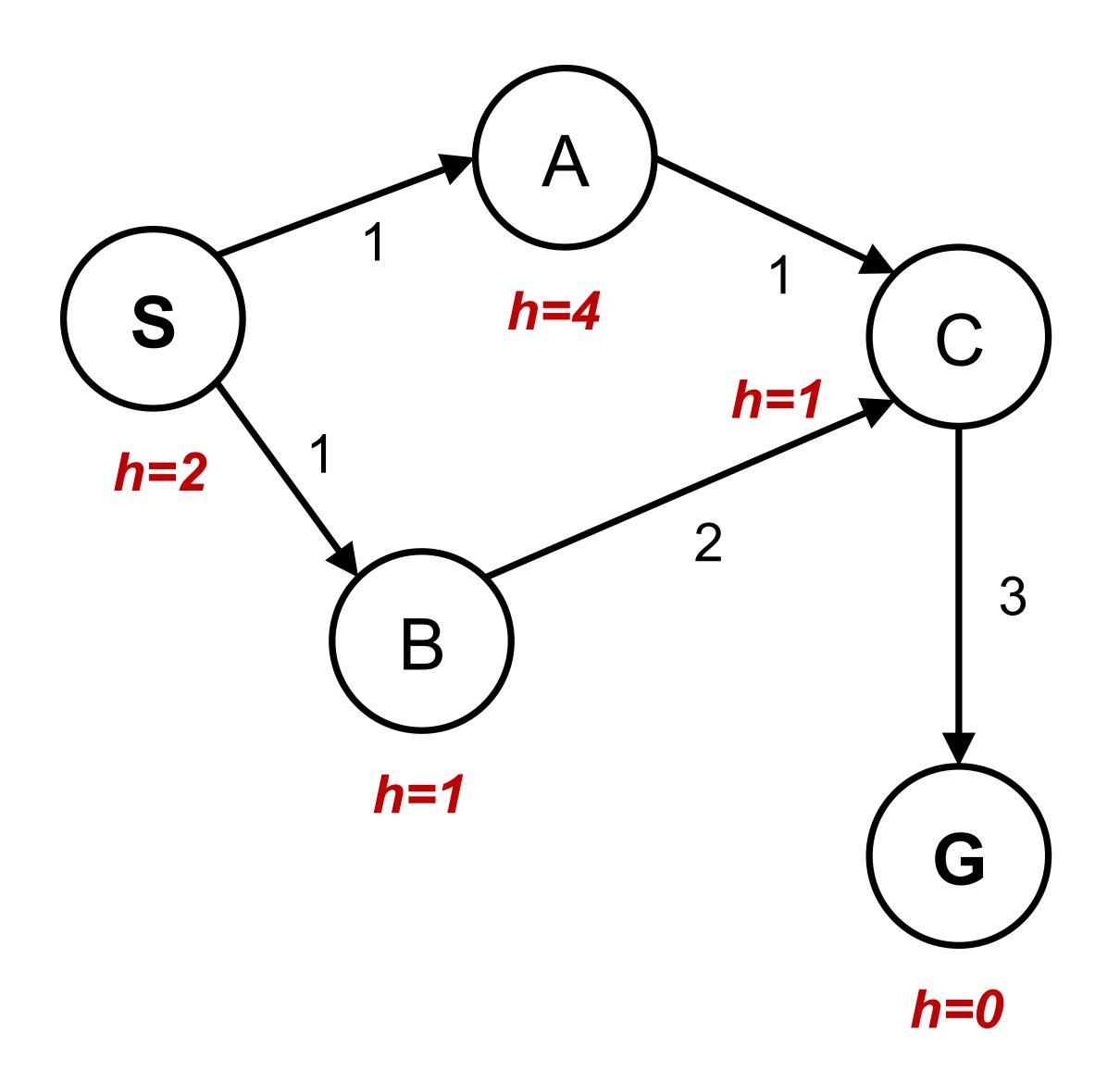


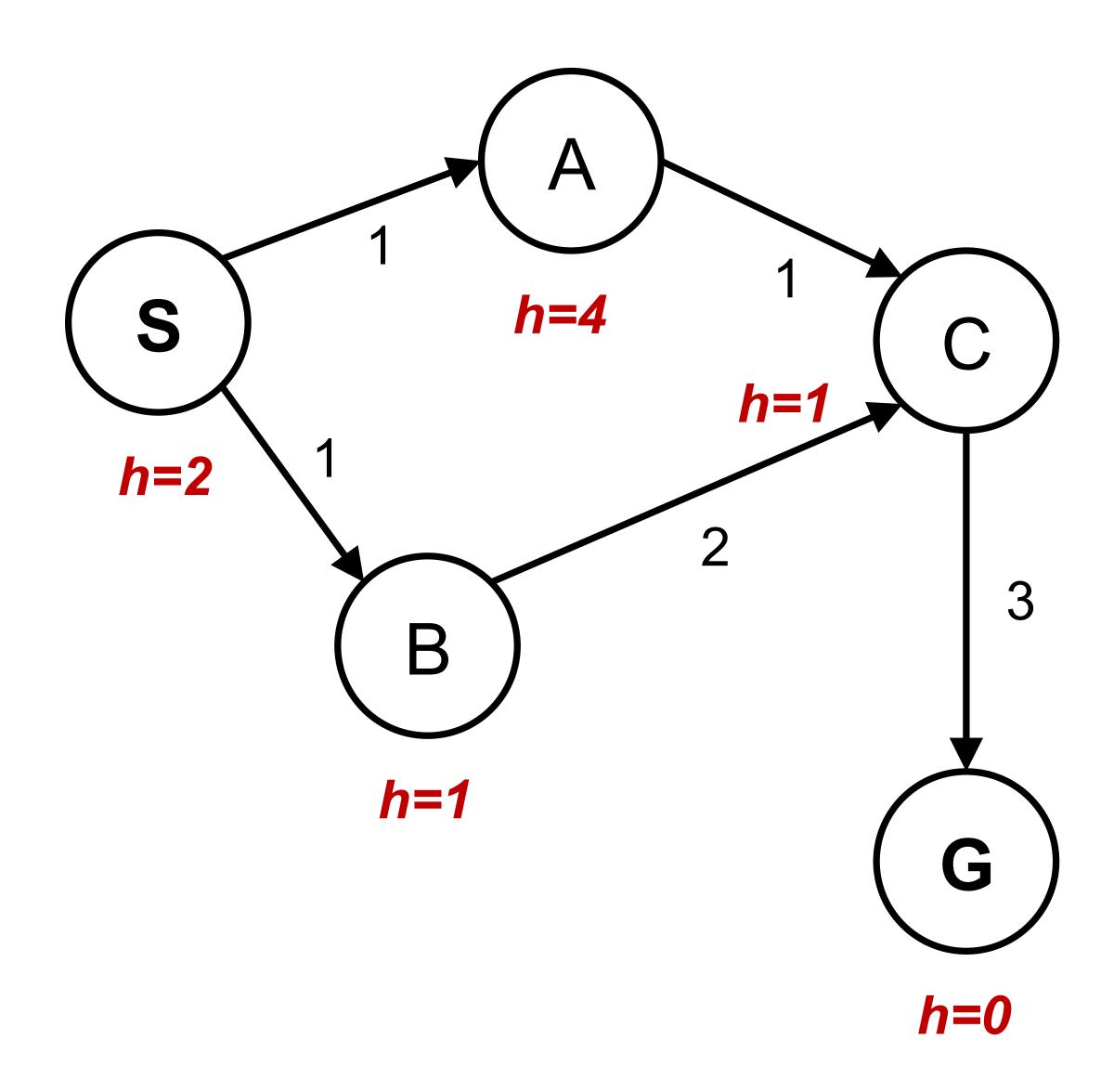




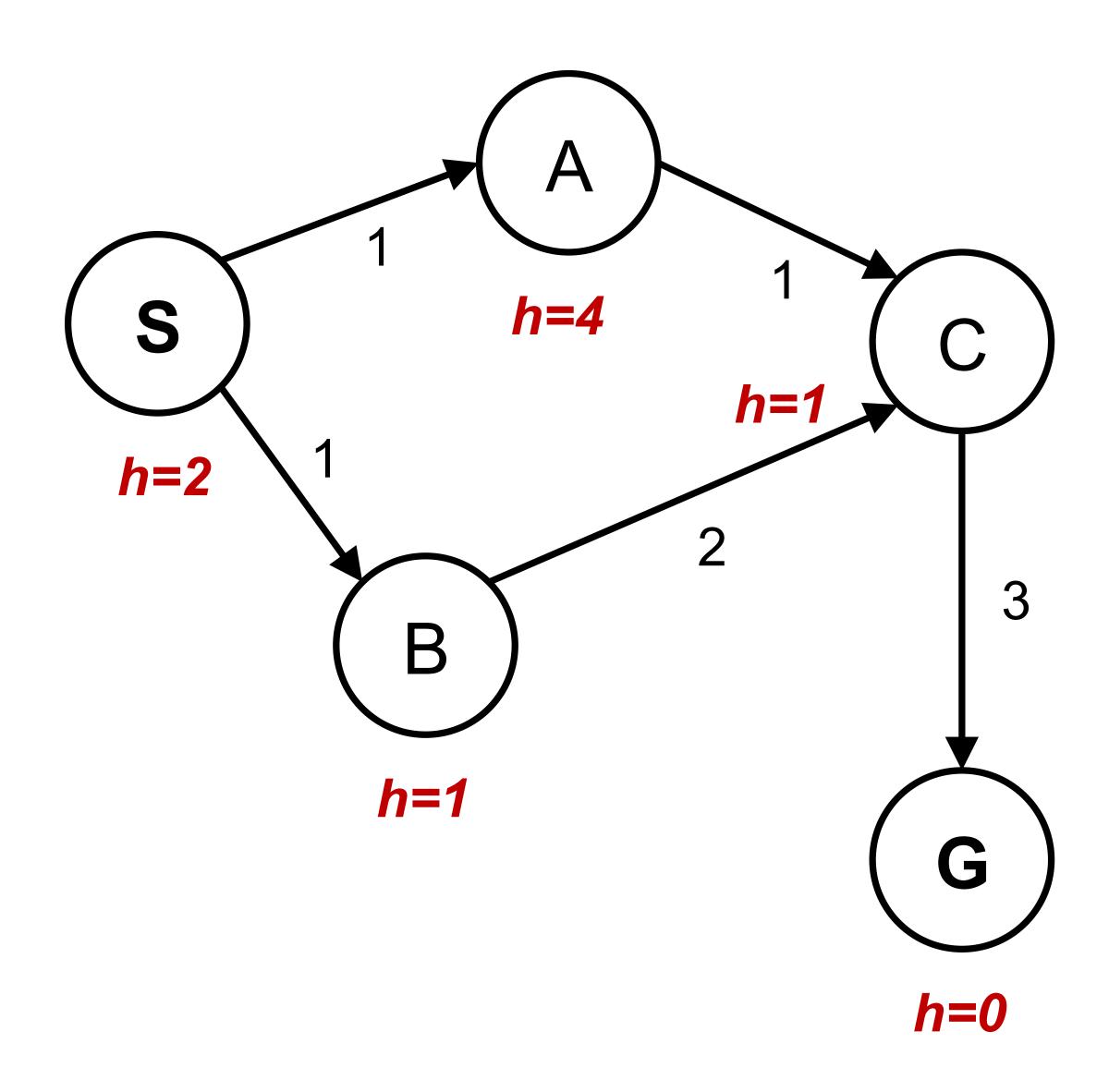




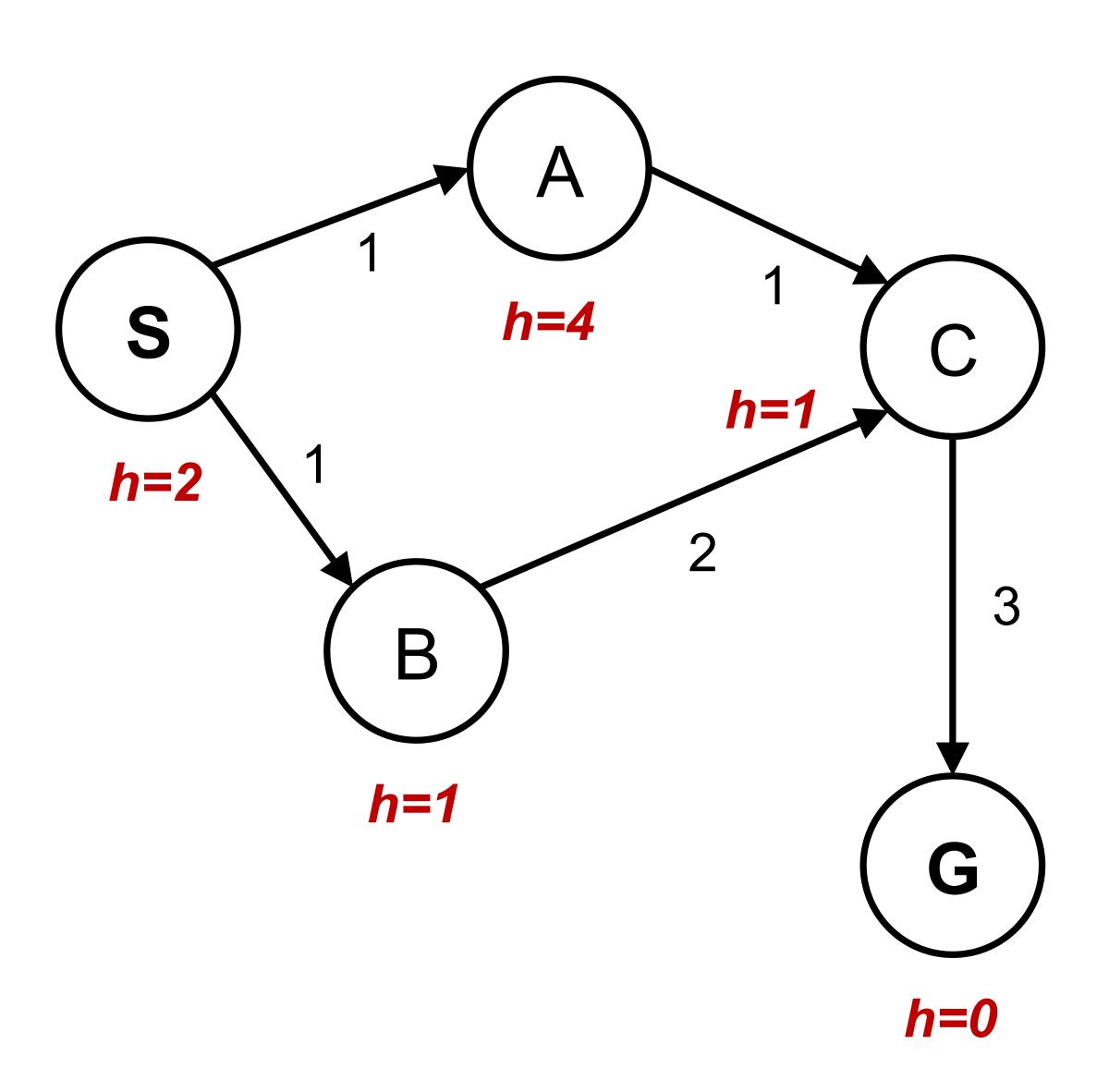




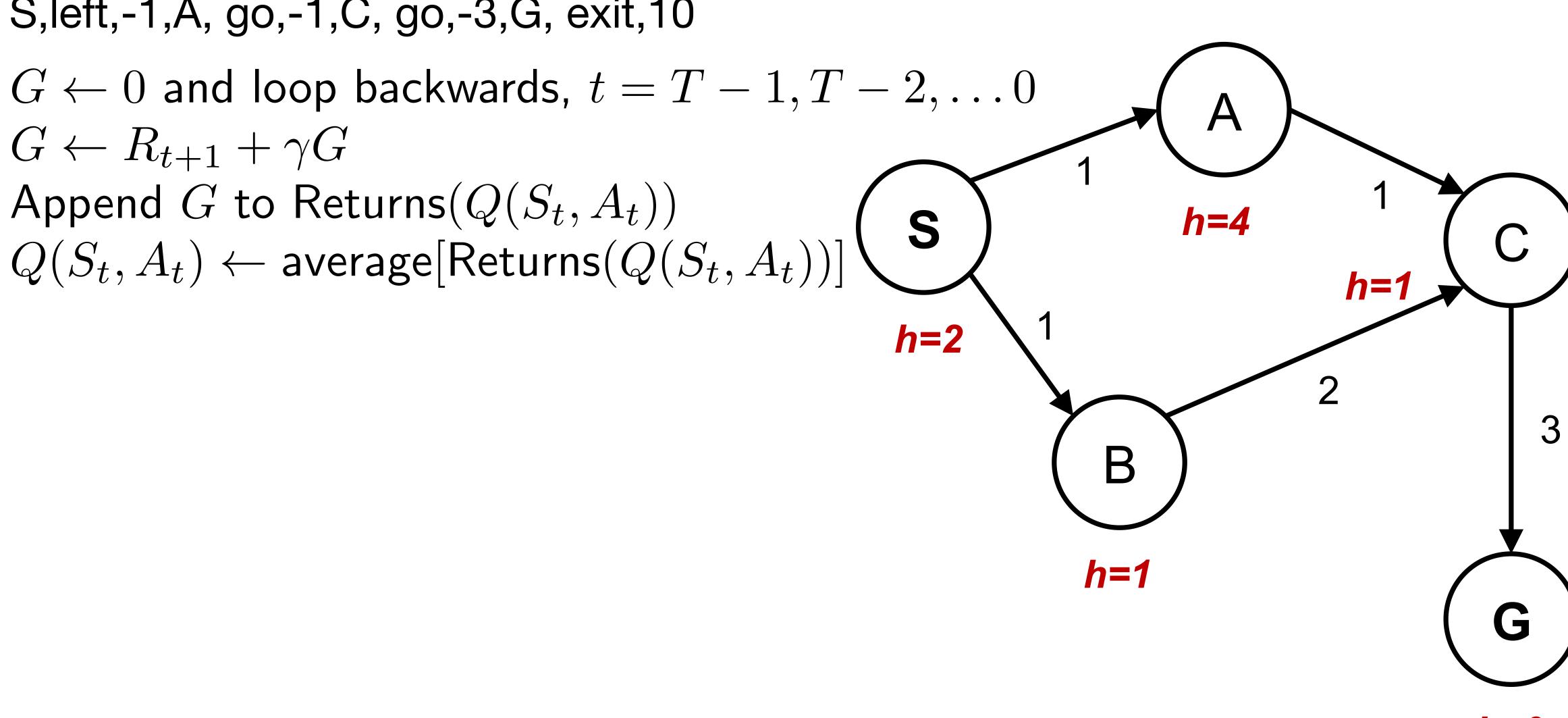
Direct evaluation, init all Q(state, action) = 0



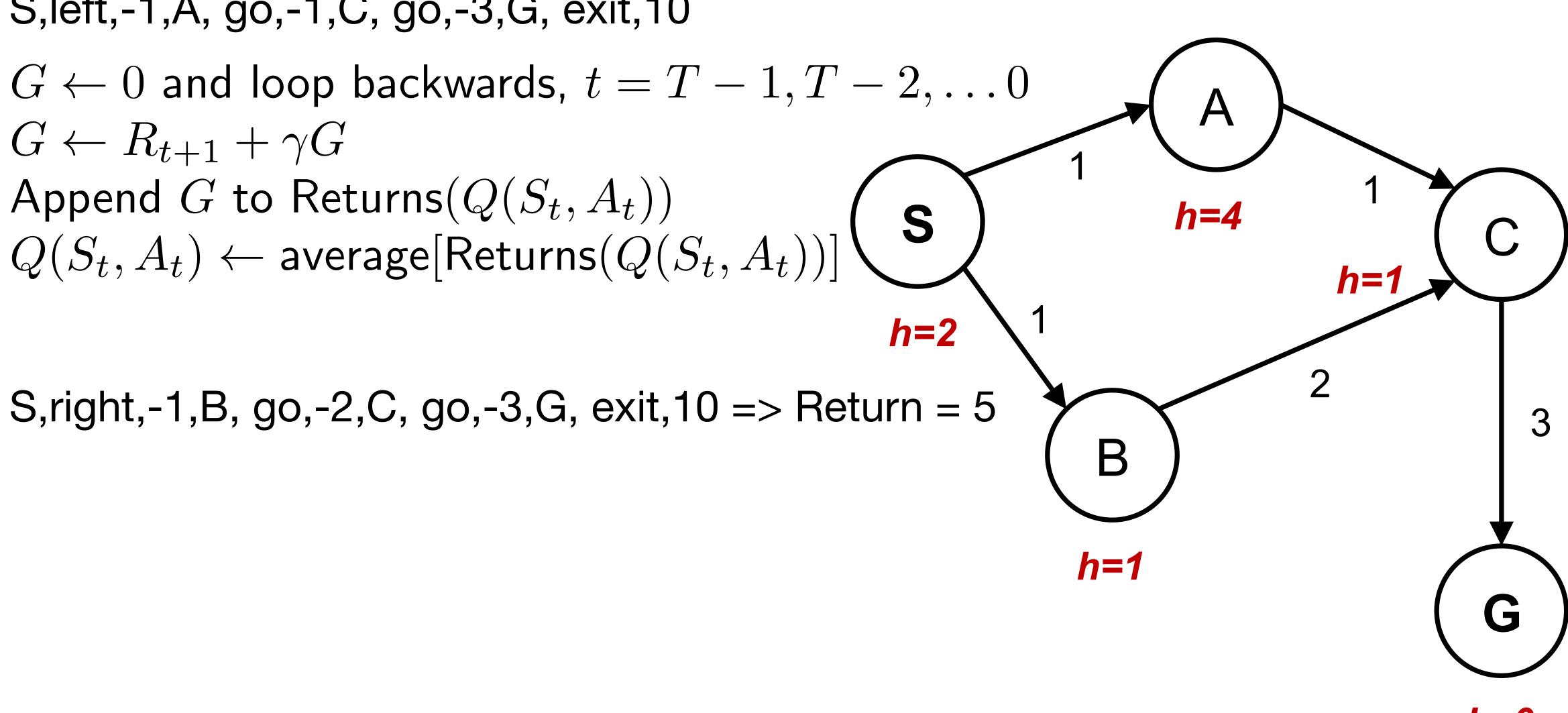
Direct evaluation, init all Q(state, action) = 0



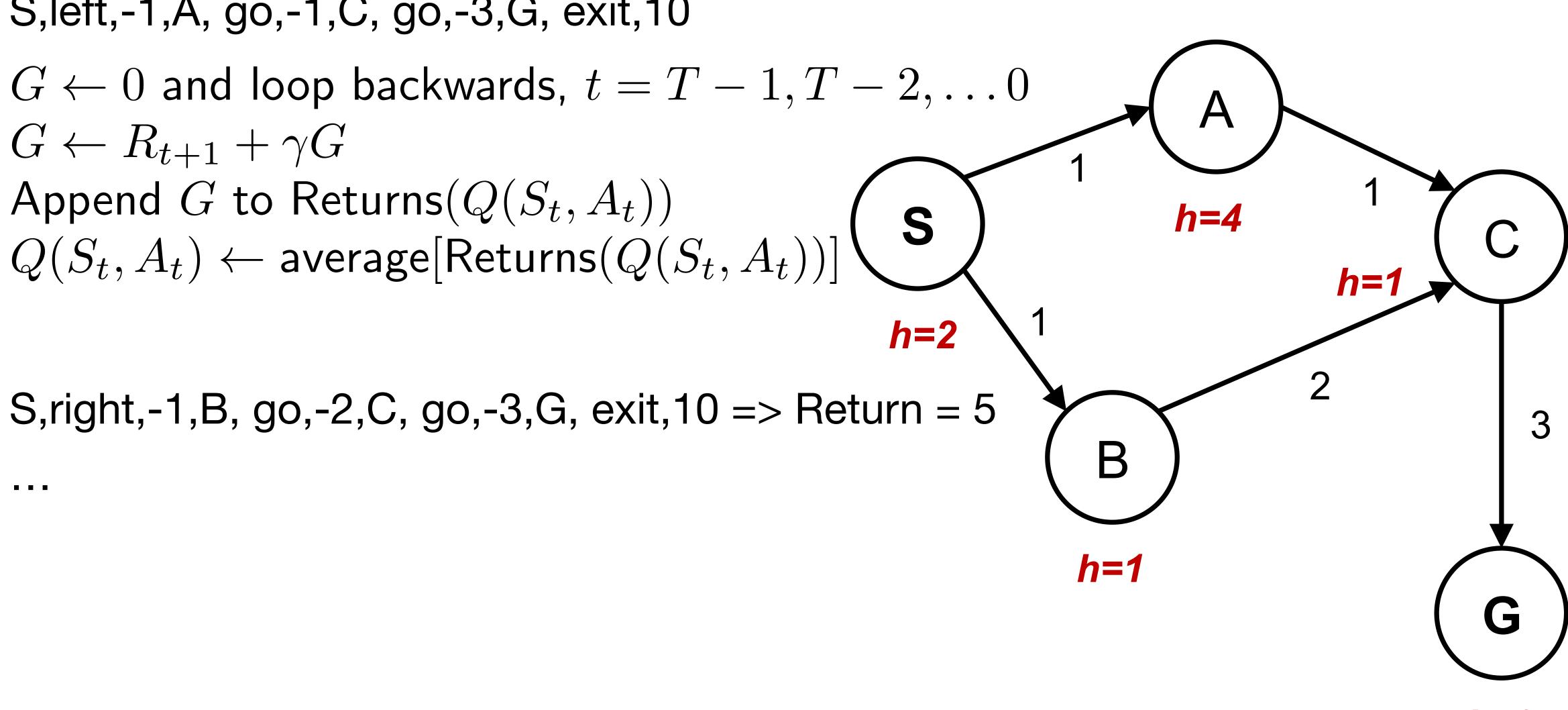
Direct evaluation, init all Q(state, action) = 0

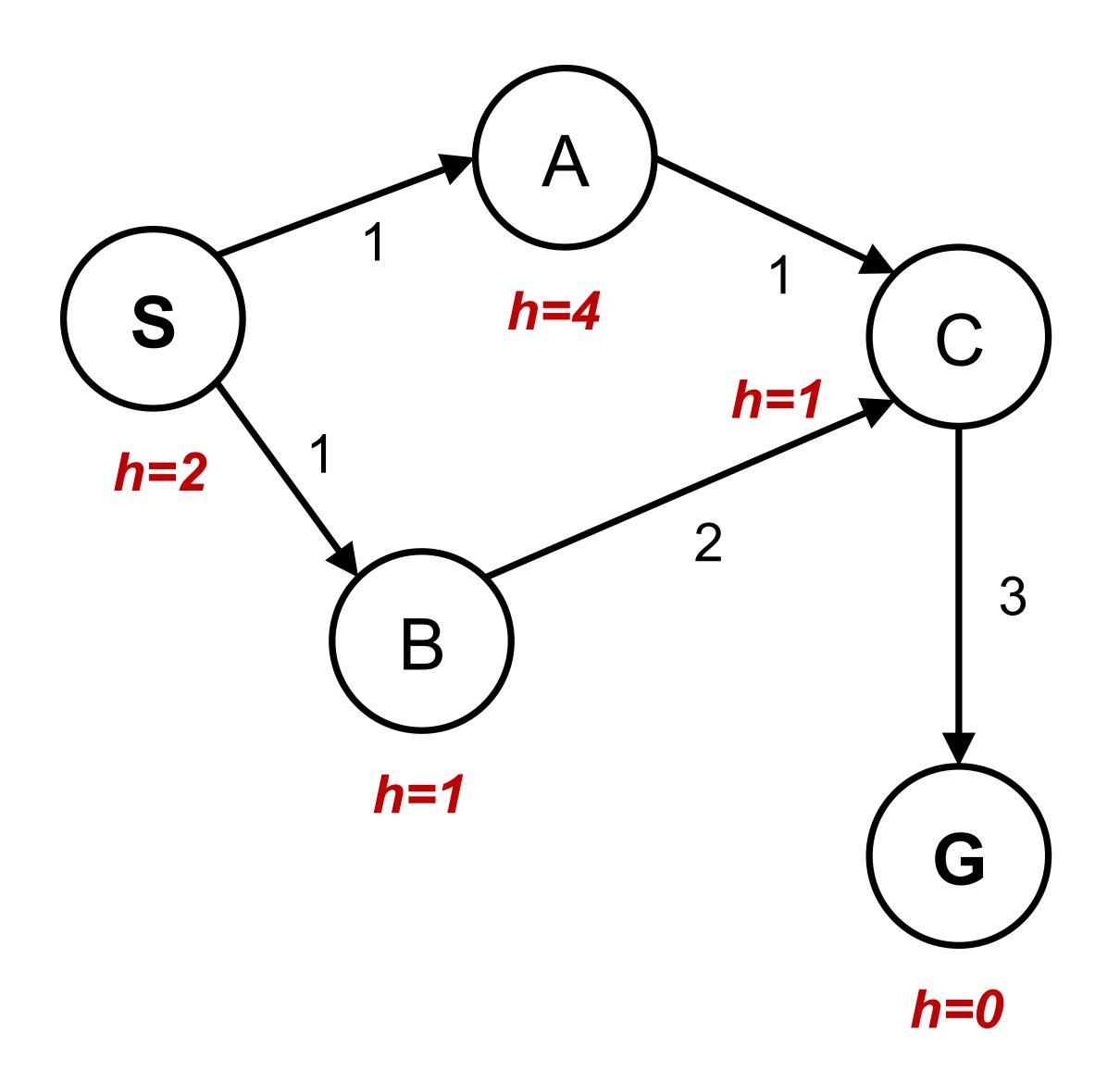


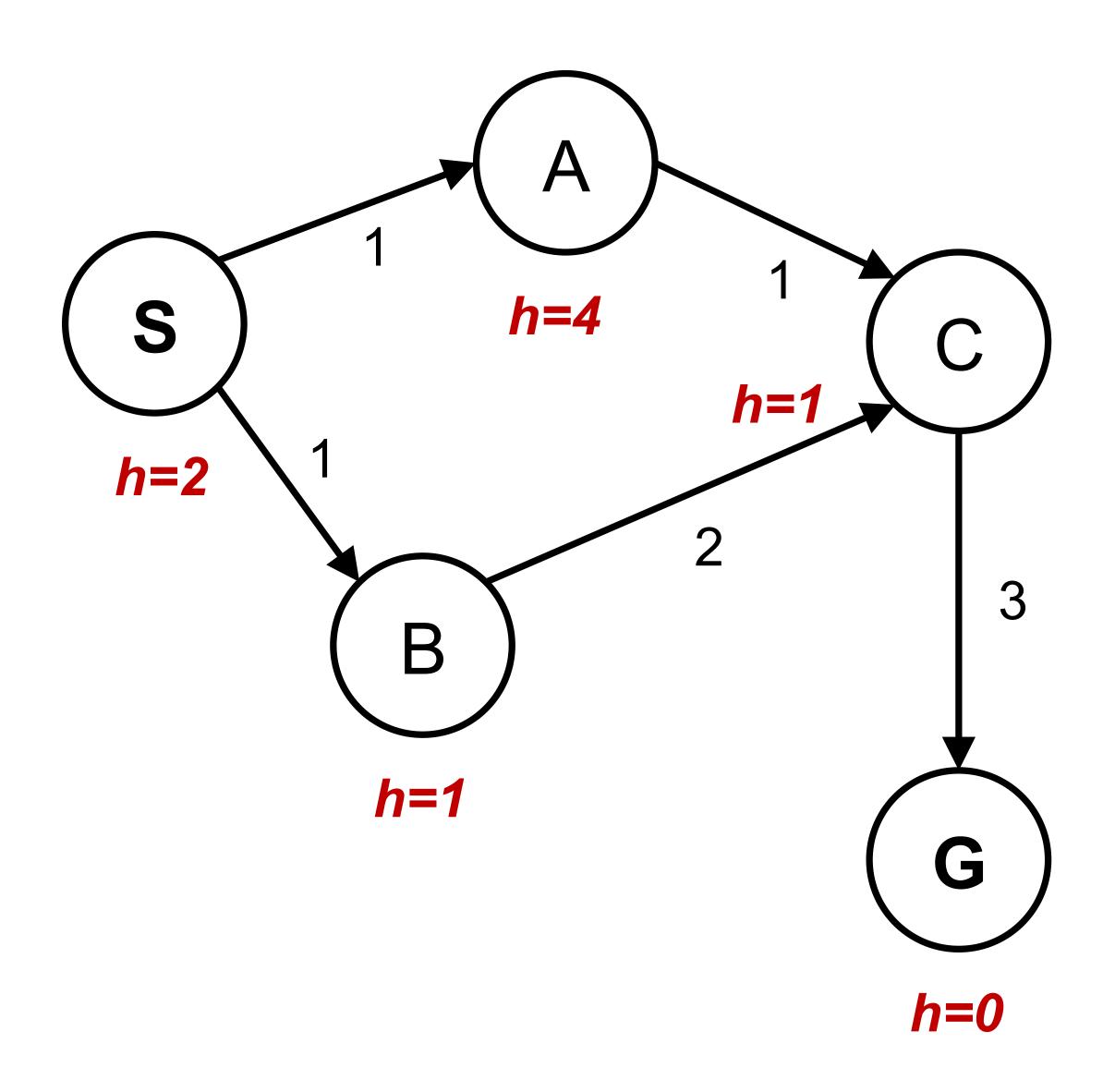
Direct evaluation, init all Q(state, action) = 0



Direct evaluation, init all Q(state, action) = 0

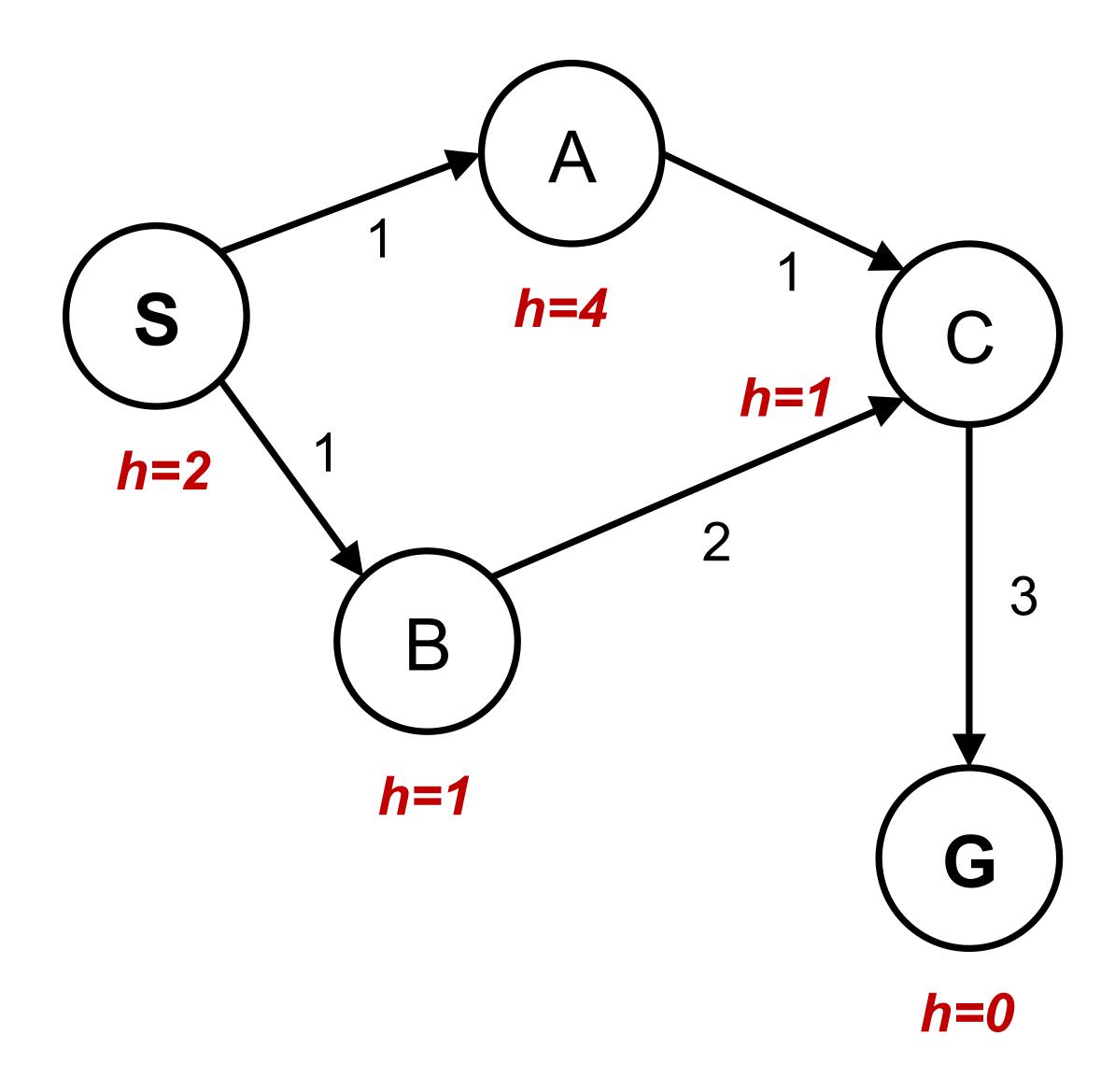






Let robot/agent walk at random and learn from experience (episodes)

Learn from every visit - Temporal differences, init all Q(state, action) = 0

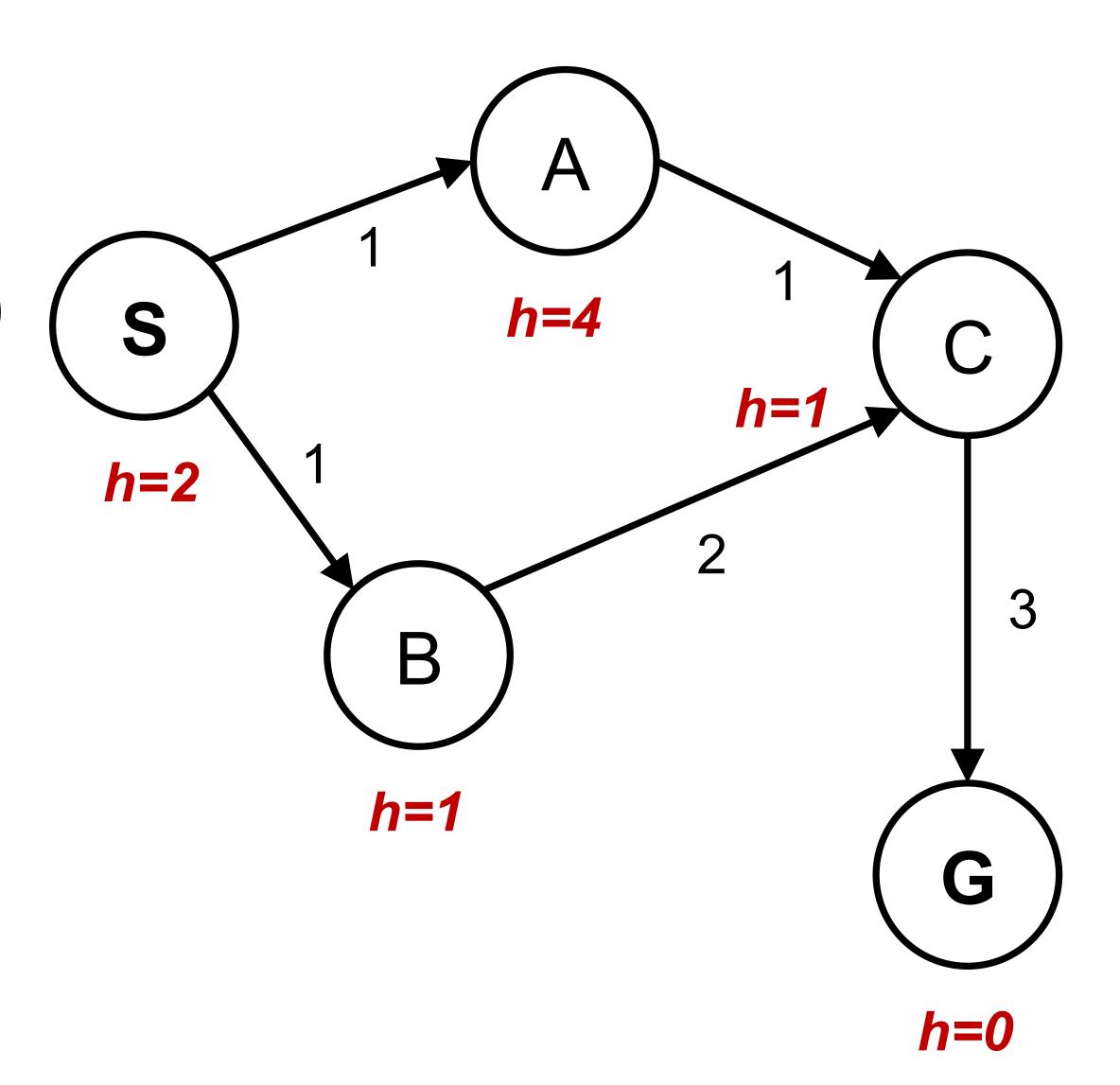


Learn from every visit - Temporal differences, init all Q(state, action) = 0

A new trial/sample estimate at time t

$$trial = R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a)$$

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha(\text{trial} - Q(S_t, A_t))$$

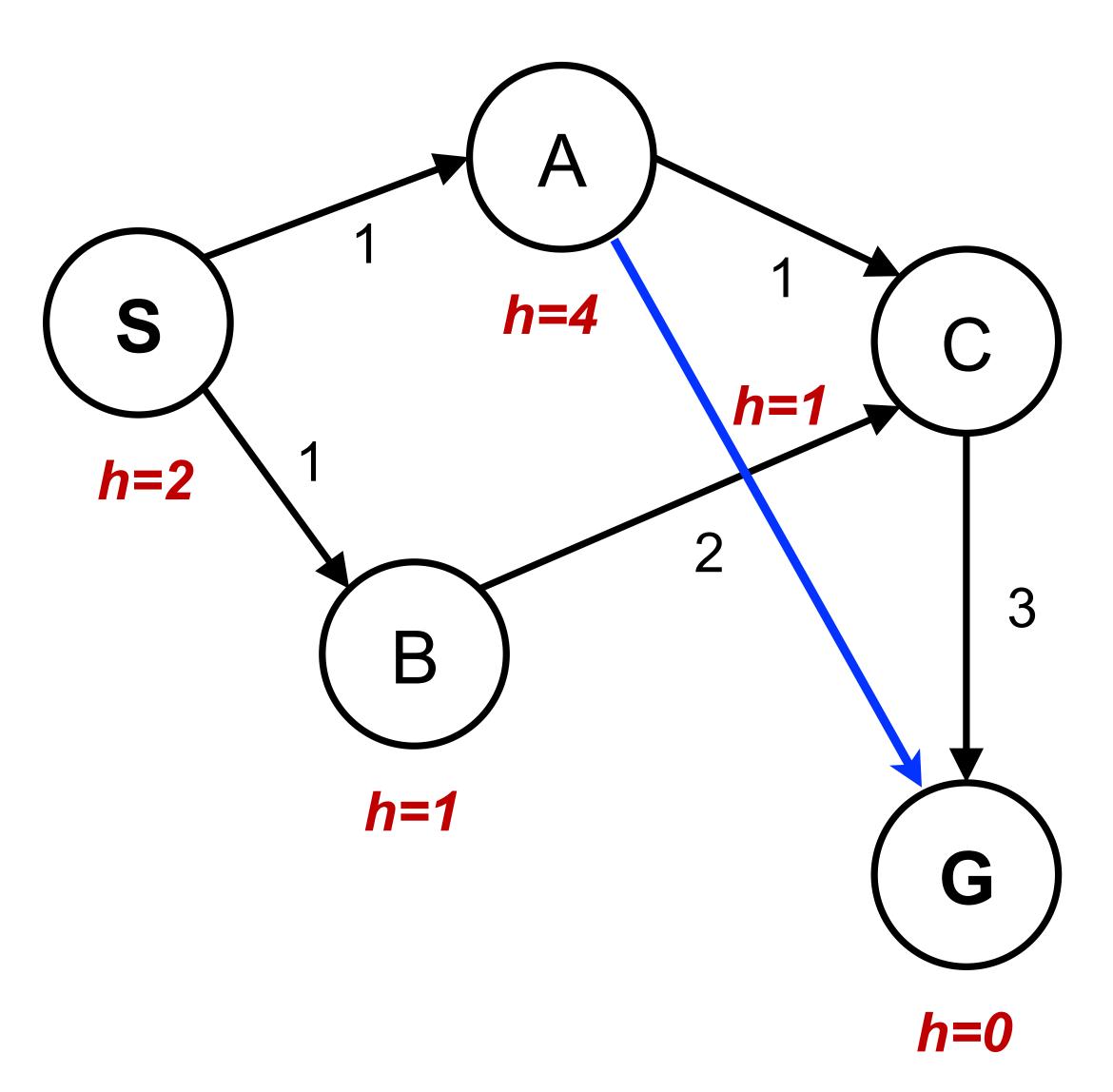


Learn from every visit - Temporal differences, init all Q(state, action) = 0

A new trial/sample estimate at time t

$$trial = R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a)$$

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha(\text{trial} - Q(S_t, A_t))$$

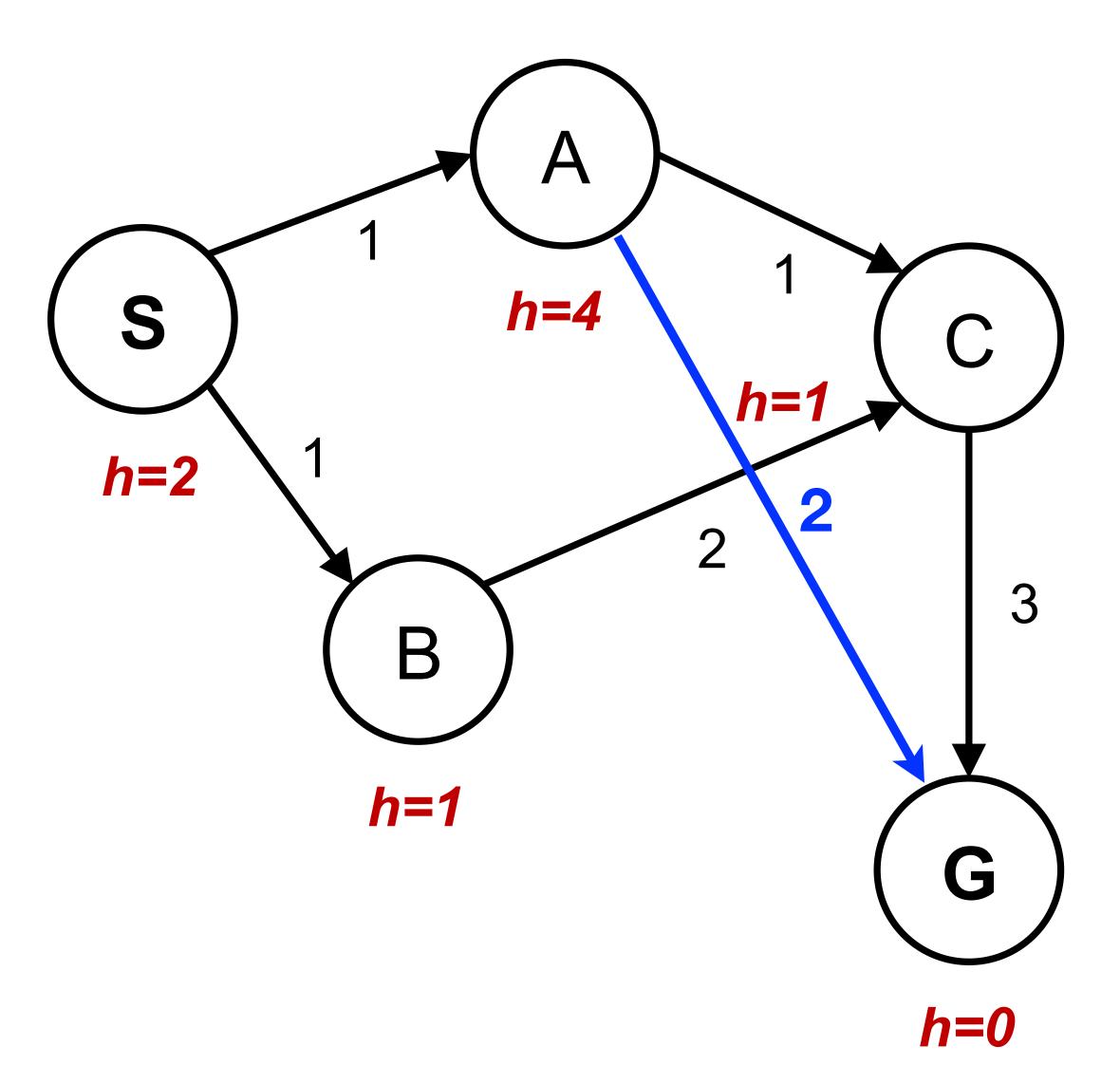


Learn from every visit - Temporal differences, init all Q(state, action) = 0

A new trial/sample estimate at time t

$$trial = R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a)$$

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha(\text{trial} - Q(S_t, A_t))$$



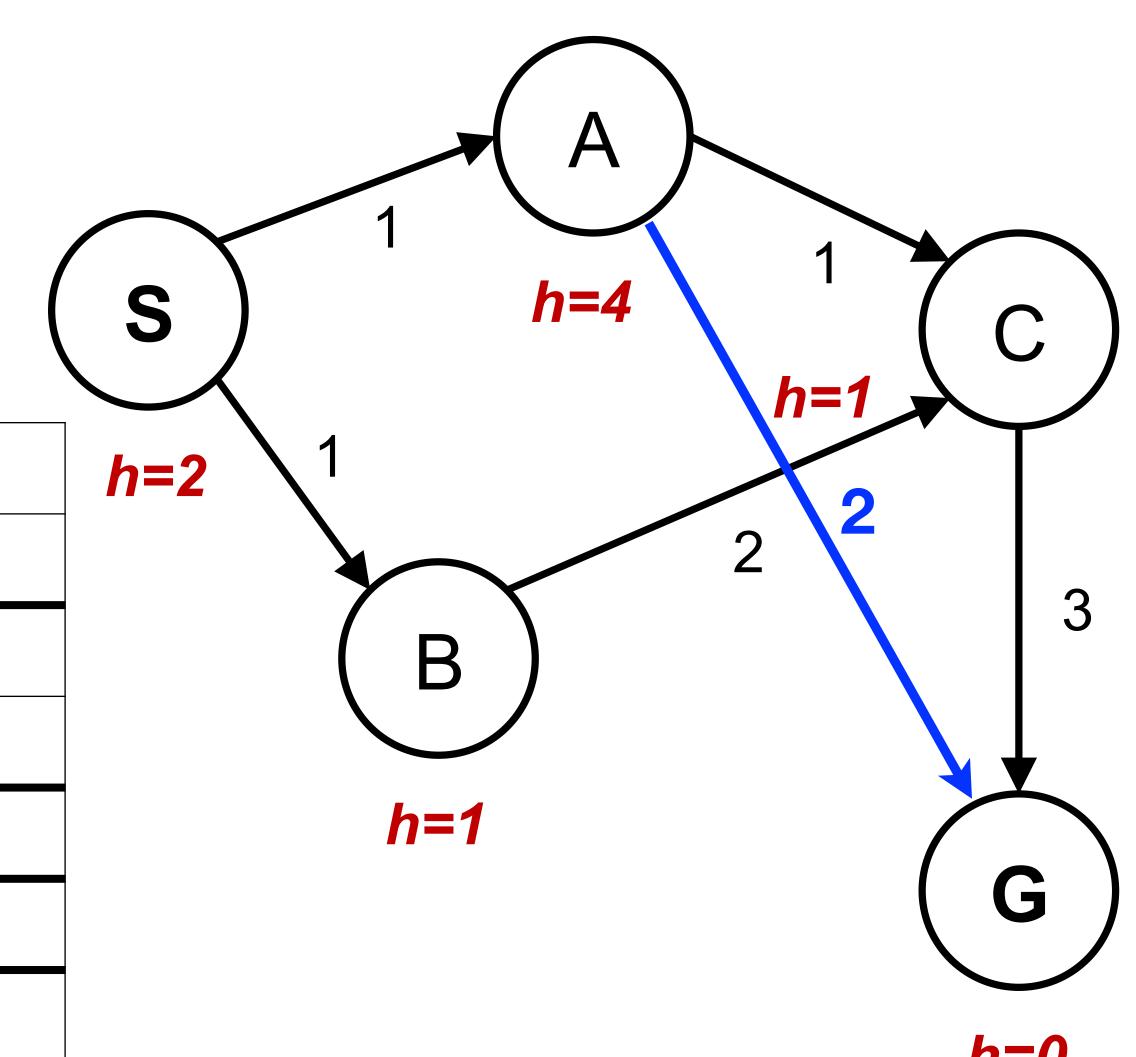
Learn from every visit - Temporal differences, init all Q(state, action) = 0

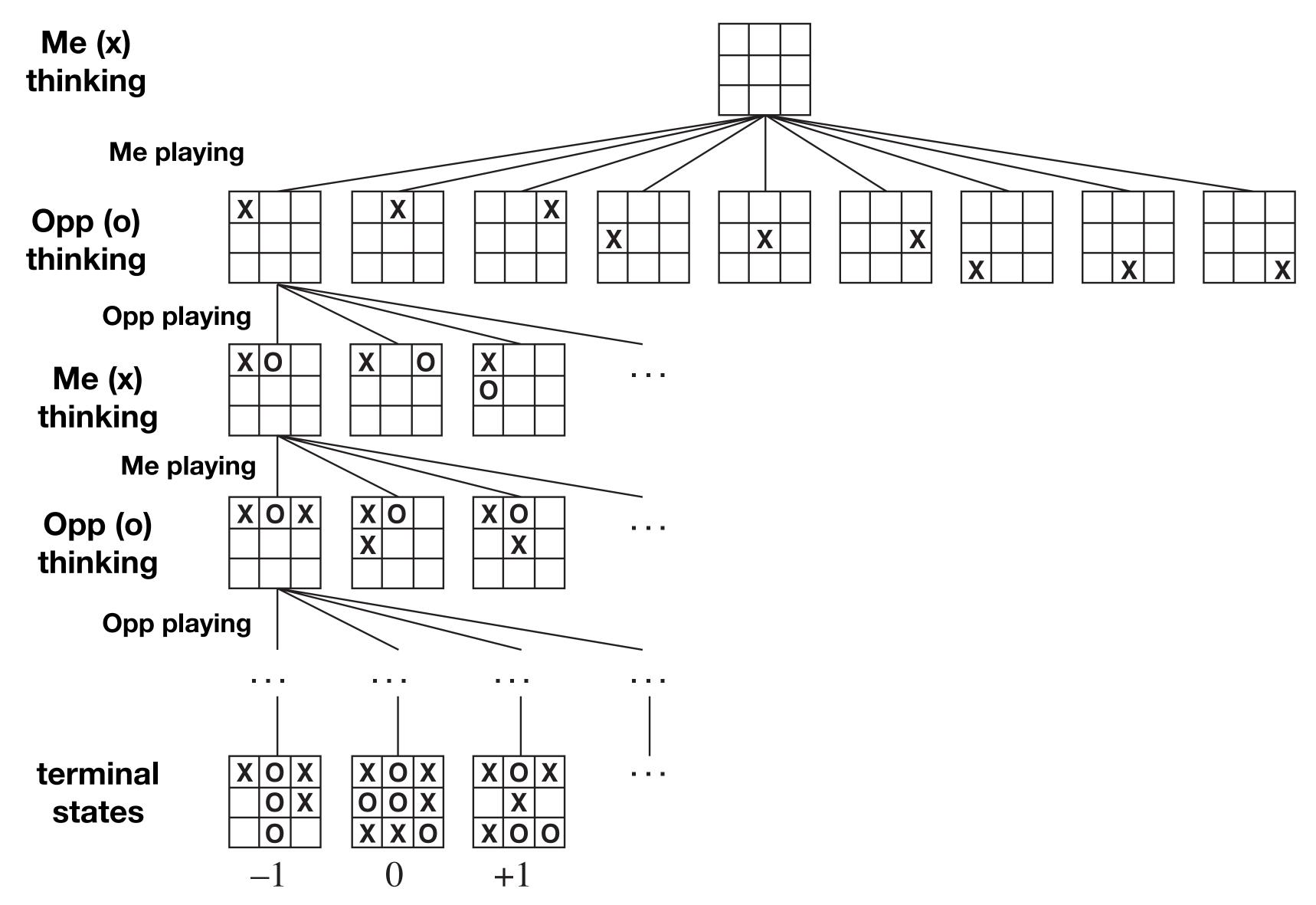
A new trial/sample estimate at time t

$$trial = R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a)$$

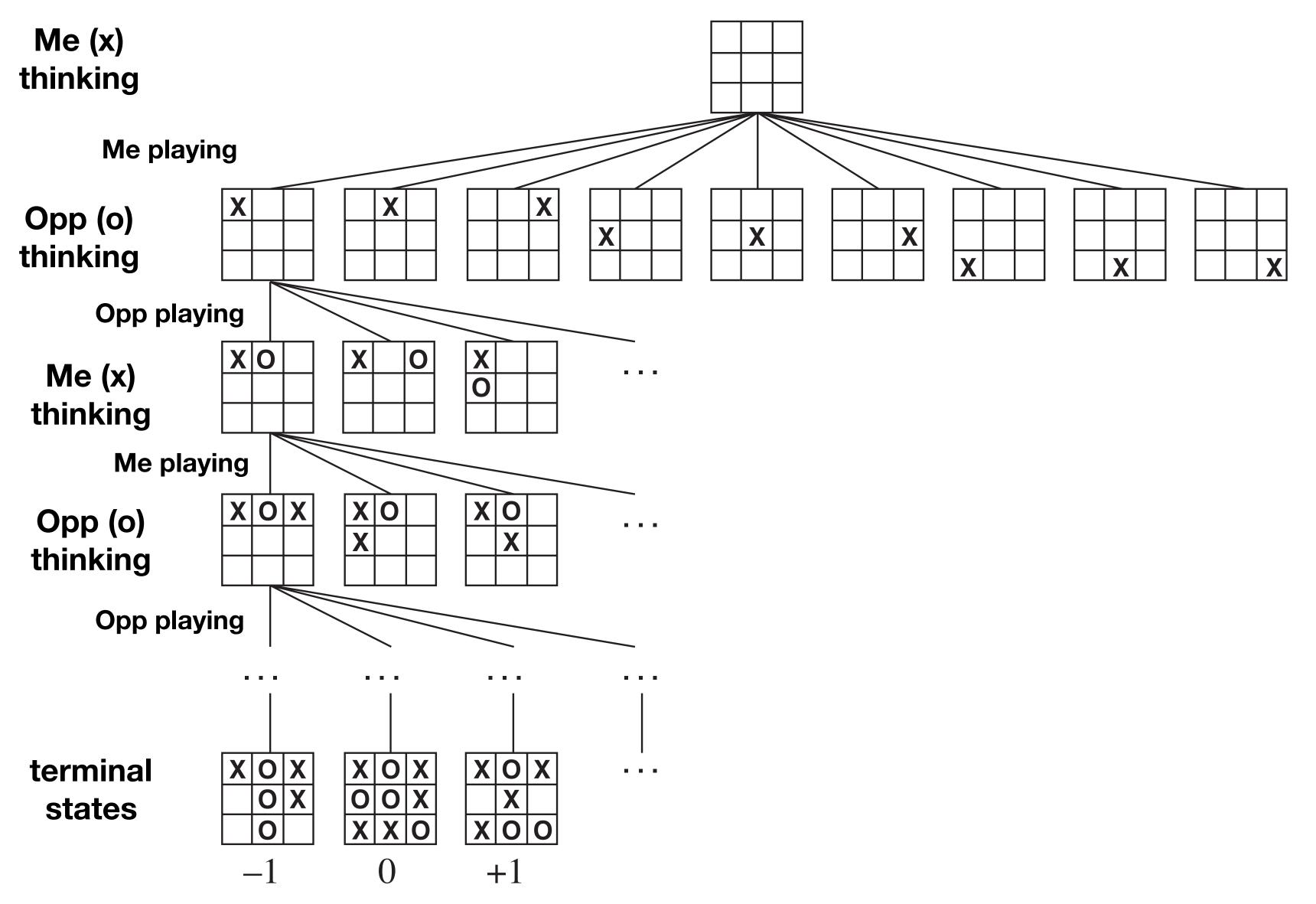
$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha(\text{trial} - Q(S_t, A_t))$$

S	left	0	-1		-1				
	right	0		-1					
Α	left	0			6				
	right	0	-2						
В	go	0		-2					
С	go	0		7					
G	exit	0	10	10					



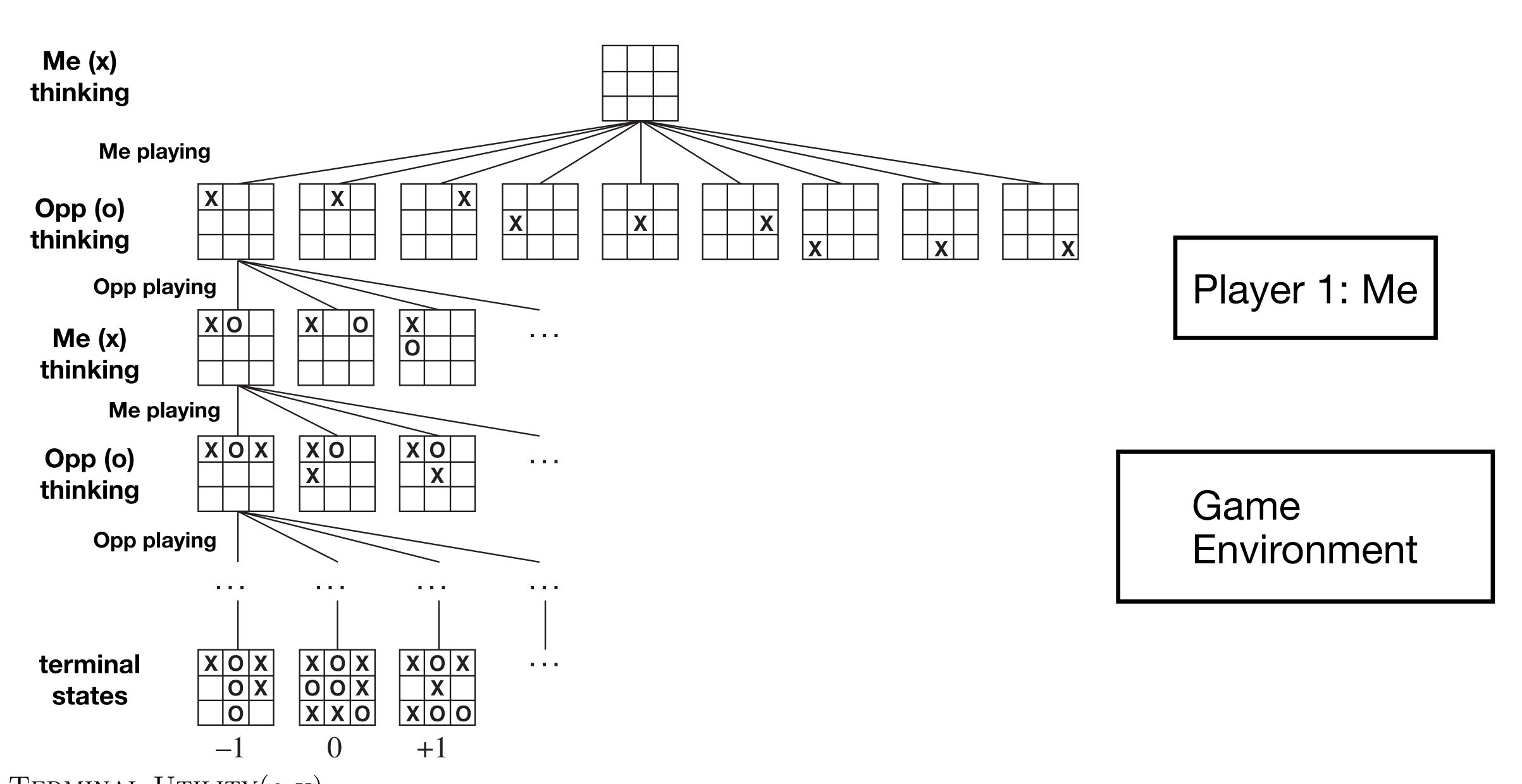


TERMINAL-UTILITY (s, \mathbf{x})

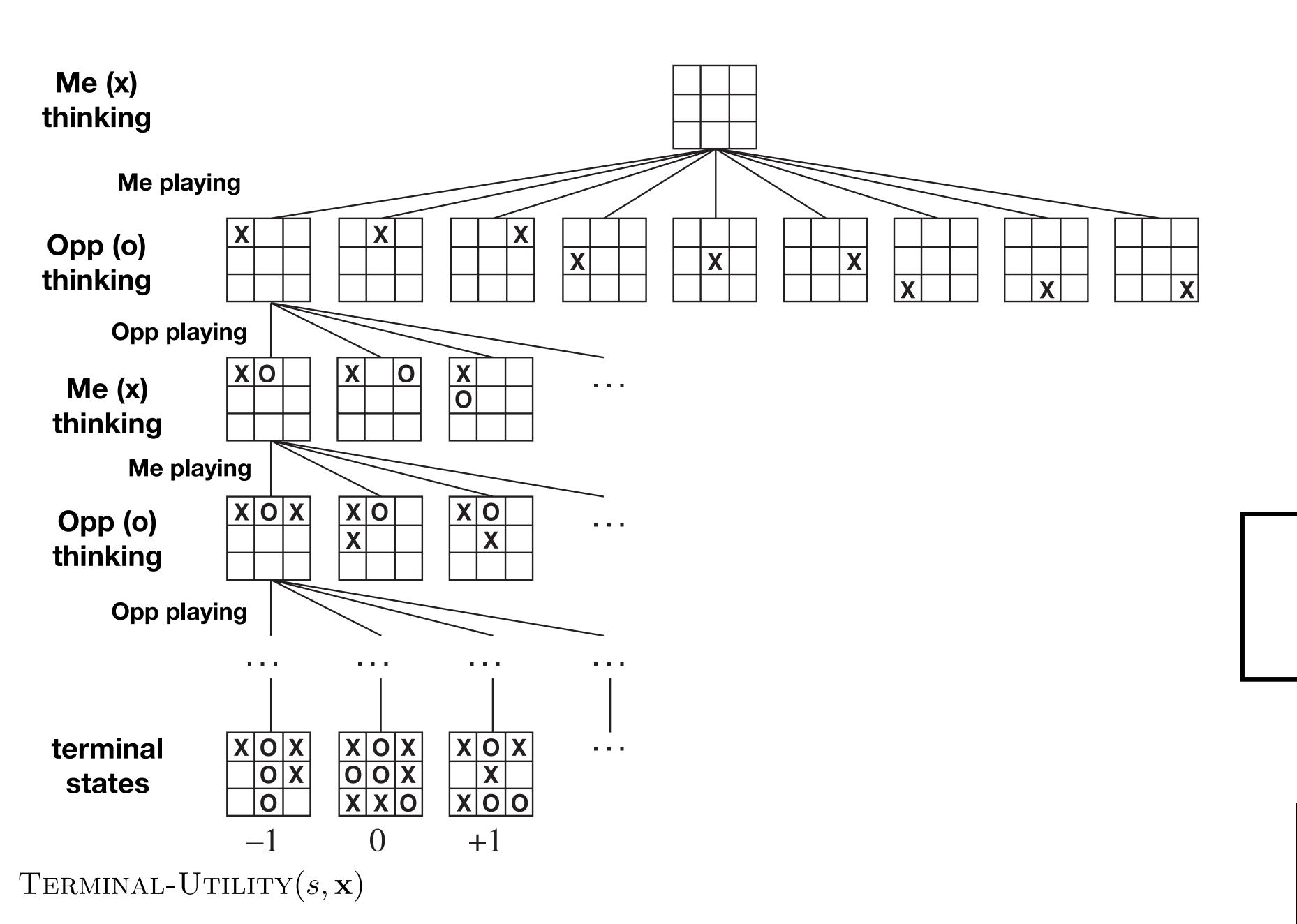


TERMINAL-UTILITY (s, \mathbf{x})

Player 1: Me



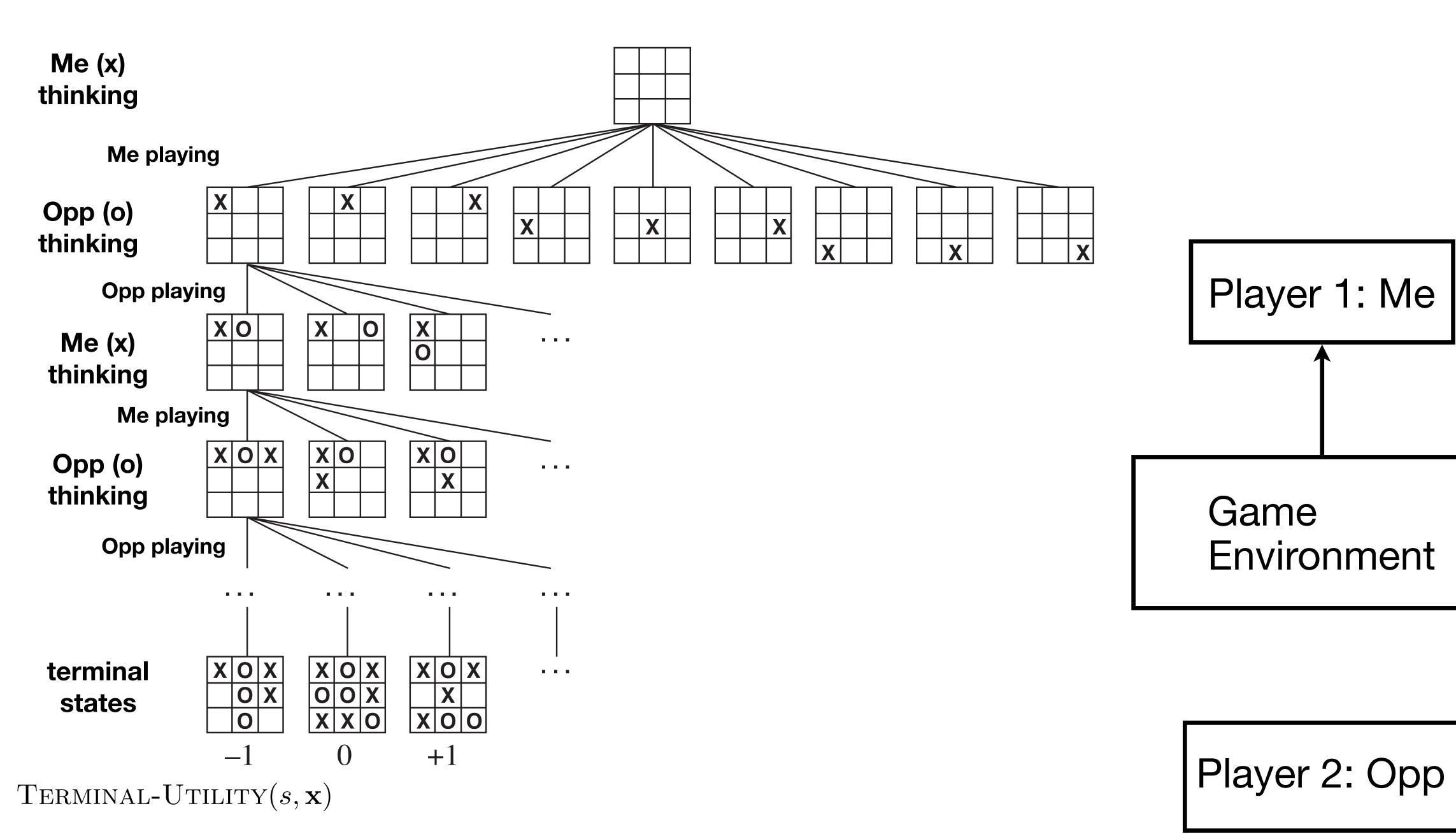
Terminal-Utility (s, \mathbf{x})

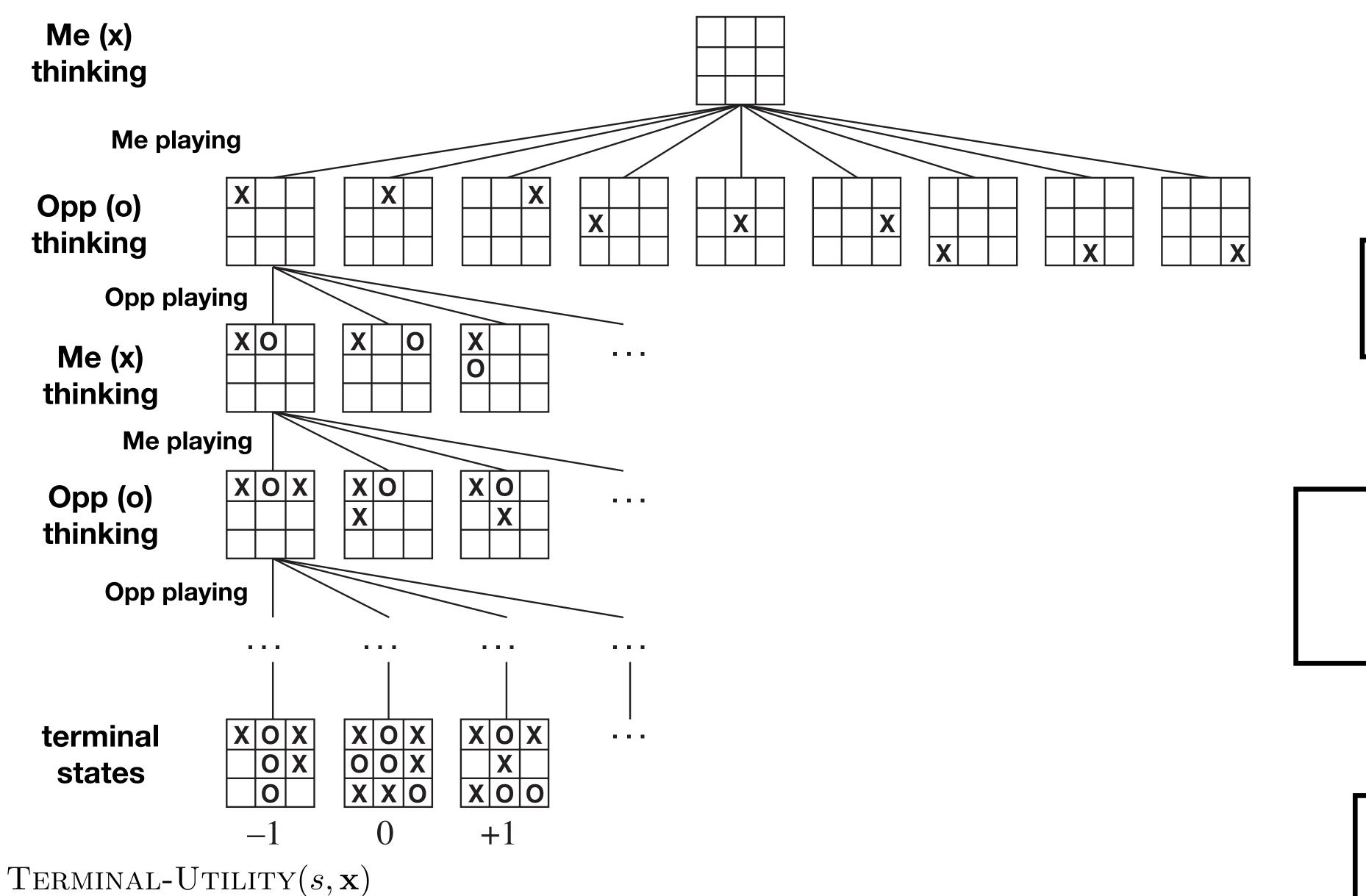


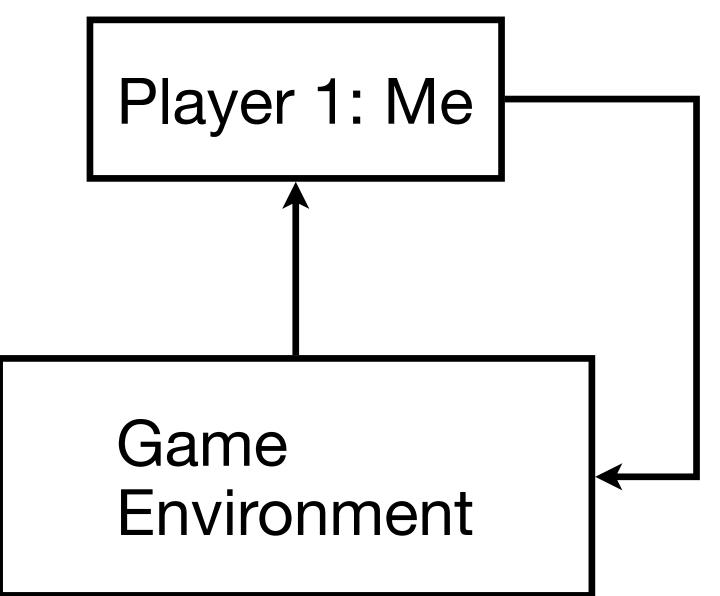
Player 1: Me

Game Environment

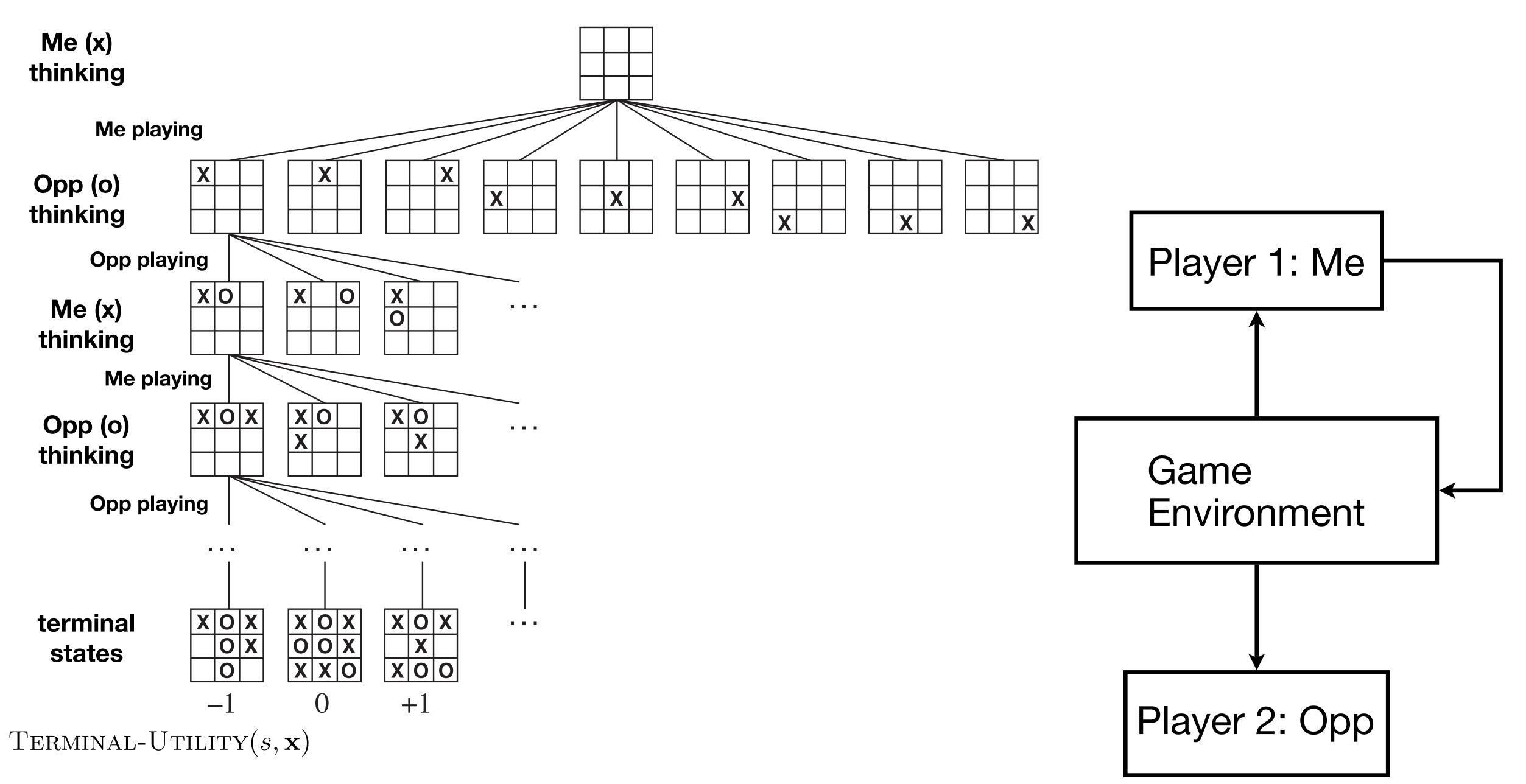
Player 2: Opp

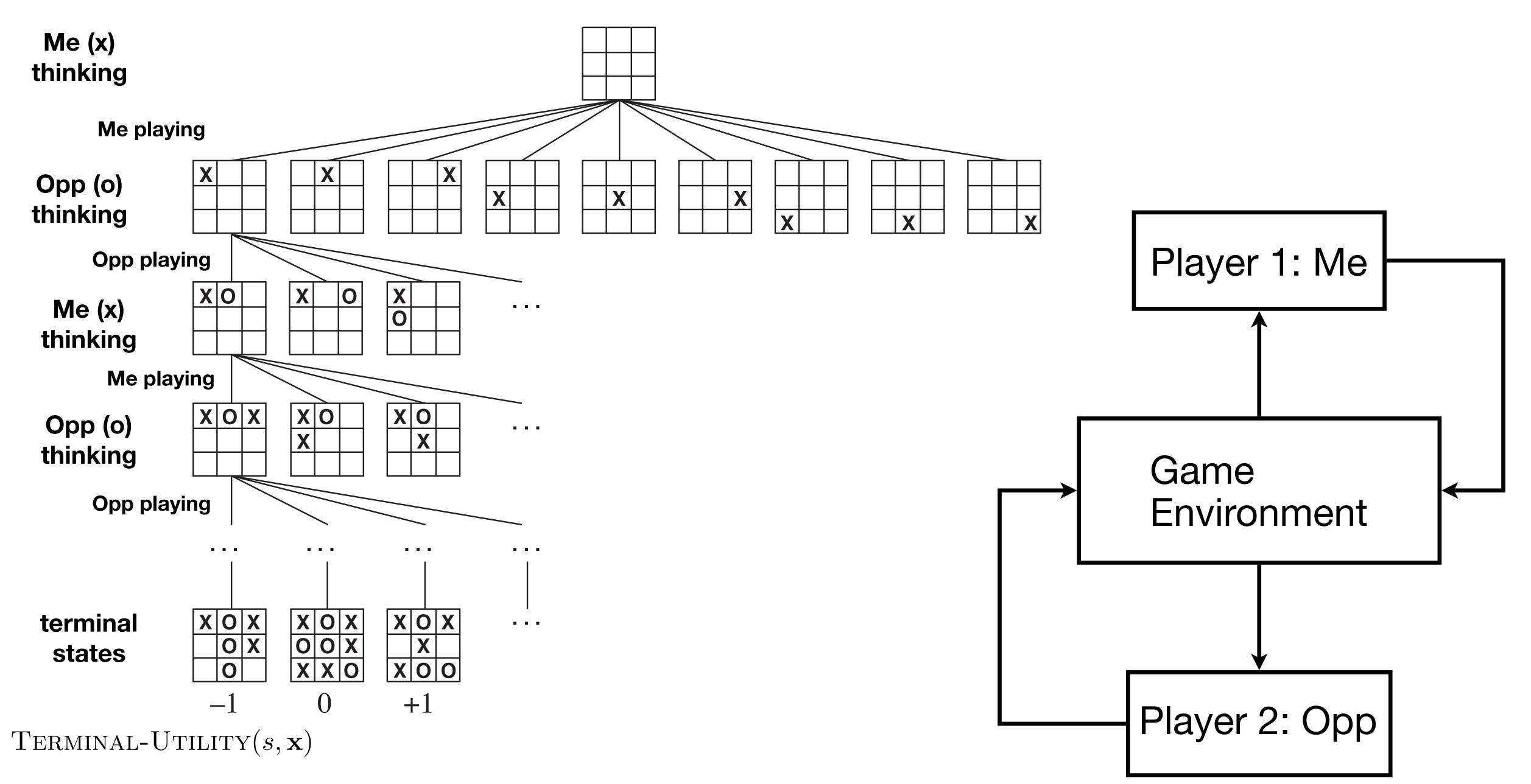


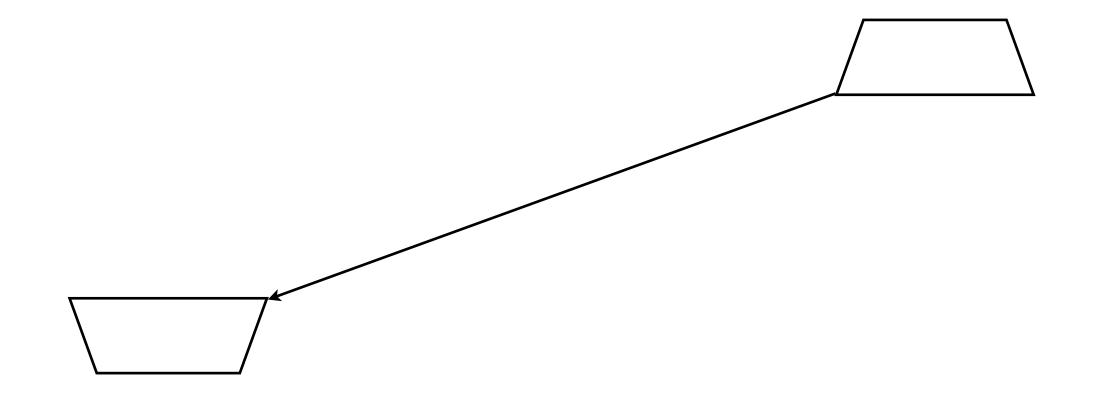


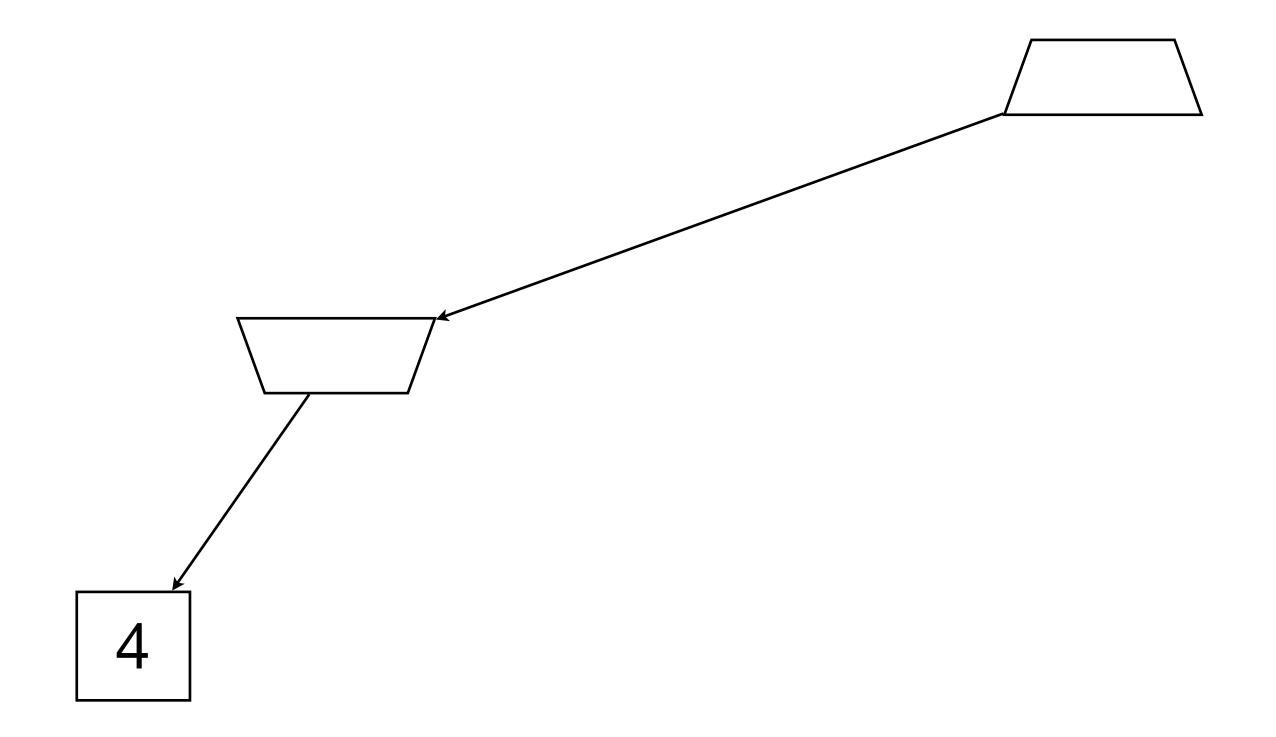


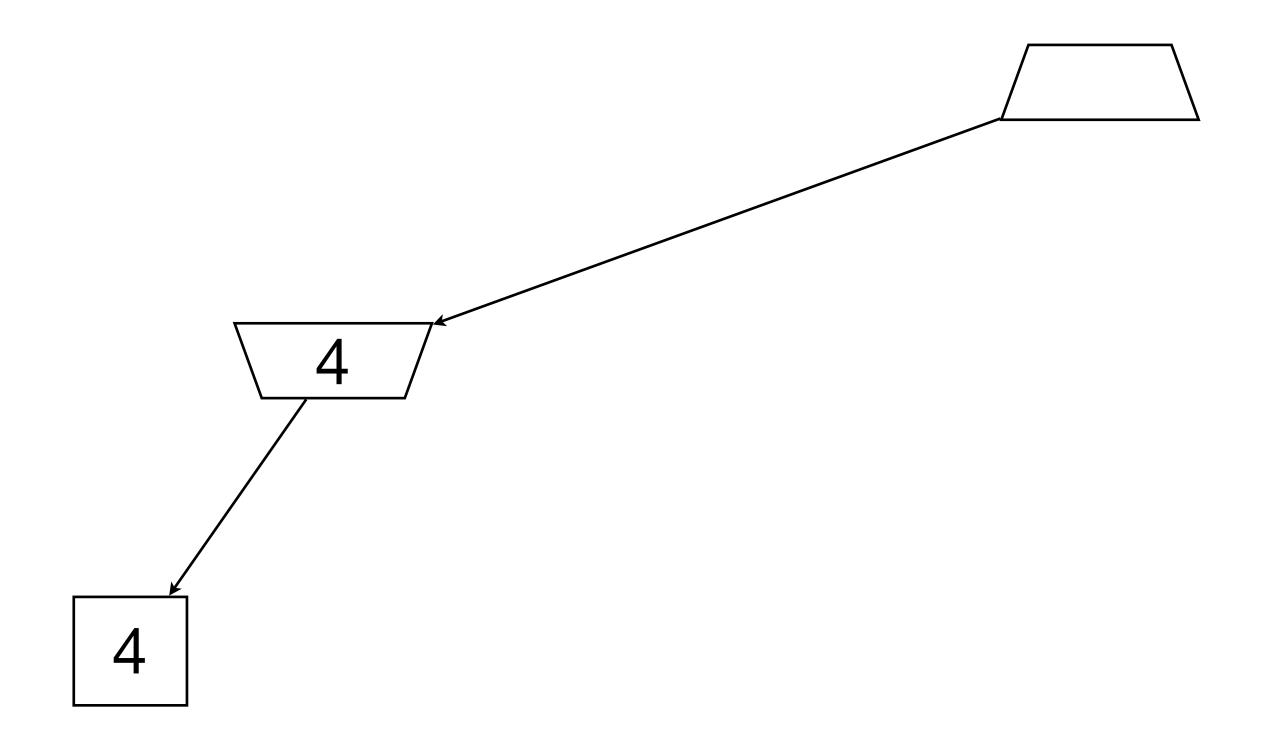
Player 2: Opp

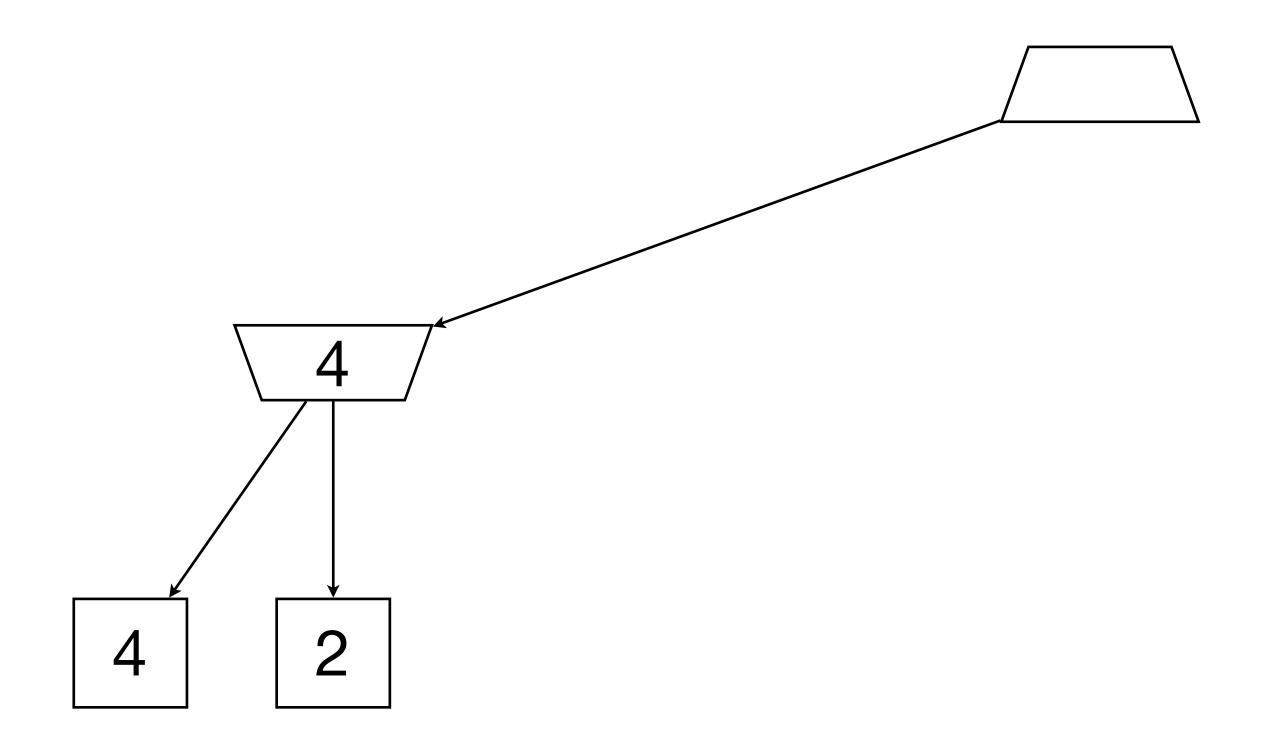


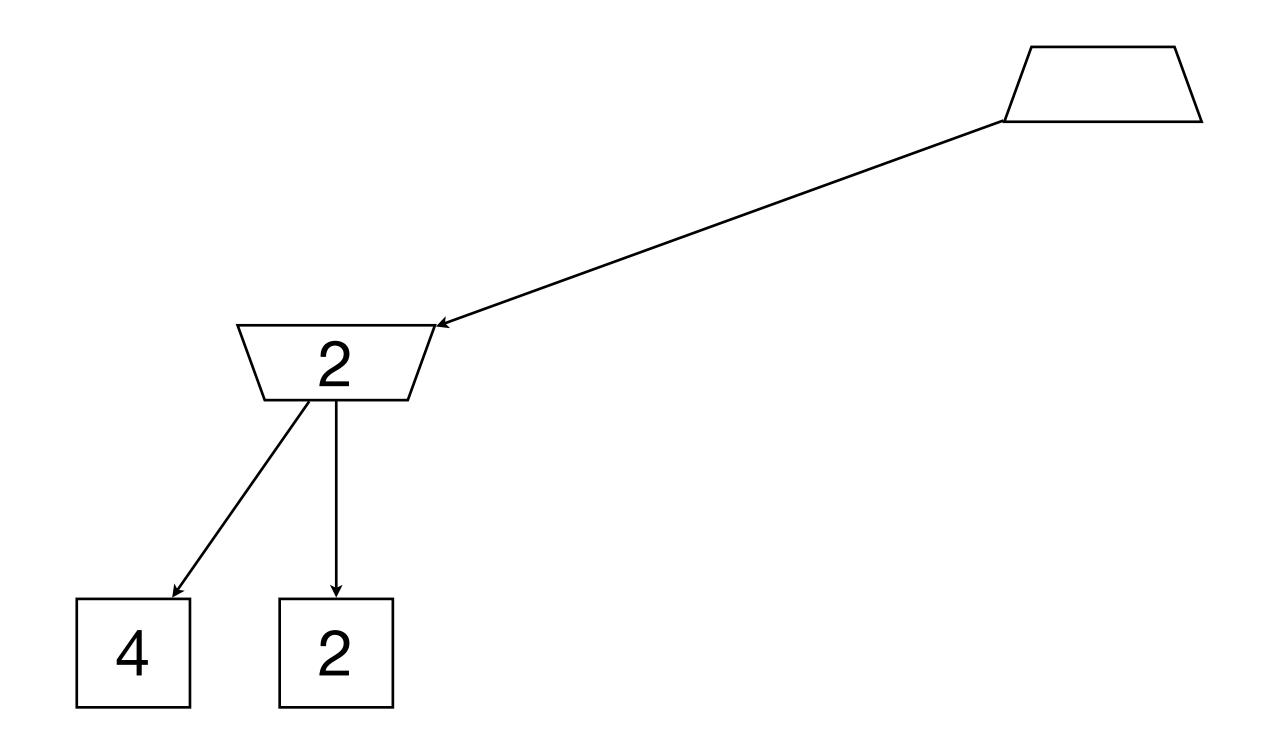


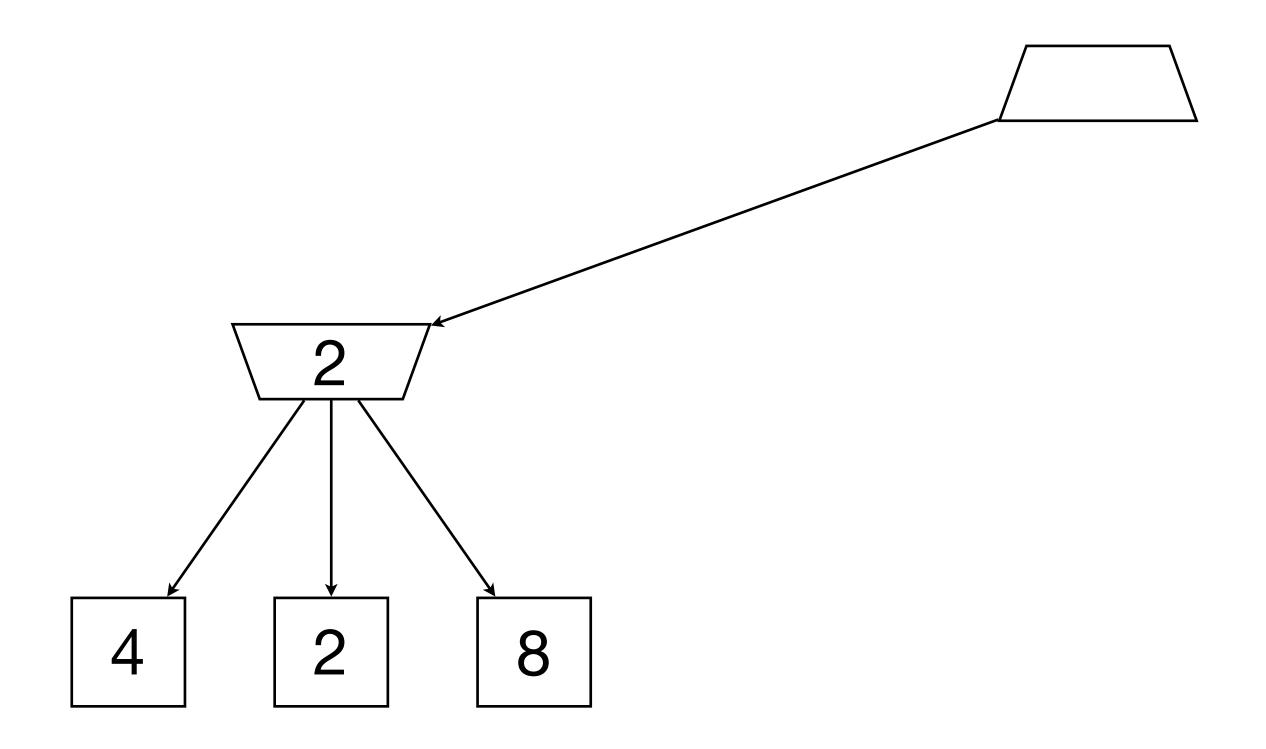


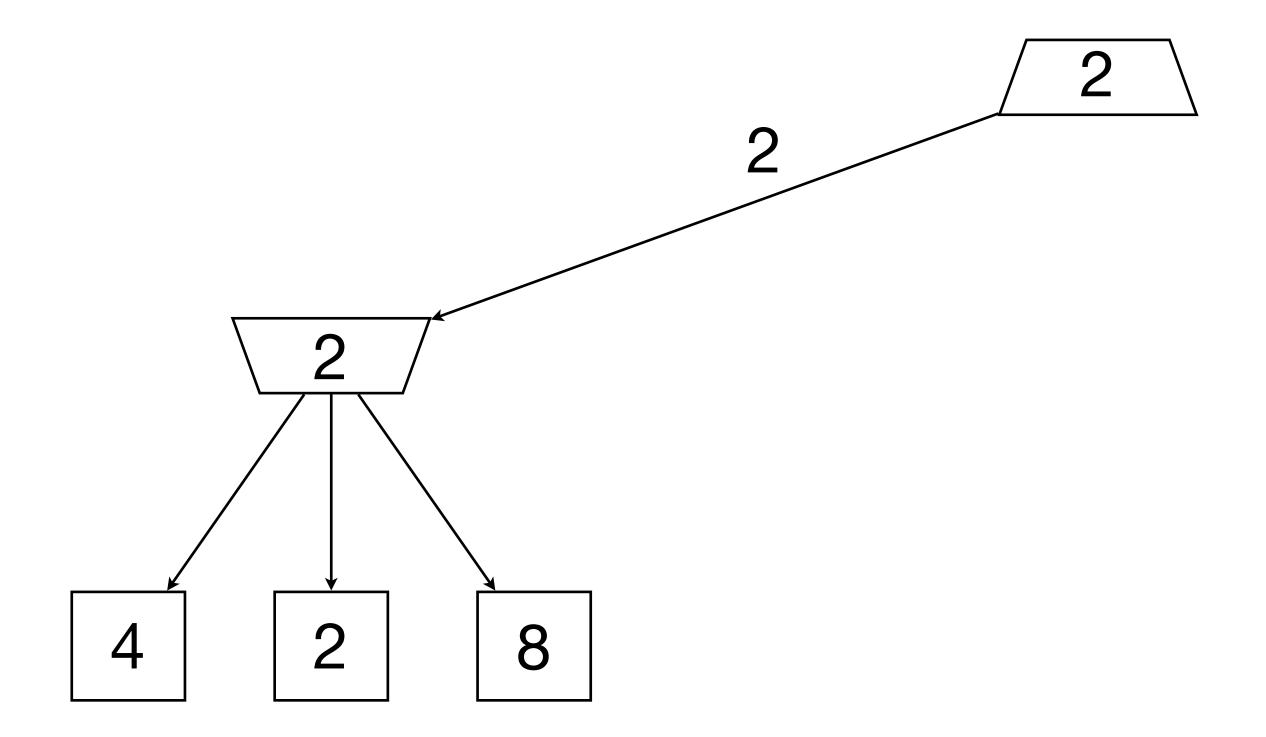


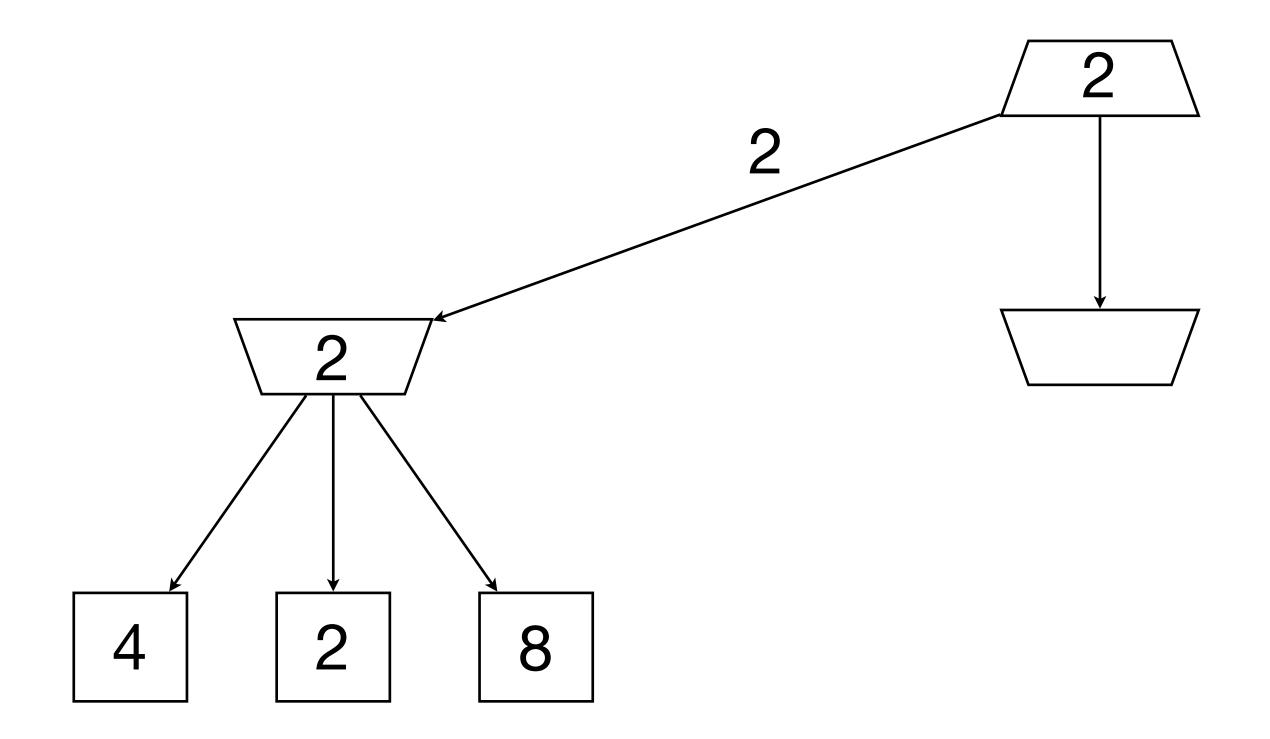


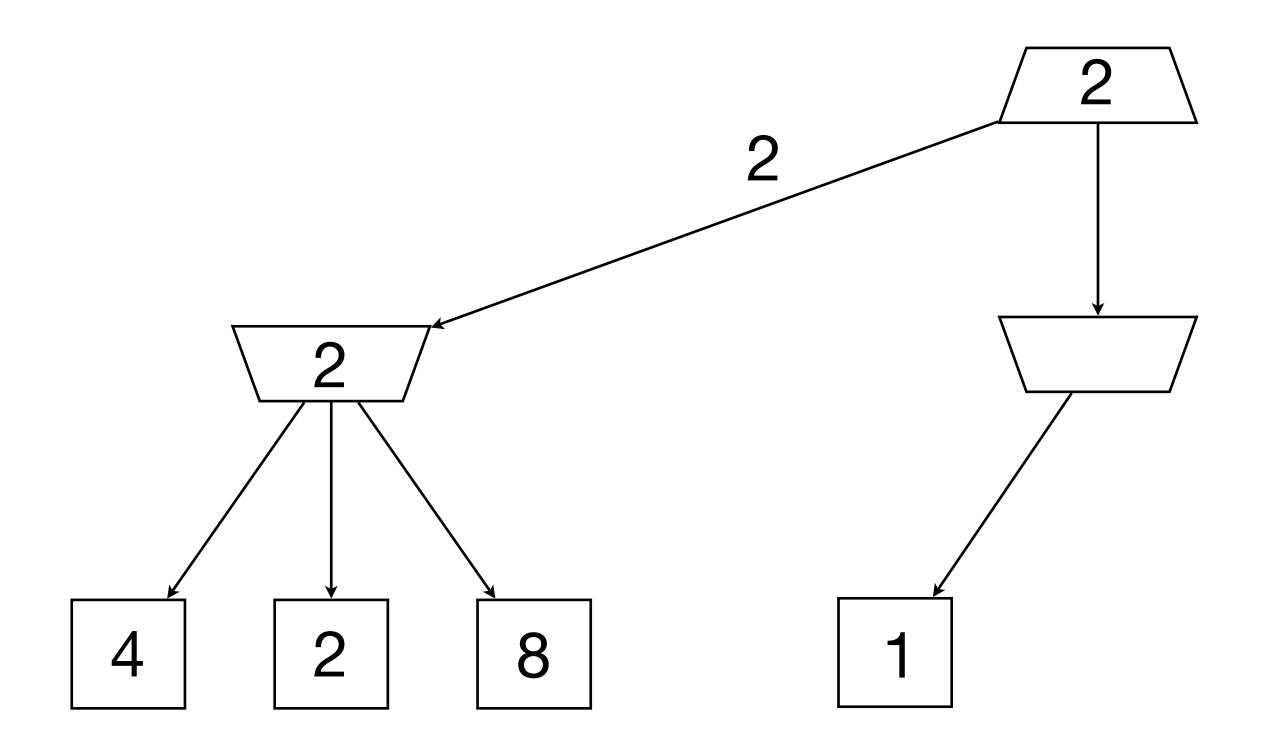


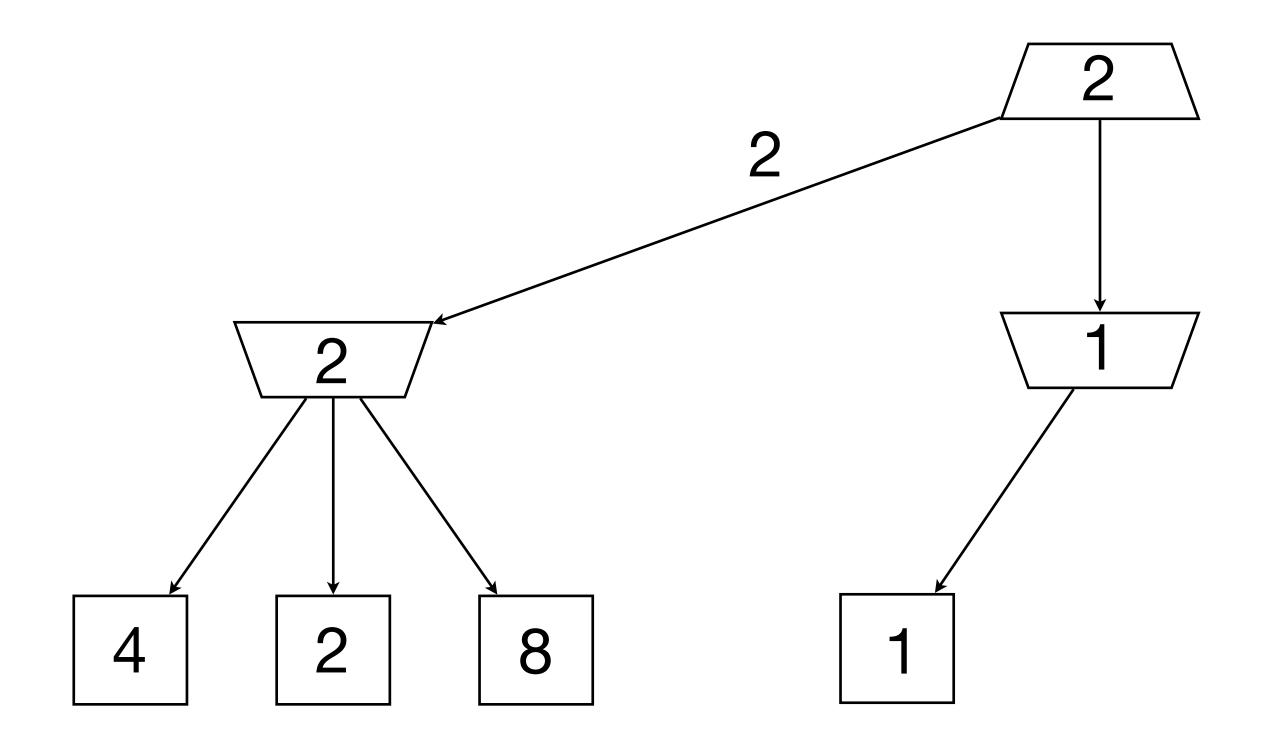


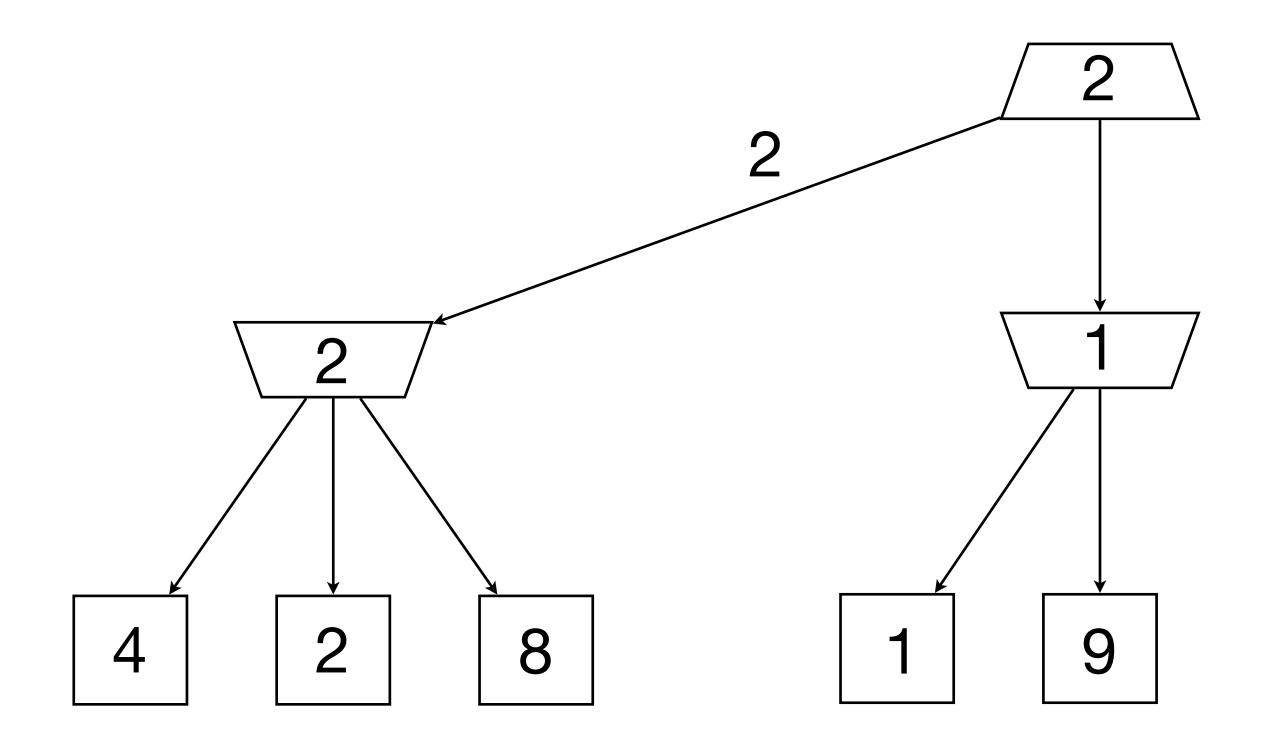


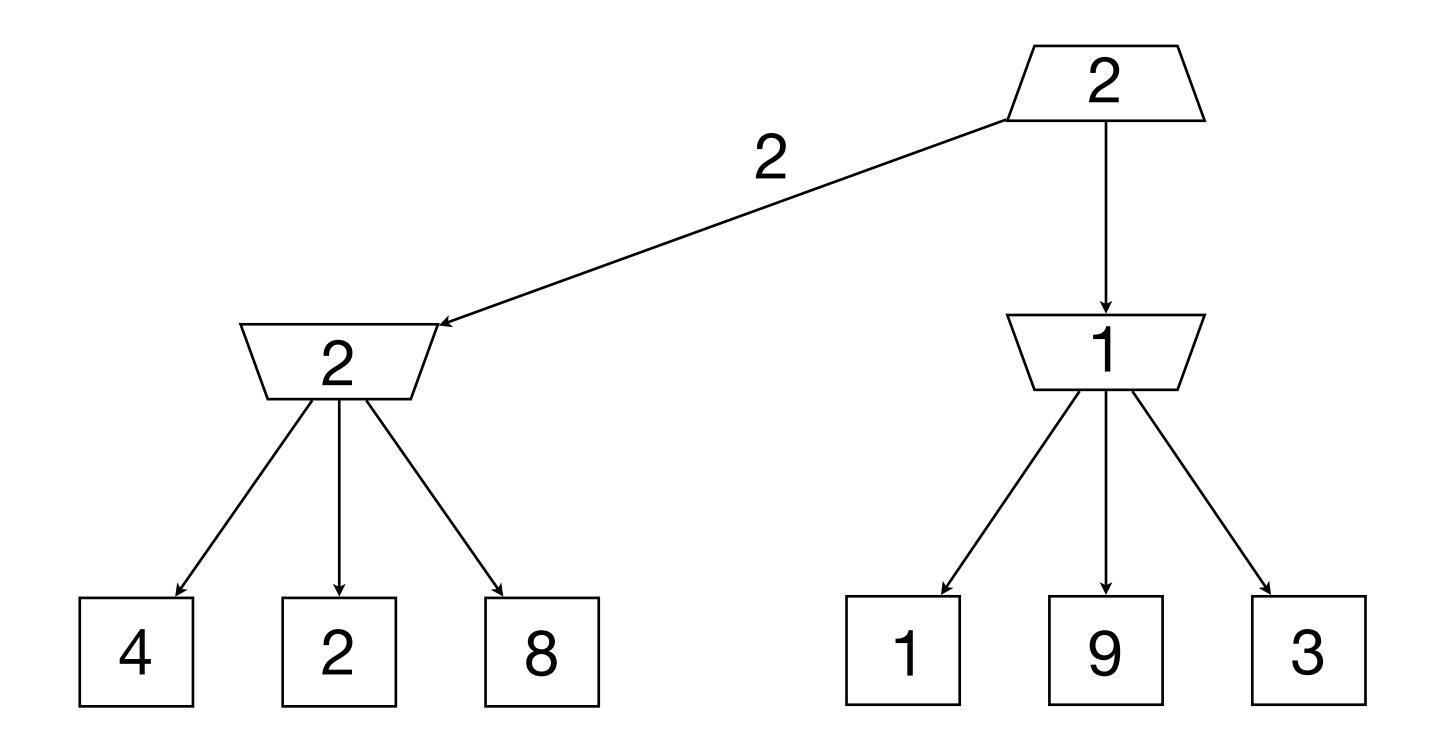


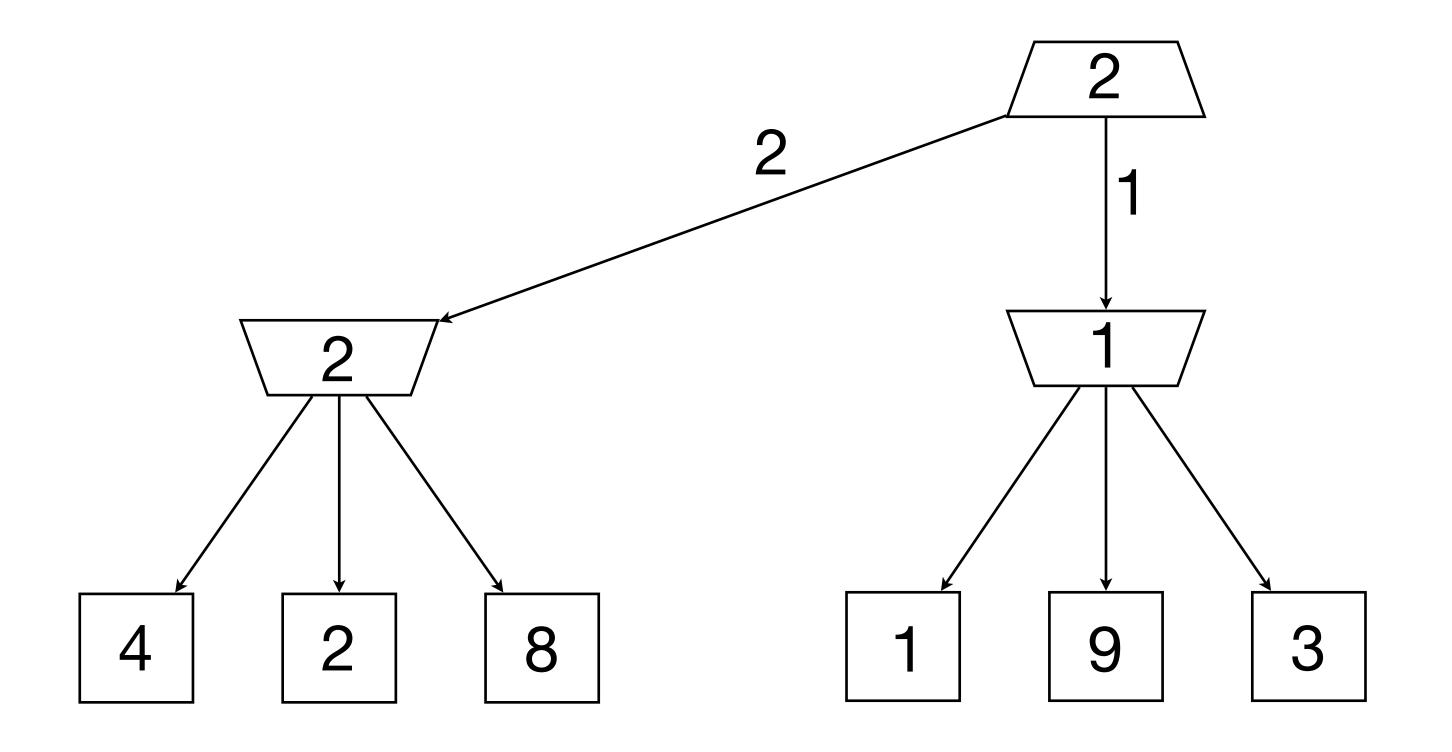


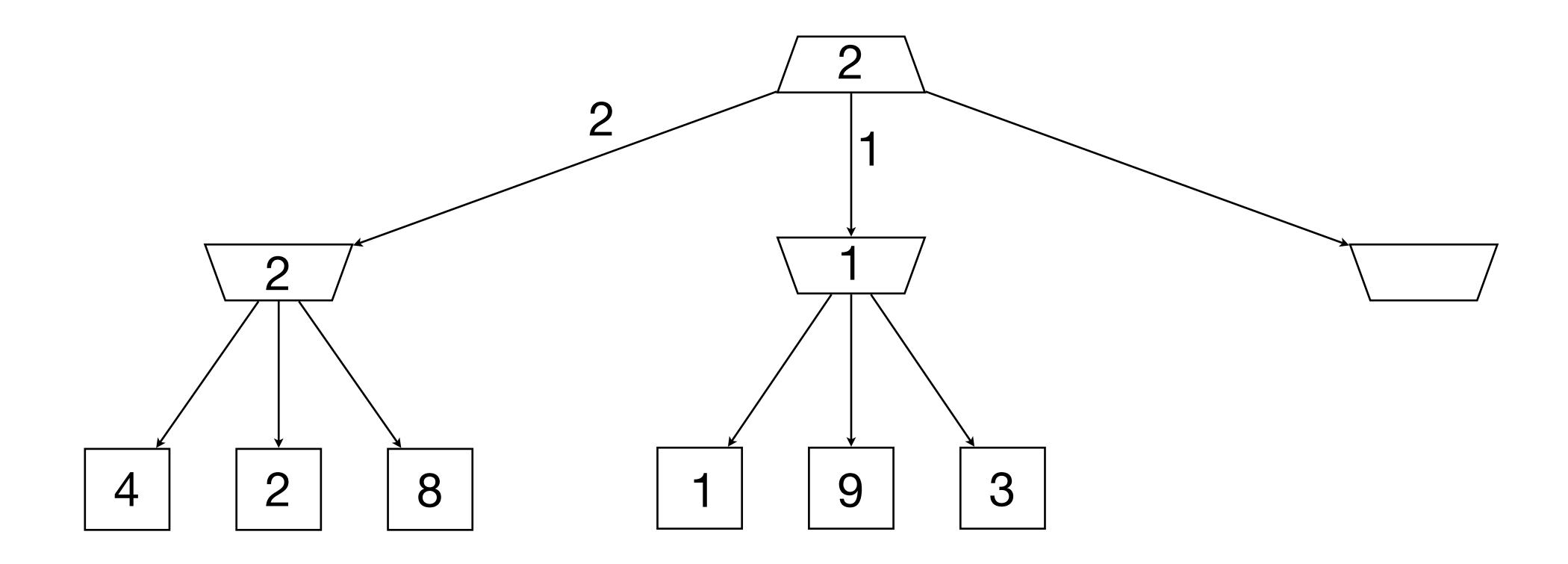


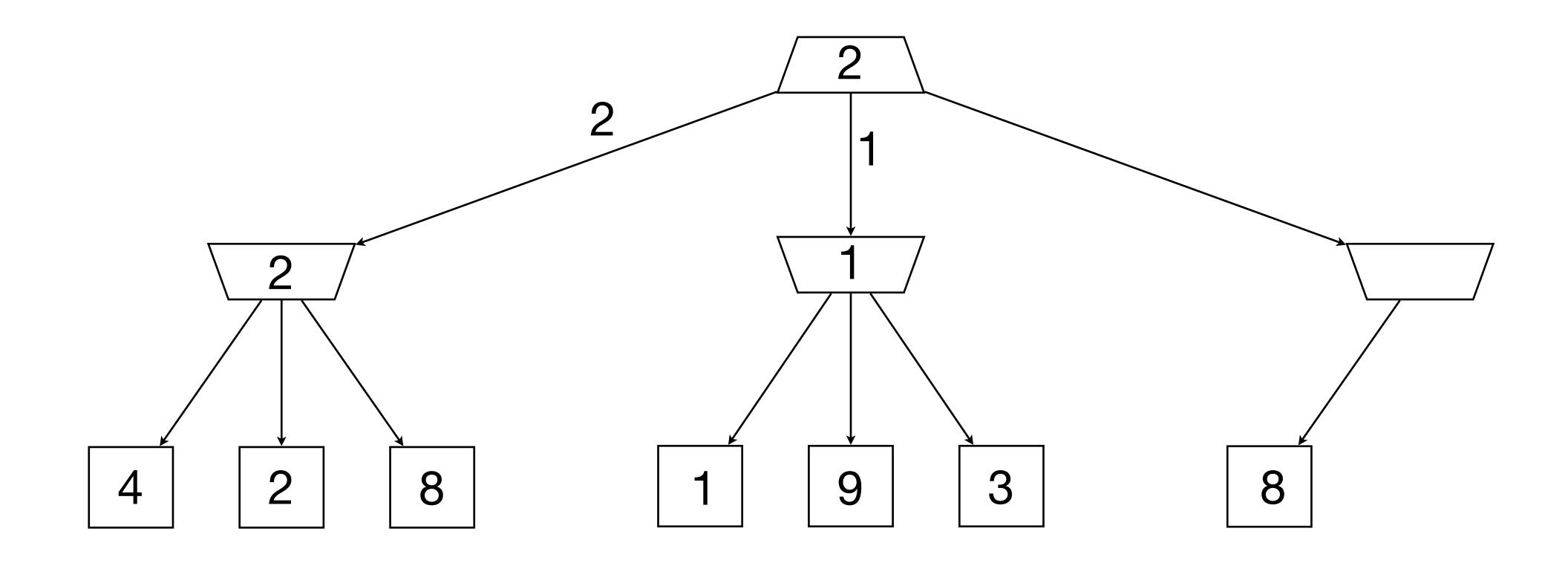


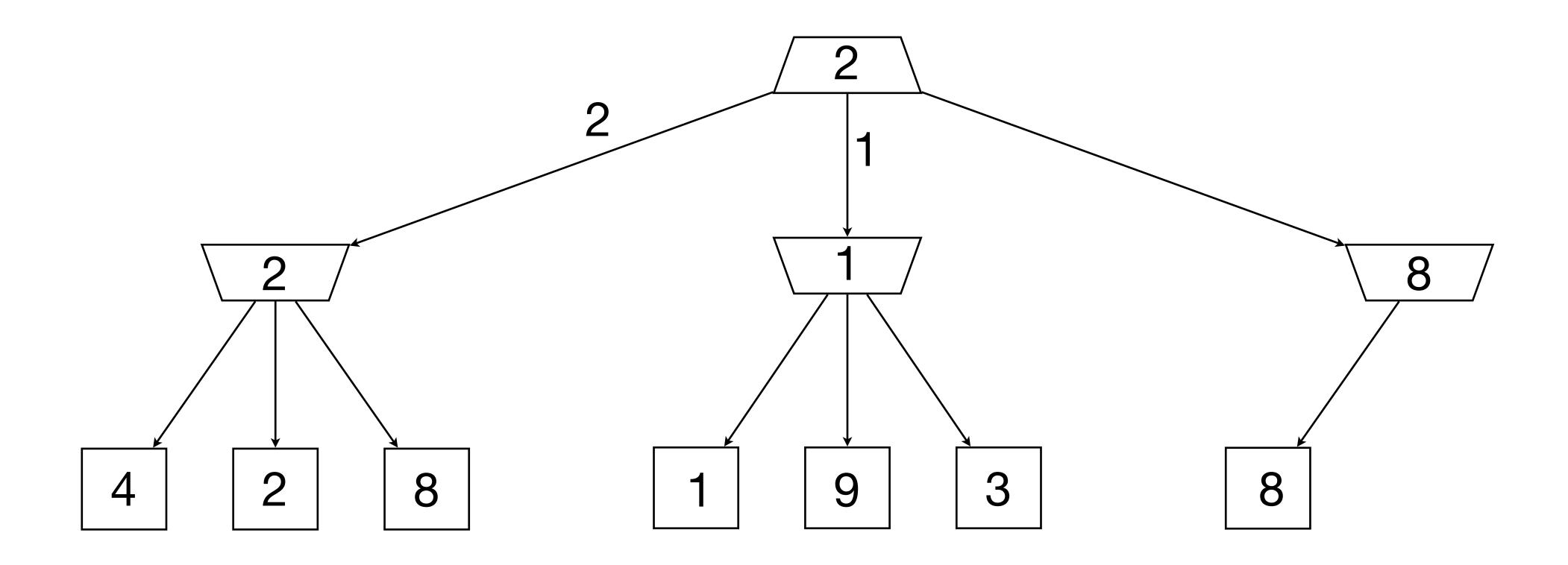


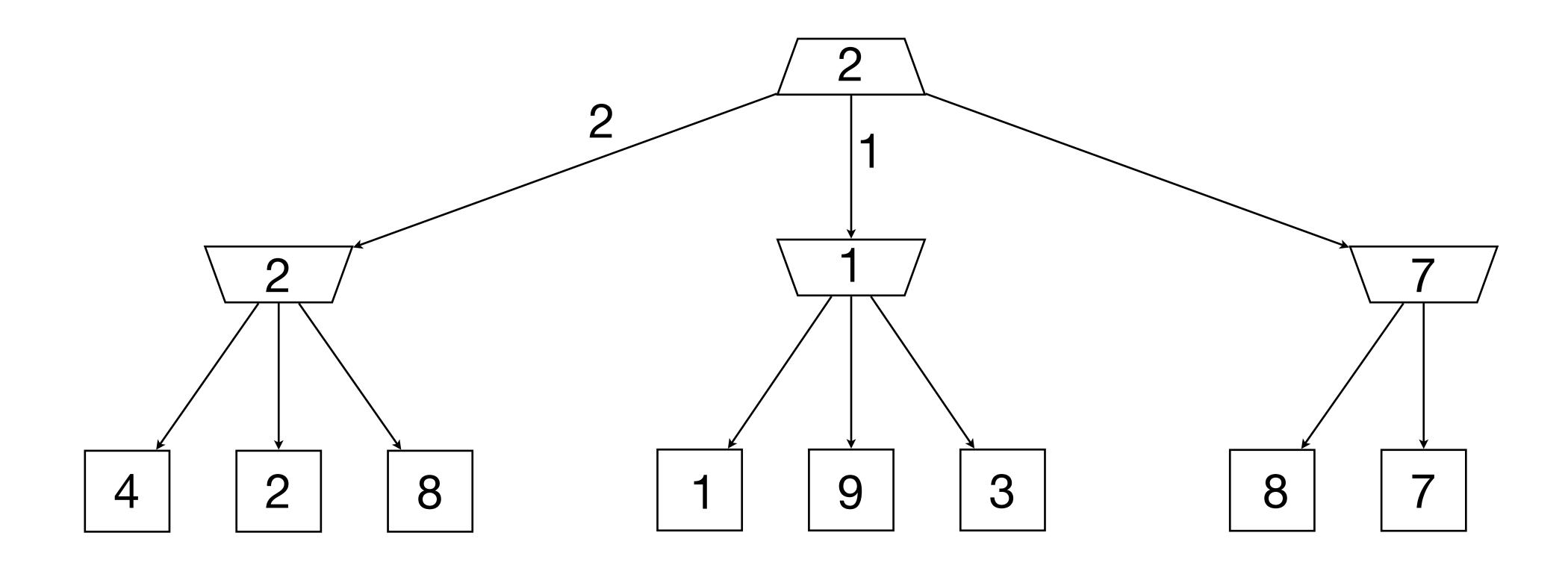


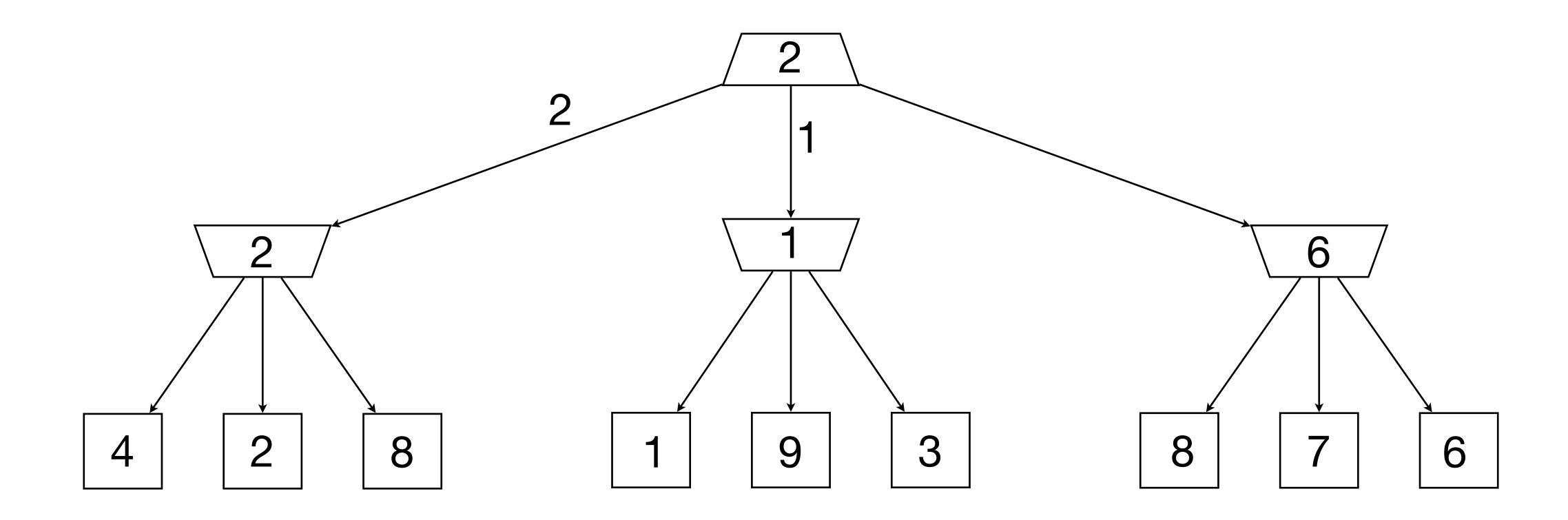


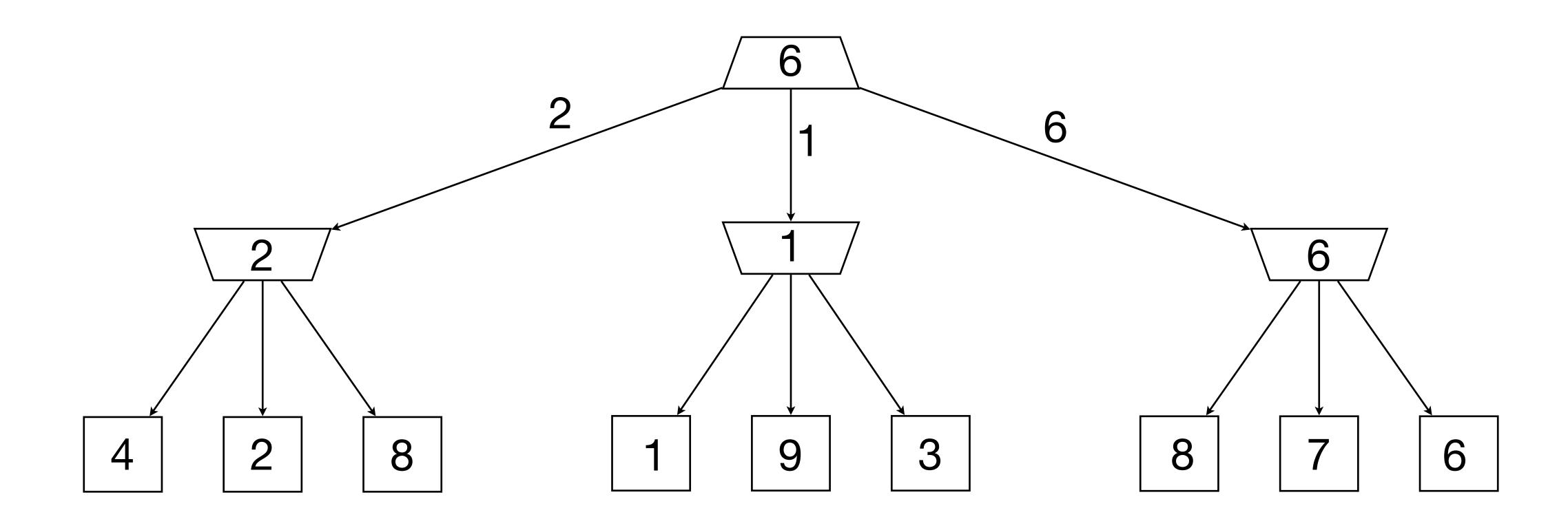




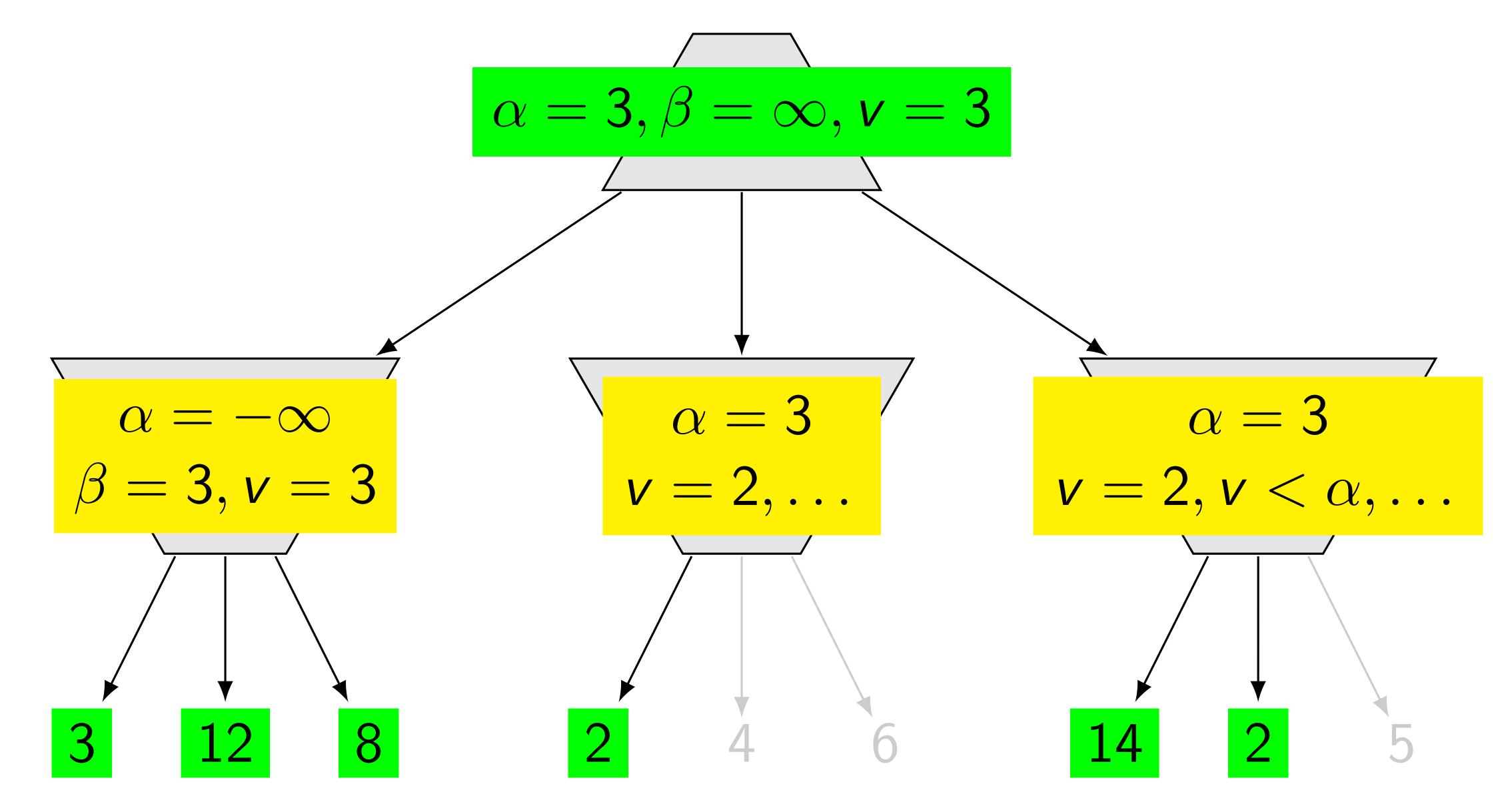


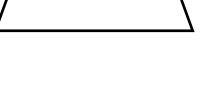


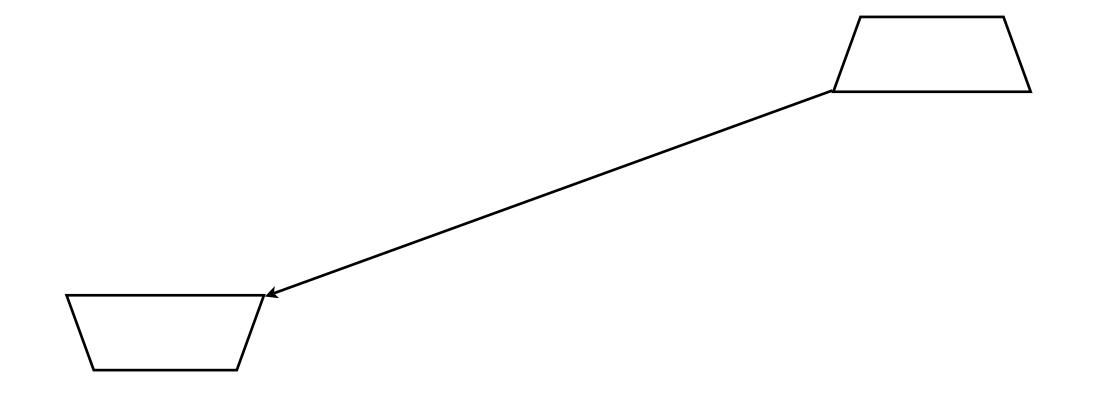


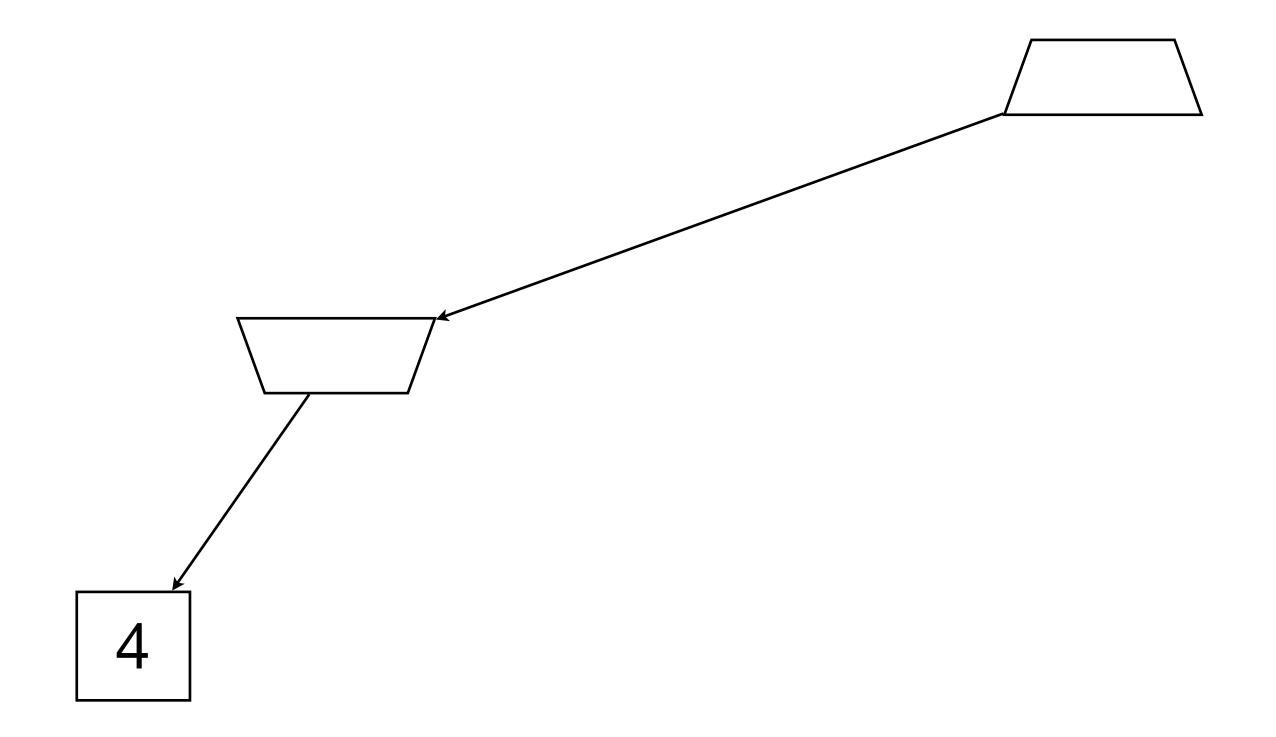


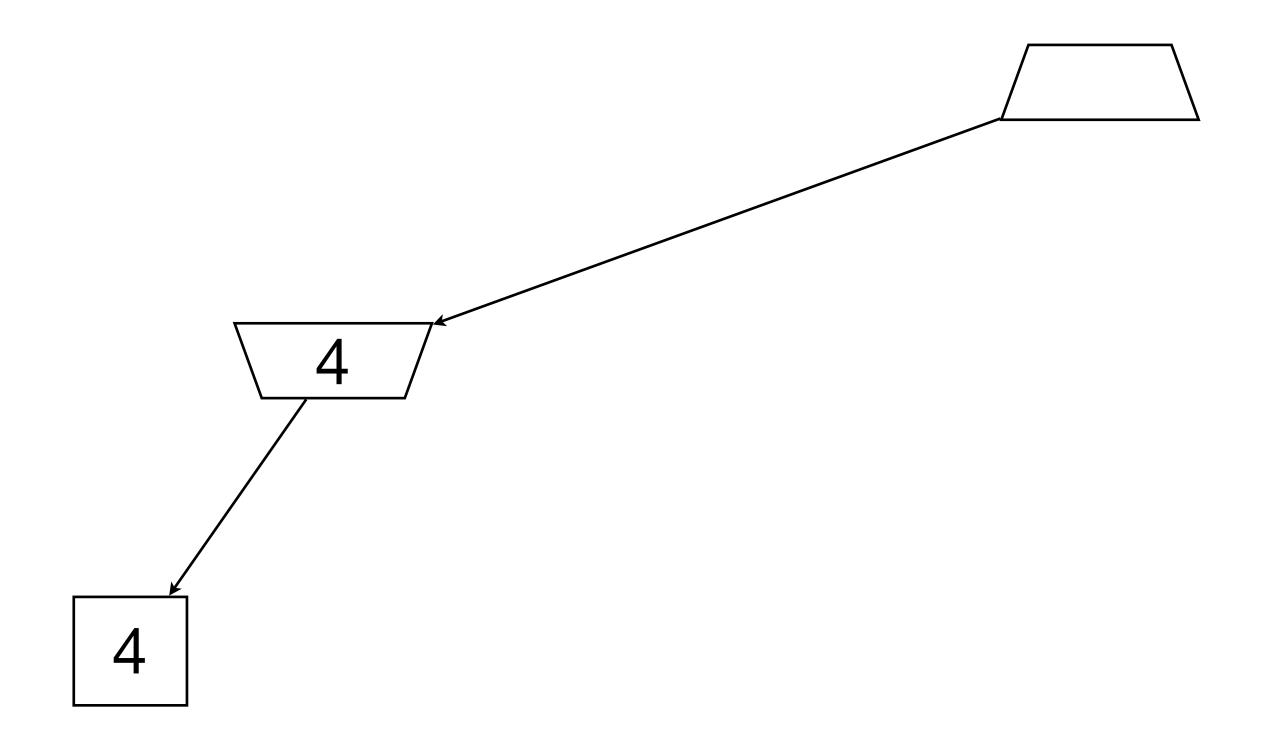
We can go (think) deeper if we prune ...

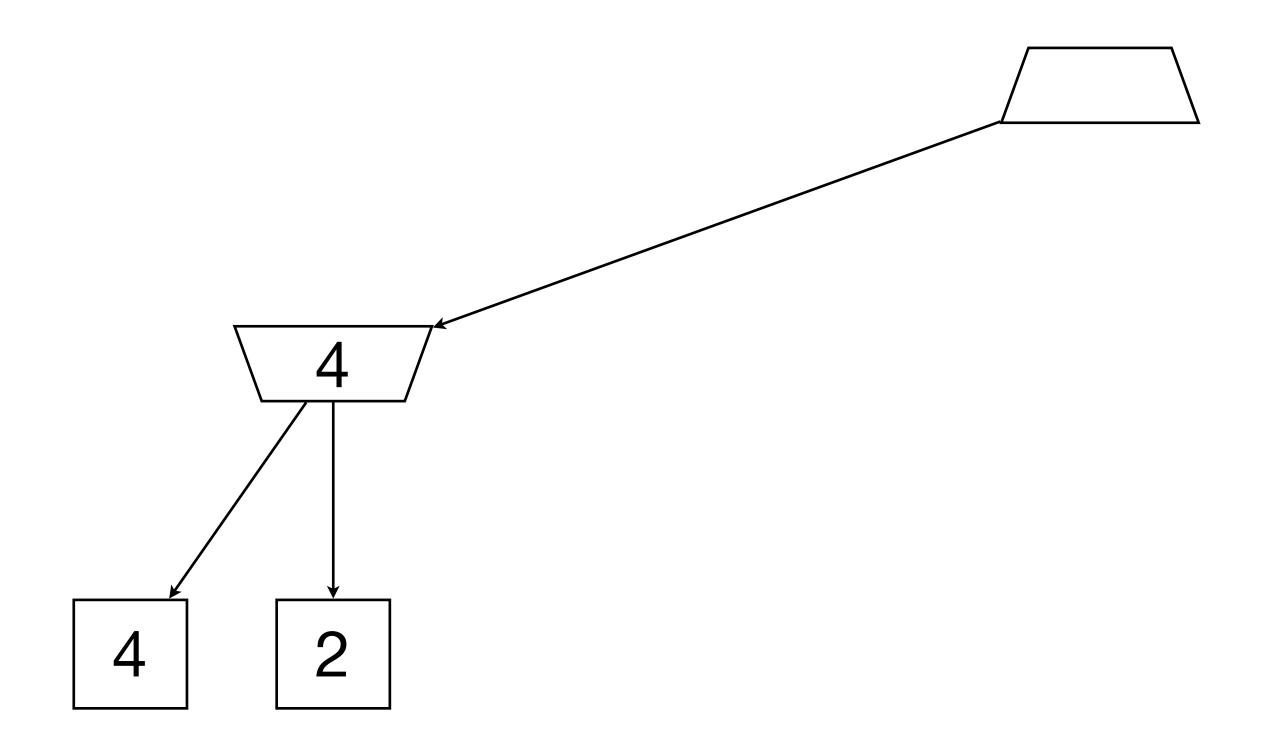


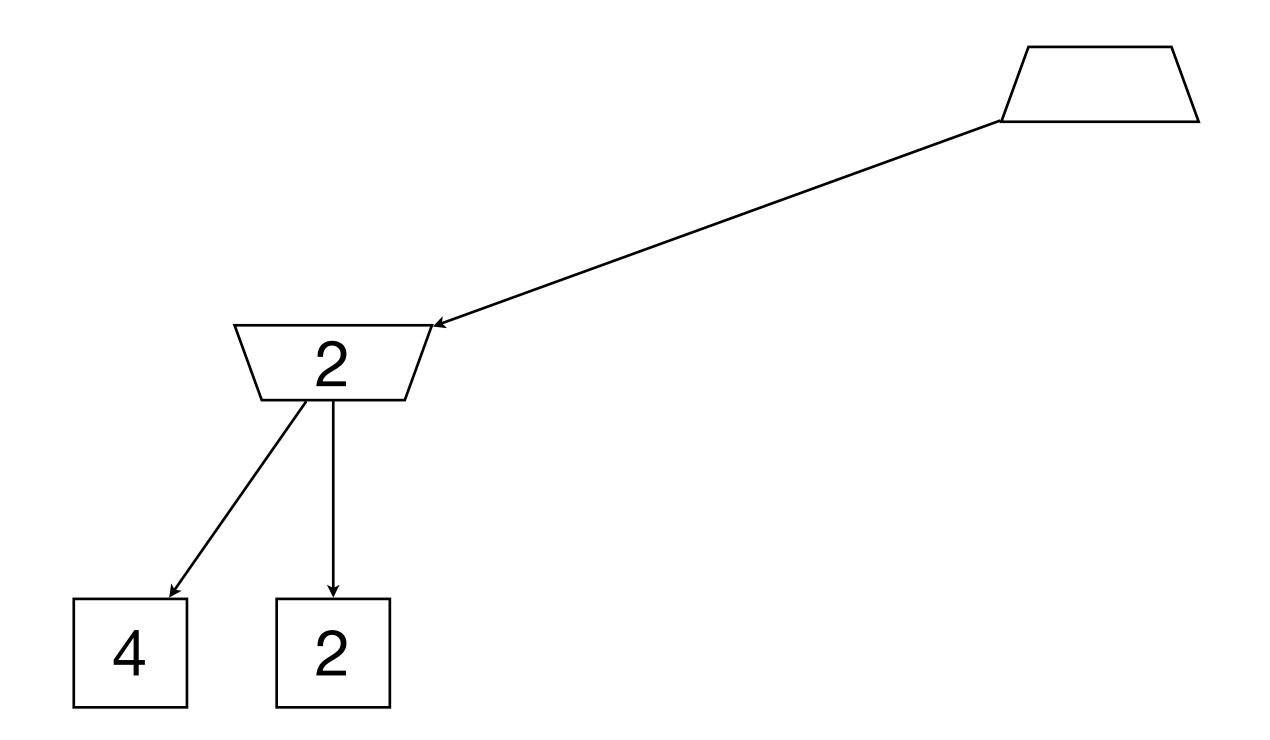


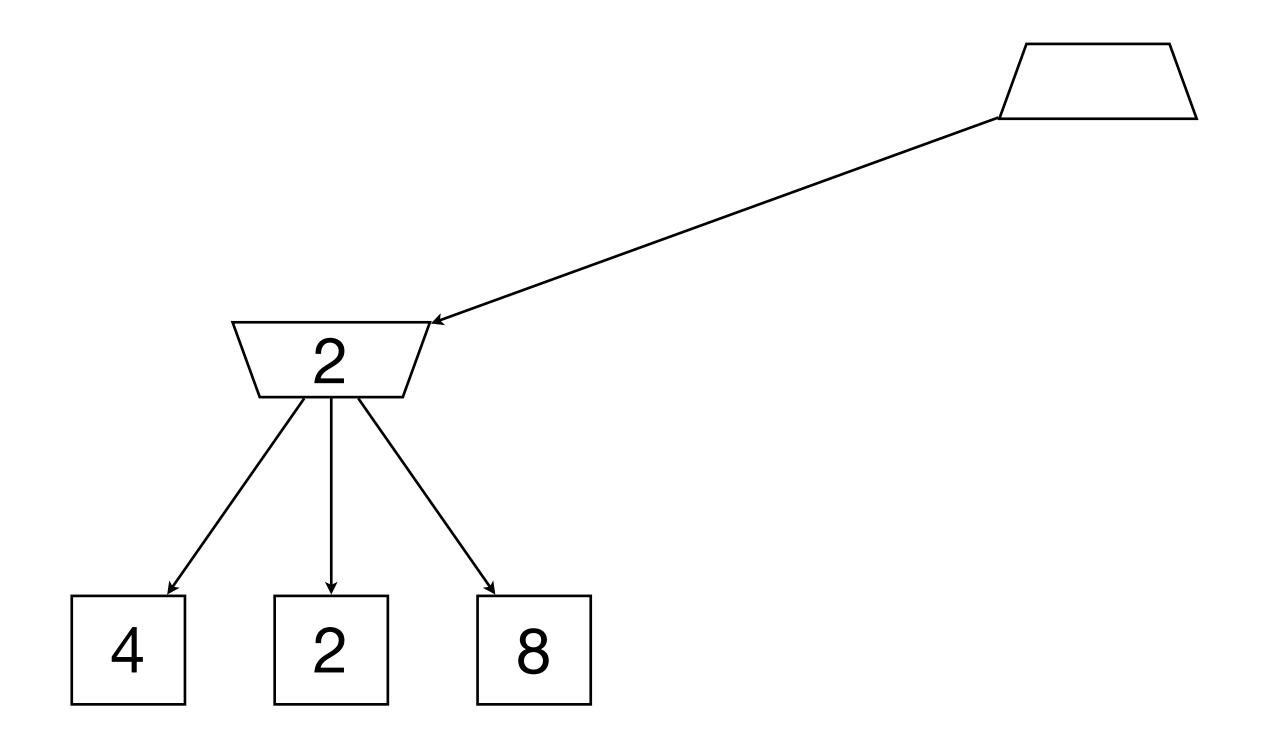


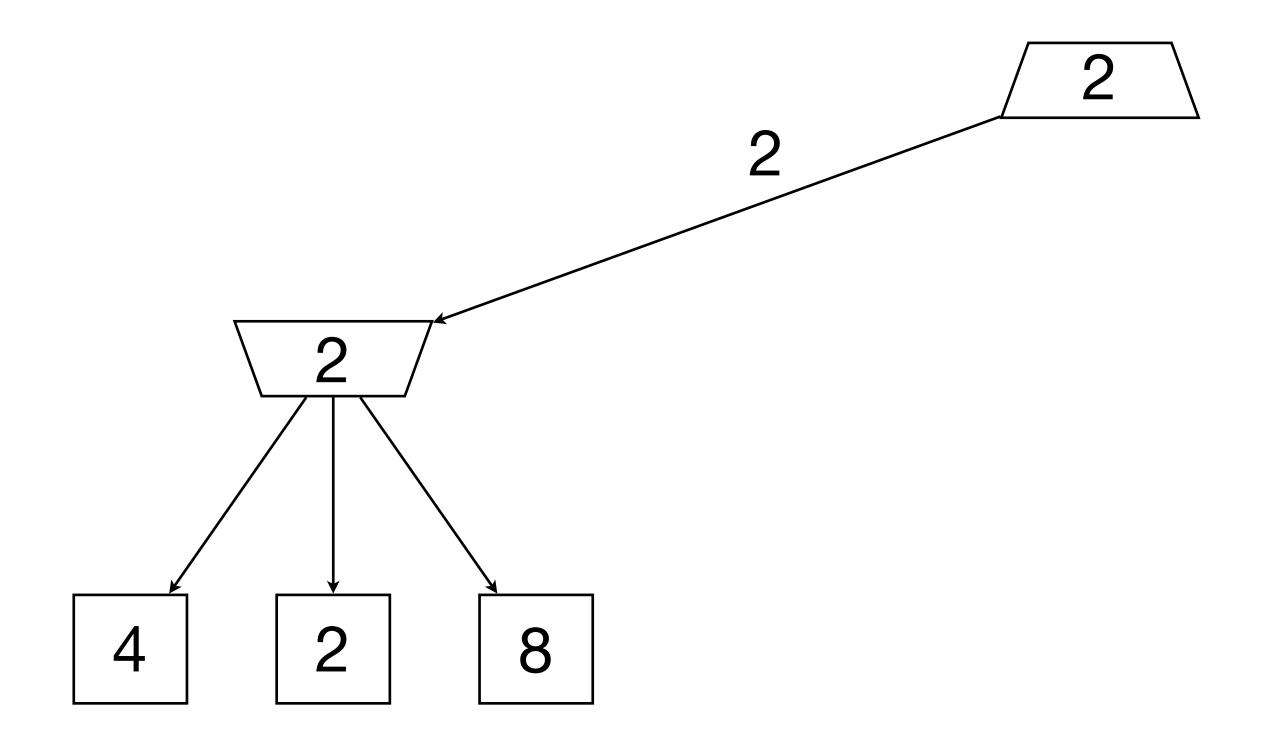


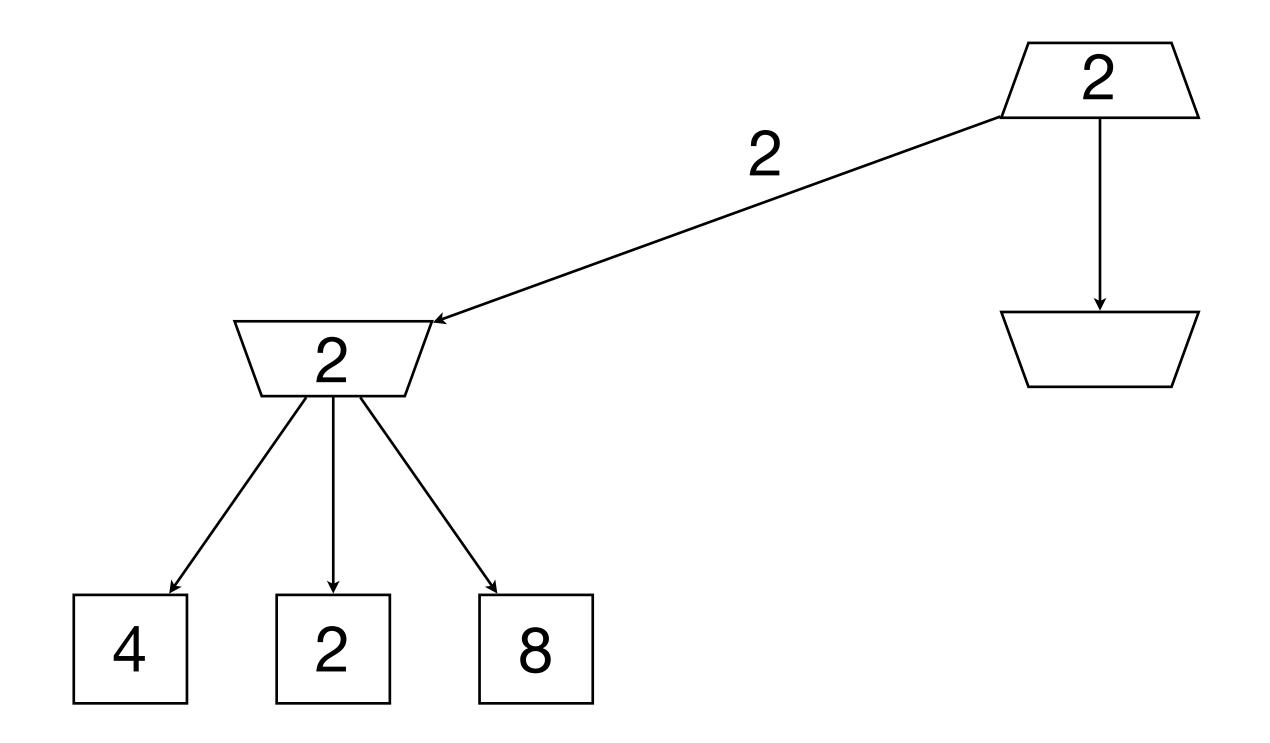


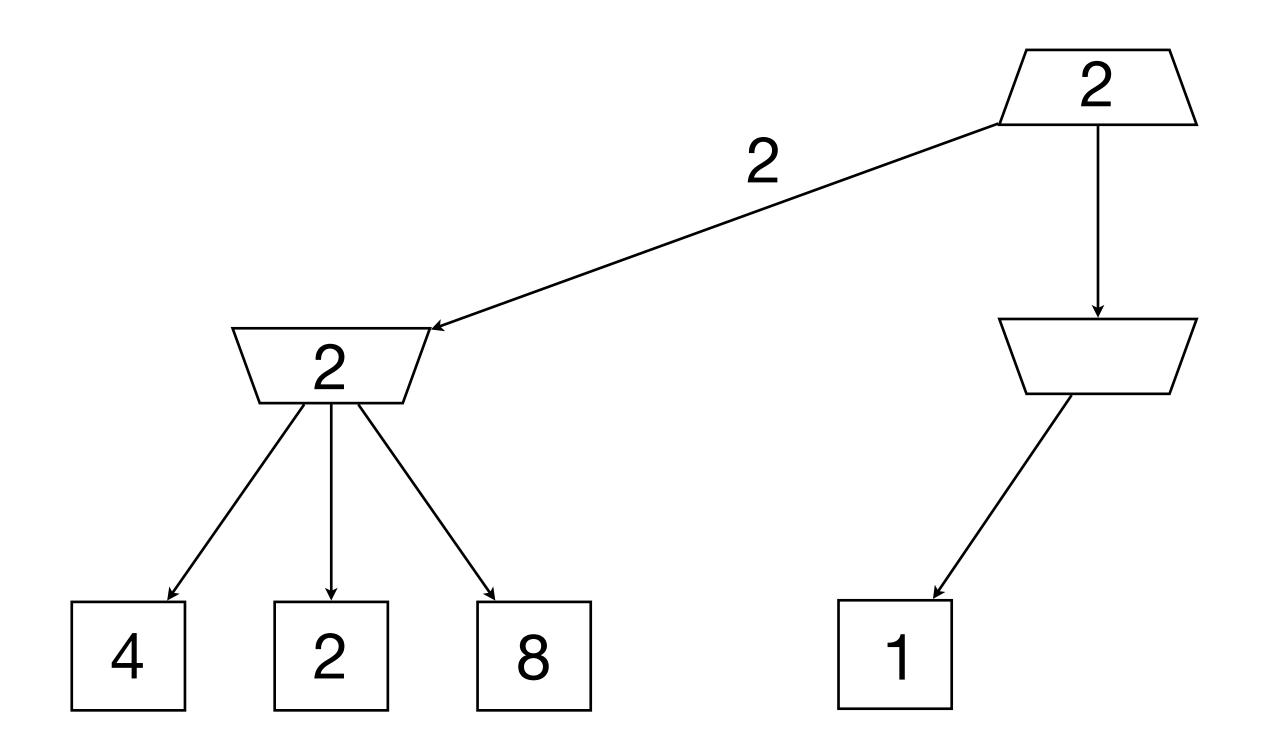


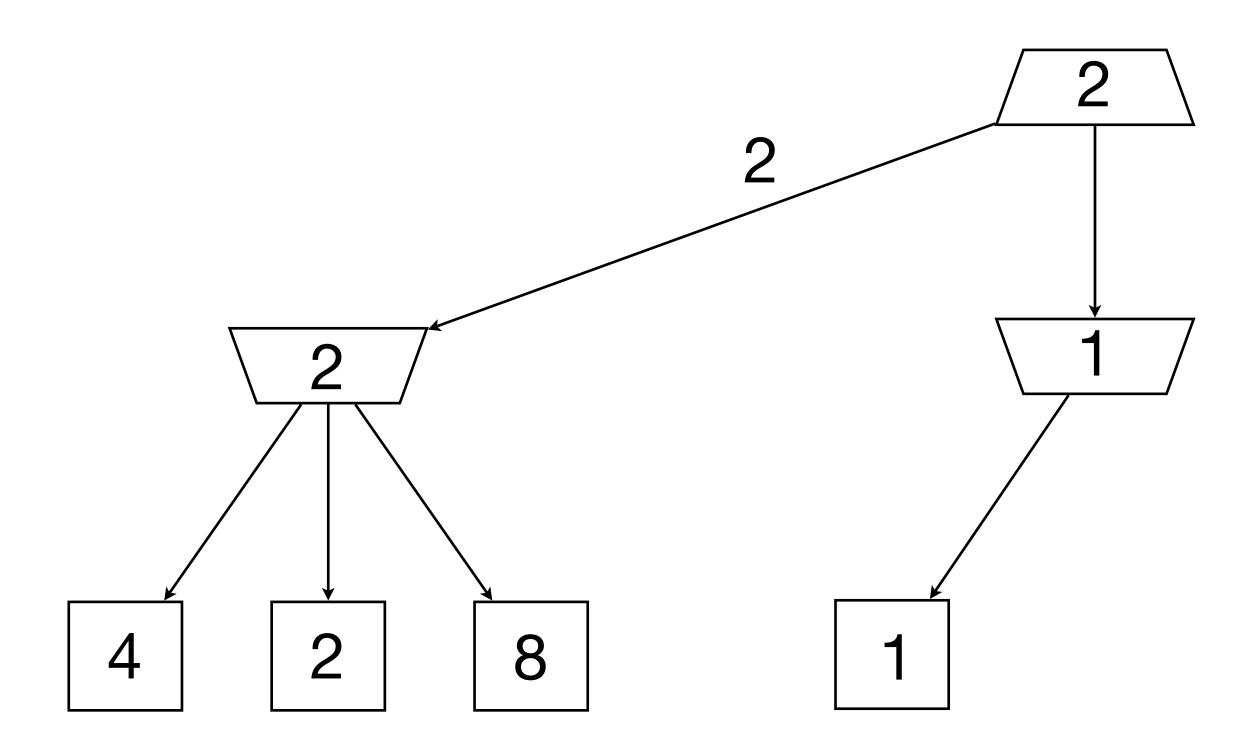


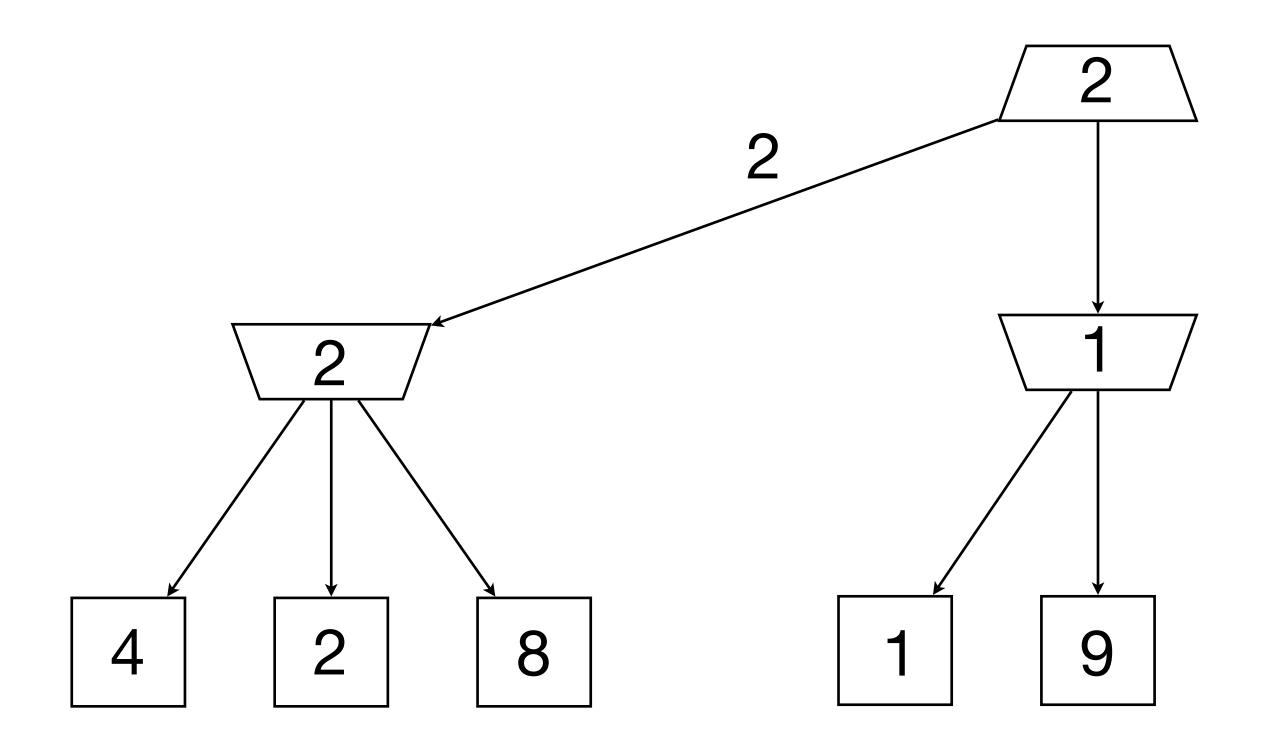


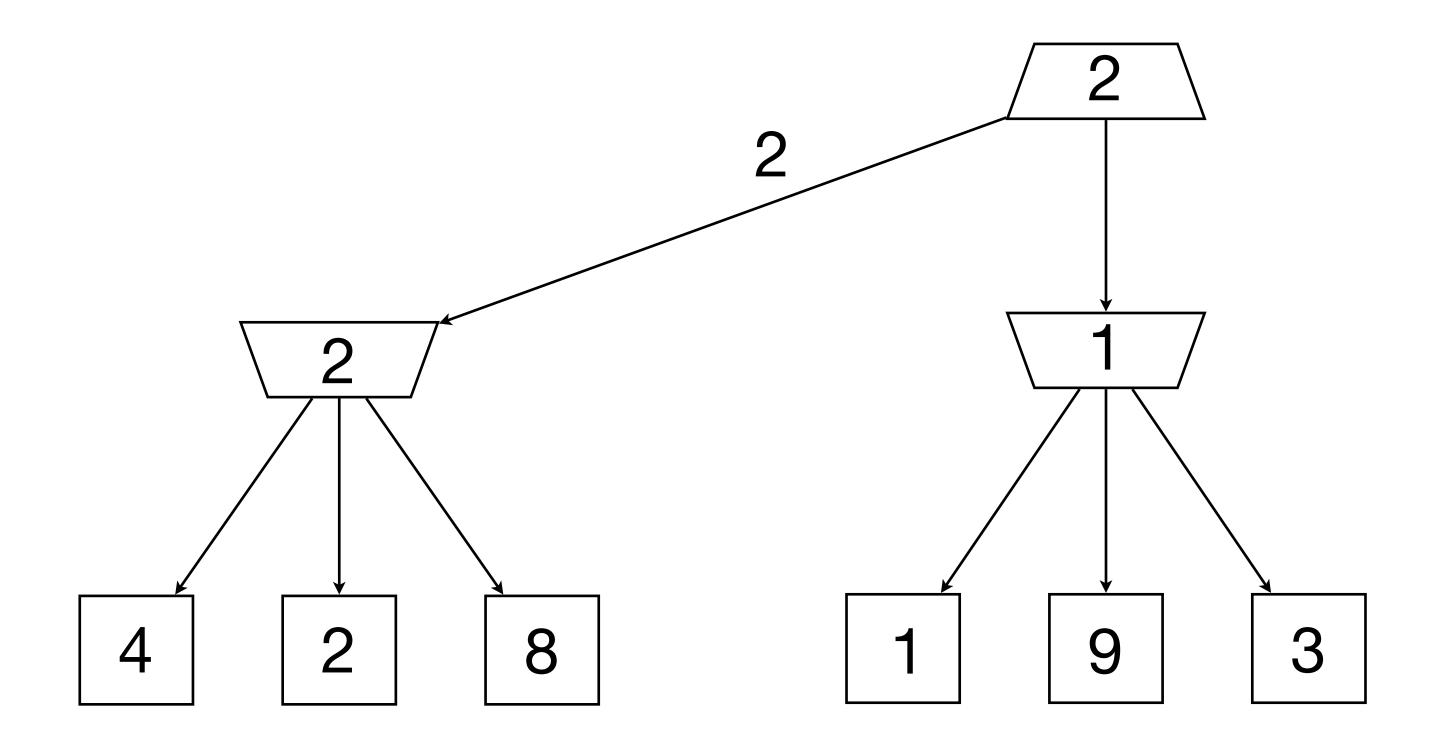


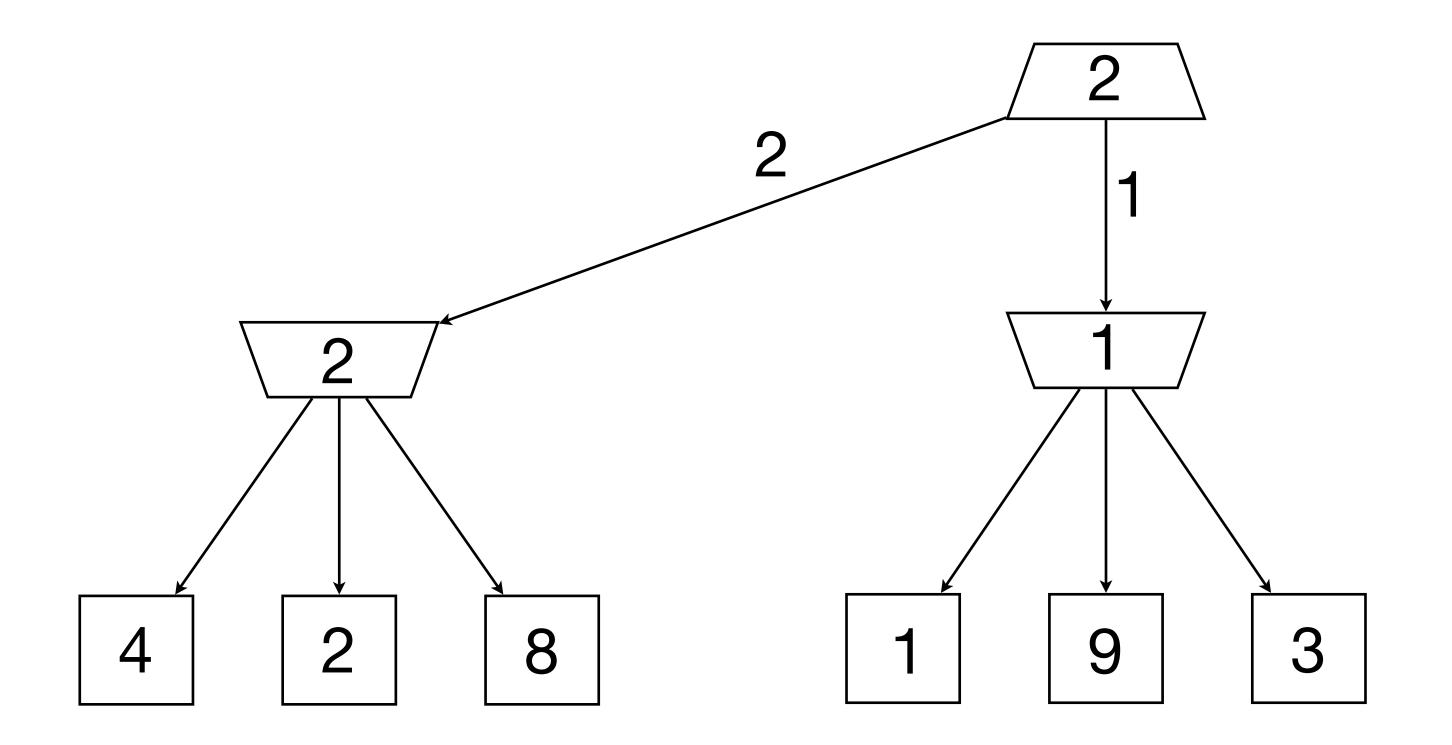


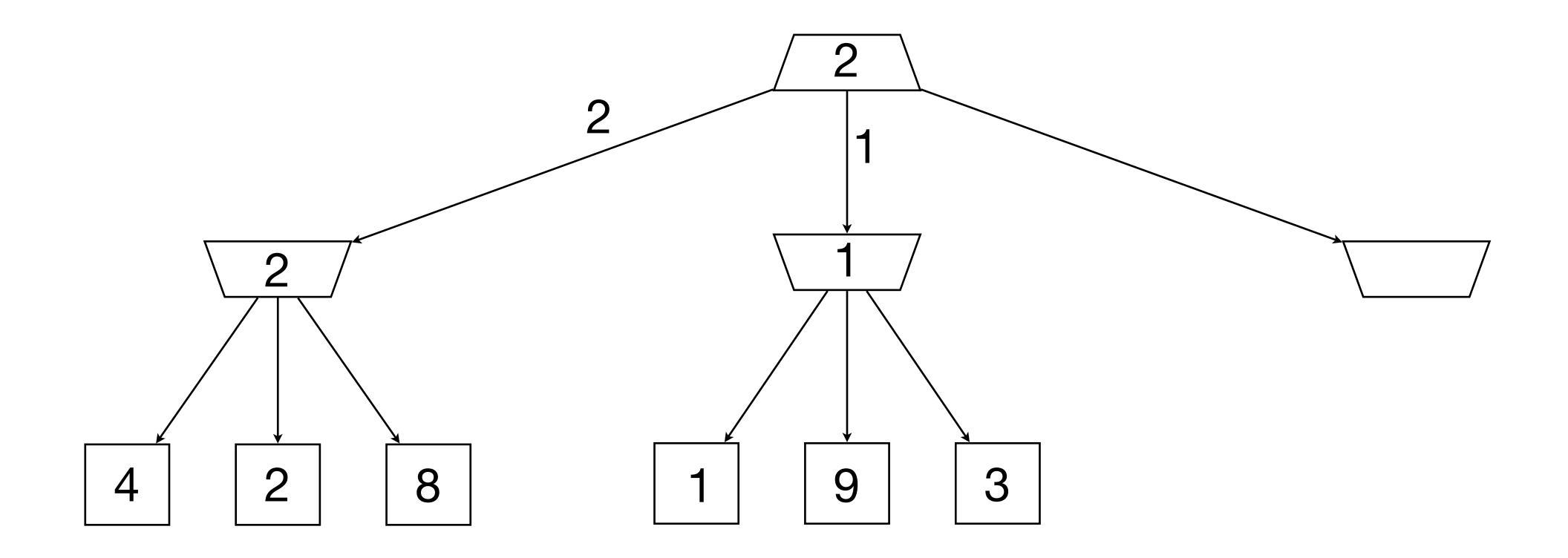


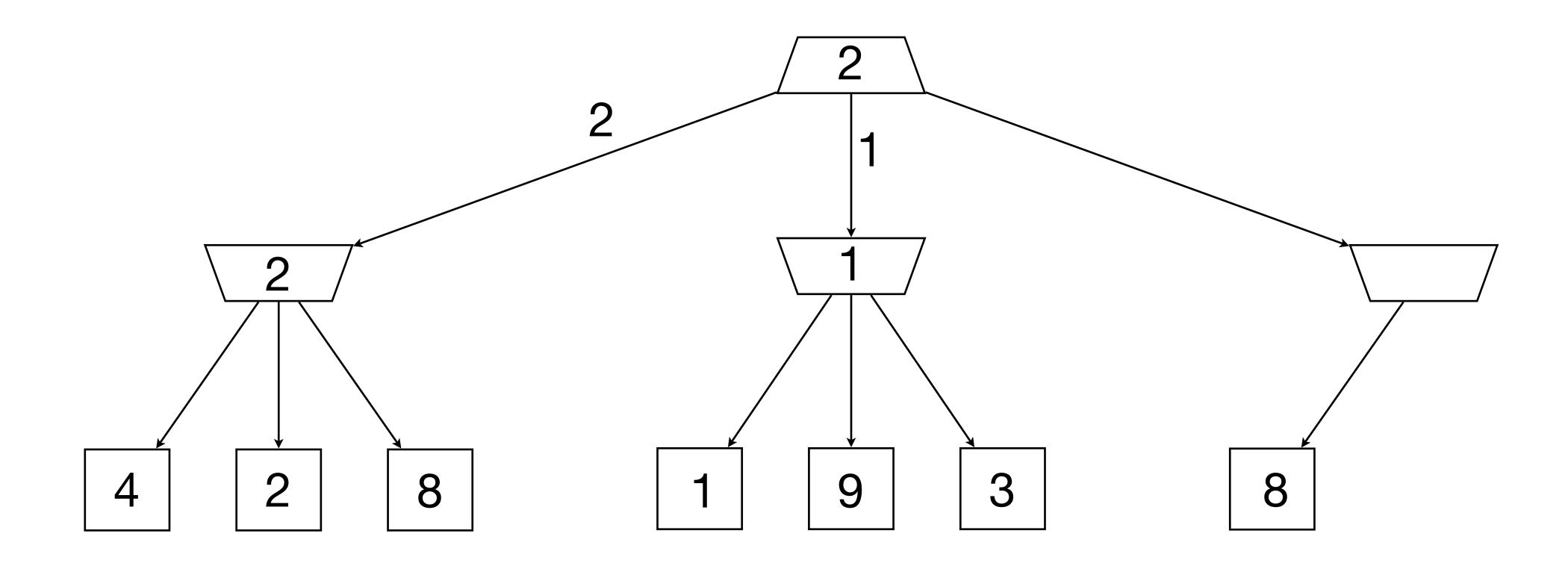


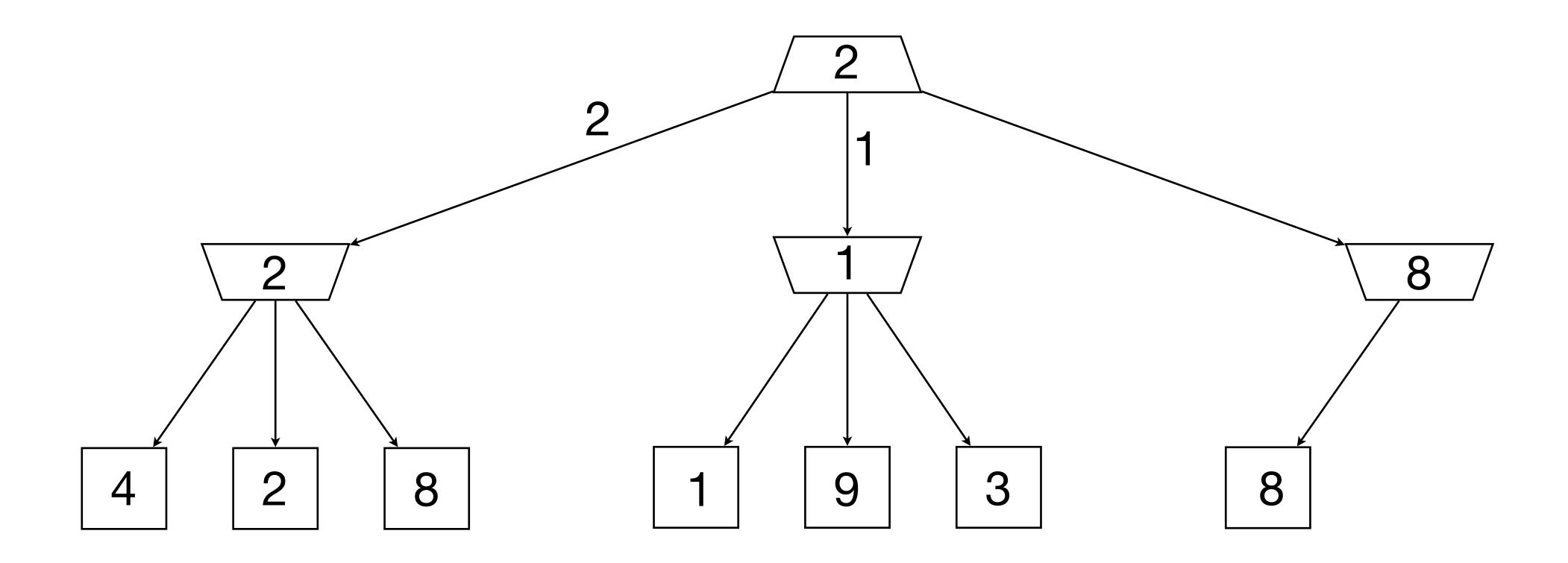


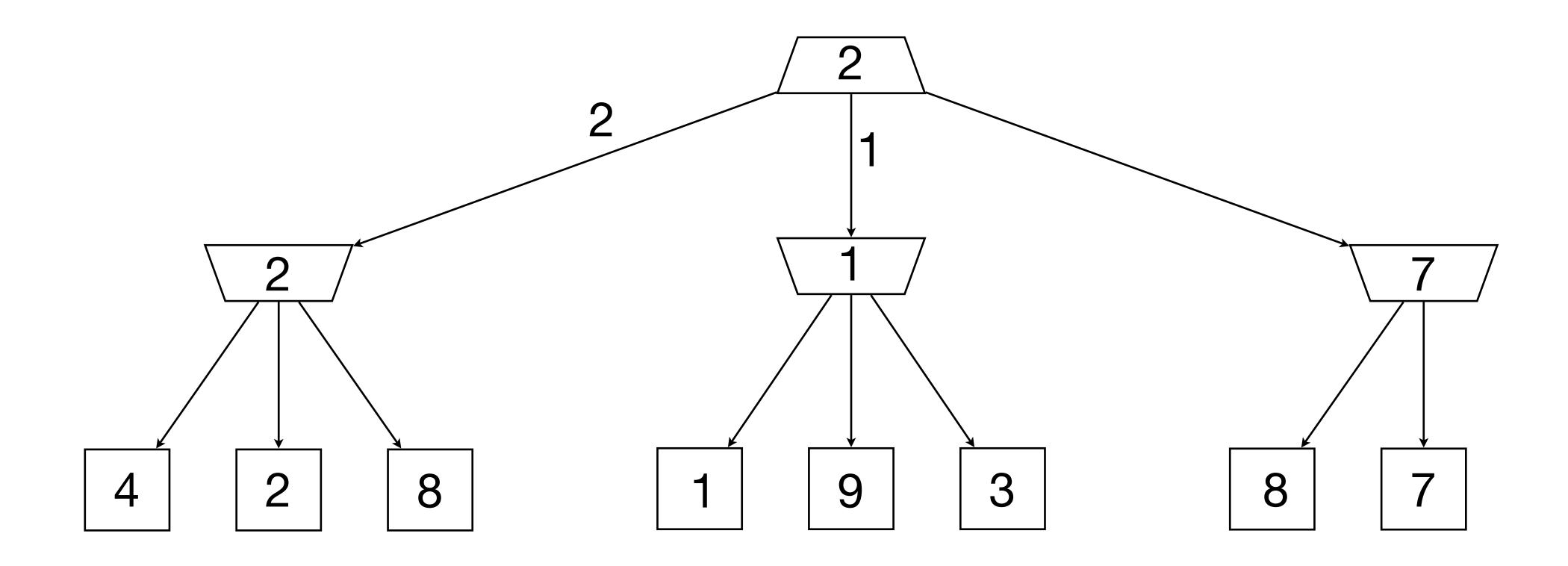


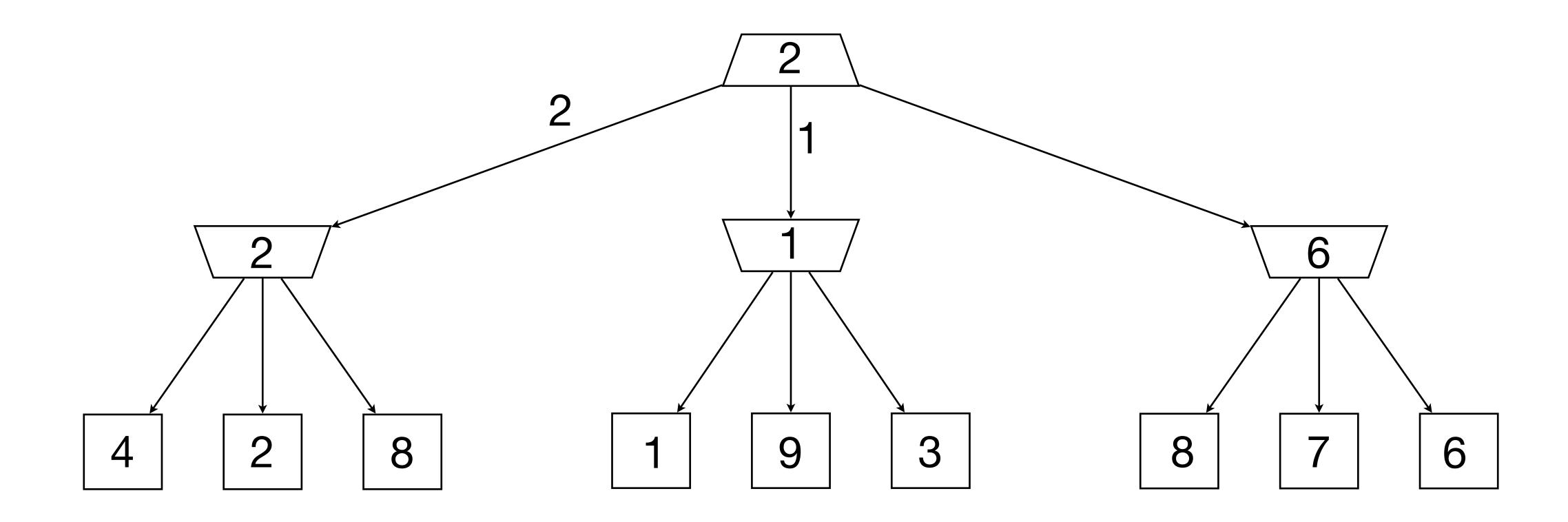


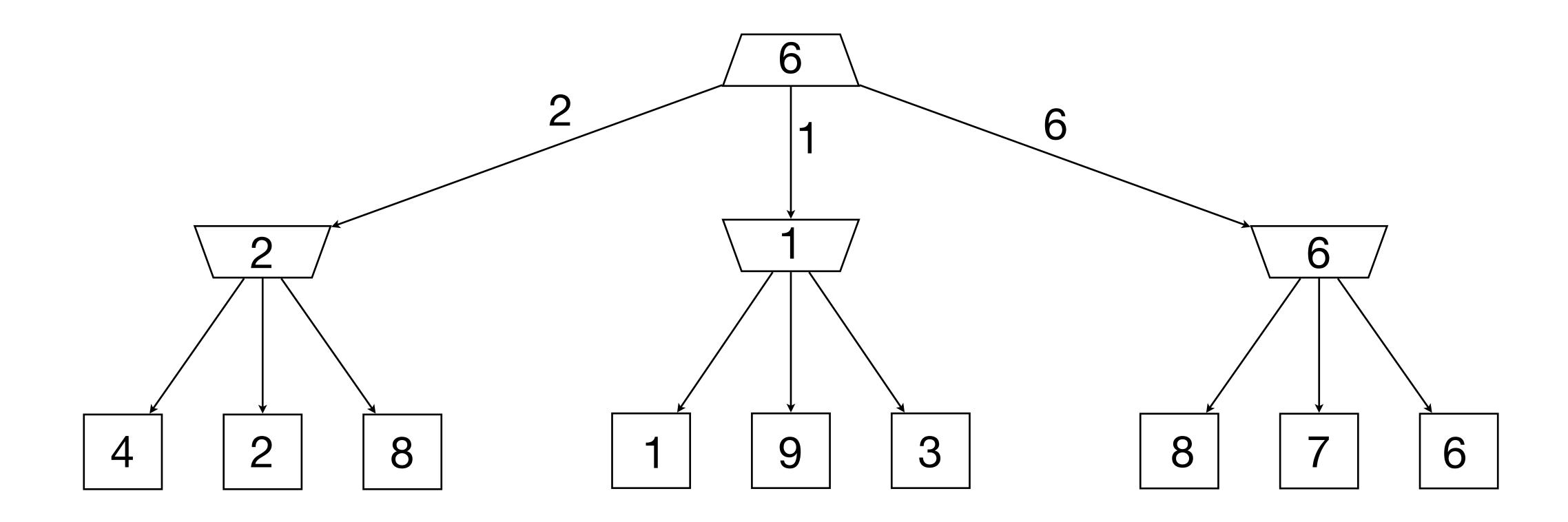




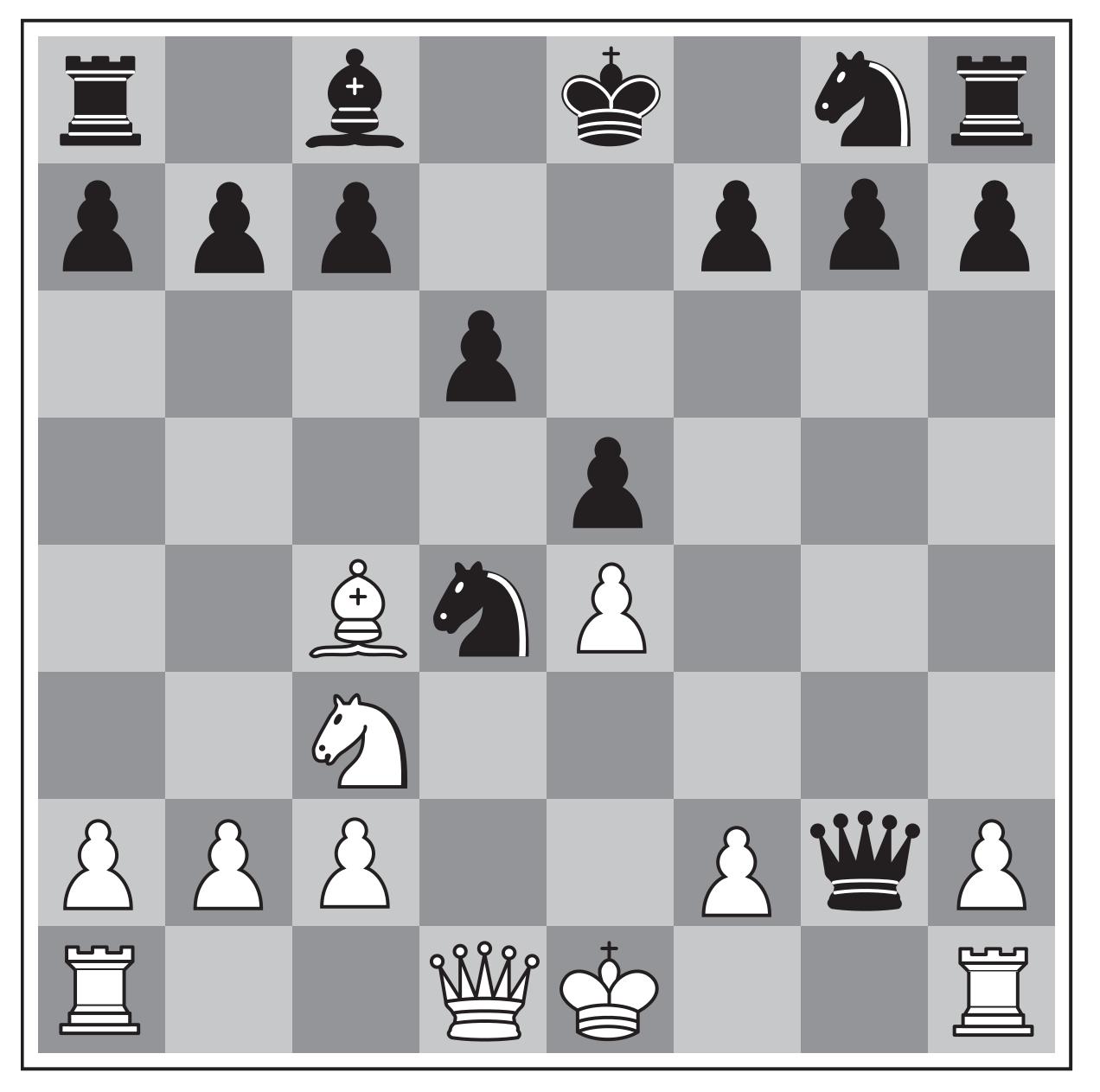


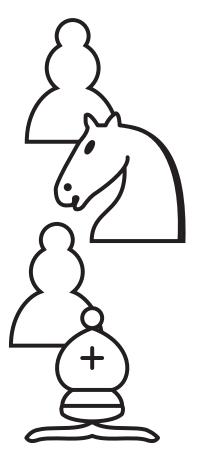






Eval(state)





- Uncertain outcome of an action.
- Robot/Agent may not know the current state!

What state (disease) given some observation (symptoms)?

```
P(disease|symptoms) = \frac{P(symptoms|disease) \times P(disease)}{P(symptoms)}
posterior = \frac{likelihood \times prior}{evidence}
```

For each of the 9 possible situations (3 possible decisions \times 3 possible states), the cost is quantified by a loss function I(d,s):

$$I(s,d)$$
 $d = nothing$ $d = pizza$ $d = g.T.c.$ $s = good$ 024 $s = average$ 535 $s = bad$ 1096

The wife's state of mind is an uncertain state.

$$P(x,s) = P(s|x)P(x)$$

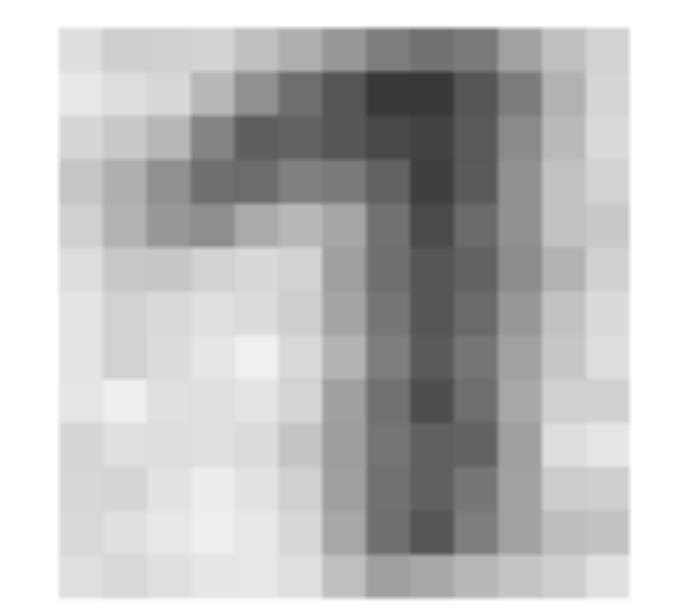
$$P(x,s) = arg \min_{d} \sum_{s} I(s,d)P(s|x)$$

$$P(x,s) = arg \min_{d} \sum_{s} I(s,d)P(s|x)$$

$$P(x,s) = arg \min_{d} x = a$$

Classification as a special case of statistical decision theory

- Attribute vector $\vec{x} = [x_1, x_2, \dots]^\top$: pixels 1, 2,
- ▶ State set S = decision set D = $\{0, 1, ... 9\}$.
- ► State = actual class, Decision = recognized class
- Loss function: $I(s,d) = \begin{cases} 0, & d = s \\ 1, & d \neq s \end{cases}$



Optimal decision strategy:

$$\delta^*(\vec{x}) = \arg\min_{d} \sum_{s} \underbrace{I(s,d)}_{0 \text{ if } d=s} P(s|\vec{x}) = \arg\min_{d} \sum_{s \neq d} P(s|\vec{x})$$

Obviously $\sum_{s} P(s|\vec{x}) = 1$, then: $P(d|\vec{x}) + \sum_{s \neq d} P(s|\vec{x}) = 1$ Inserting into above:

$$\delta^*(| \boldsymbol{\delta} |) = \arg \max_{d} P(d | \boldsymbol{\delta} |)$$

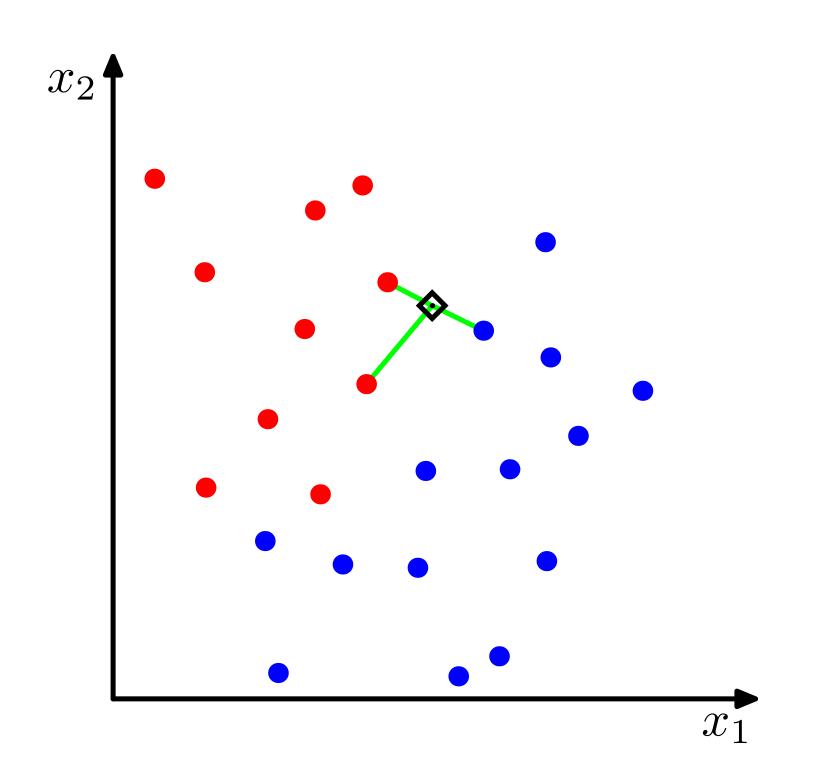
$$\delta^*(\vec{x}) = \arg\min_{d} \left(1 - P(d|\vec{x}) \right) = \arg\max_{d} P(d|\vec{x})$$

K – Nearest Neighbor and Bayes j^* = argmax_j $P(s_j|\mathbf{x})$

Assume data:

- N points x in total.
- N_j points in s_j class. Hence, $\sum_j N_j = N$.

We want to classify \mathbf{x} . Draw a sphere centered at \mathbf{x} containing K points irrespective of class. V is the volume of this sphere. $P(s_i|\mathbf{x}) = ?$



$$P(s_j|\mathbf{x}) = \frac{P(\mathbf{x}|s_j)P(s_j)}{P(\mathbf{x})}$$

 K_j is the number of points of class s_j among the K nearest neighbors.

$$P(s_j) = \frac{N_j}{N}$$

$$P(\mathbf{x}) = \frac{K}{NV}$$

$$P(\mathbf{x}|s_j) = \frac{K_j}{N_j V}$$

$$P(s_j|\mathbf{x}) = \frac{P(\mathbf{x}|s_j)P(s_j)}{P(\mathbf{x})} = \frac{K_j}{K}$$

4 / 21

- Usually, we are not given $P(s|\vec{x})$
- ► It has to be estimated from already classified examples training data
- For discrete \vec{x} , training examples $(\vec{x}_1, s_1), (\vec{x}_2, s_2), \dots (\vec{x}_l, s_l)$
 - every $(\vec{x_i}, s)$ is drawn independently from $P(\vec{x}, s)$, i.e. sample i does not depend on $1, \dots, i-1$
 - > so-called i.i.d (independent, identically distributed) multiset
- Without knowing anything about the distribution, a non-parametric estimate:

$$P(s|\vec{x}) = \frac{P(\vec{x},s)}{P(\vec{x})} \approx \frac{\# \text{ examples where } \vec{x}_i = \vec{x} \text{ and } s_i = s}{\# \text{ examples where } \vec{x}_i = \vec{x}}$$

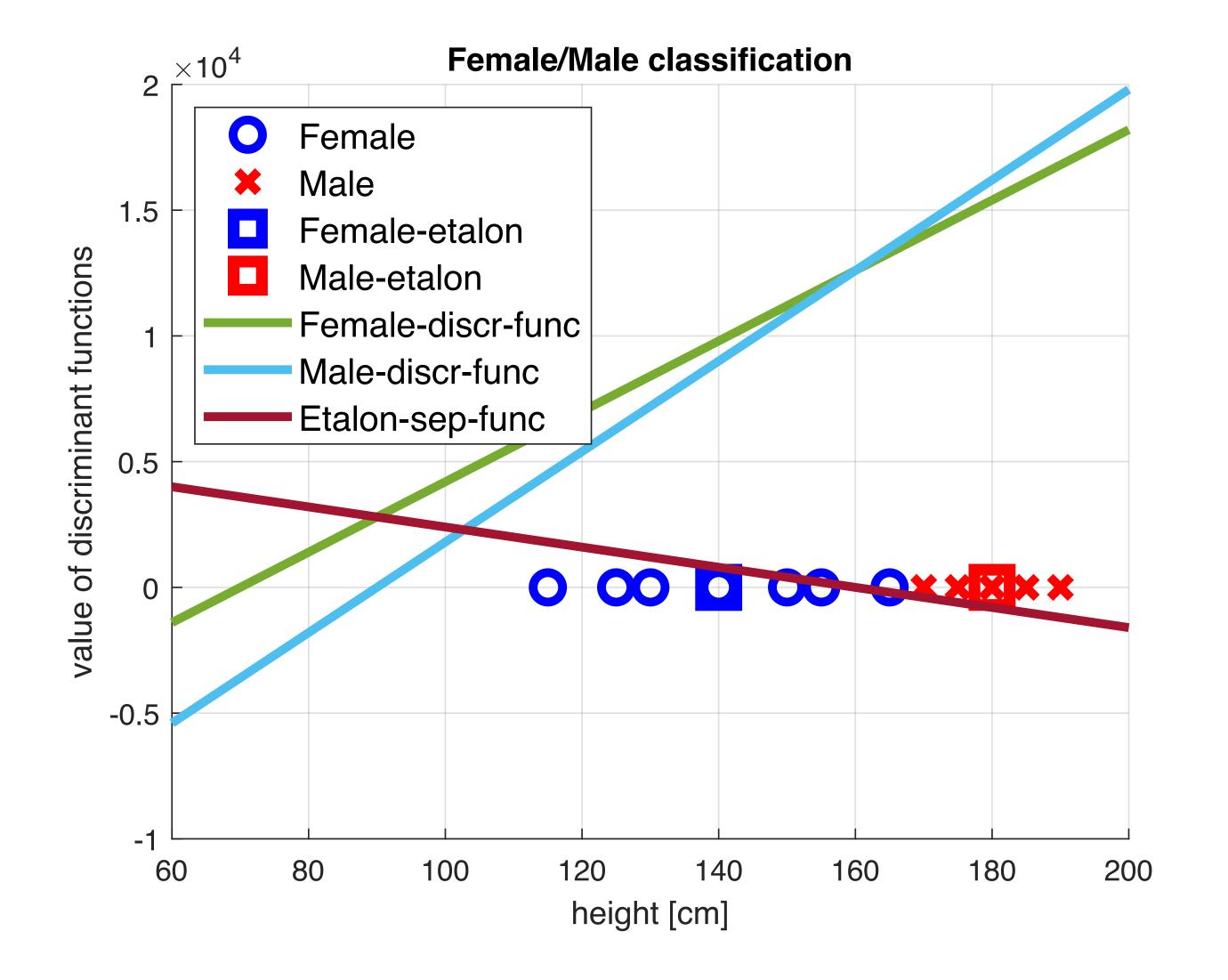
In the exceptional case of statistical independence between components of \vec{x} for each class s it holds

$$P(\vec{x}|s) = P(x[1]|s) \cdot P(x[2]|s) \cdot \dots$$

Use simple Bayes law and maximize:

$$P(s|\vec{x}) = \frac{P(\vec{x}|s)P(s)}{P(\vec{x})} = \frac{P(s)}{P(\vec{x})}P(x[1]|s) \cdot P(x[2]|s) \cdot \dots =$$

Discriminant functions



$$\delta(\mathbf{x}) = \operatorname{argmax}_{s \in S} f_s(\mathbf{x})$$

Discriminant functions for 2 classes:

$$f_F(x) = a_F x + b_F =$$

$$= e_F x - \frac{1}{2}e_F^2 = 140x - 9800$$

$$f_M(x) = a_M x + b_M =$$

$$= e_M x - \frac{1}{2}e_M^2 = 180x - 16200$$

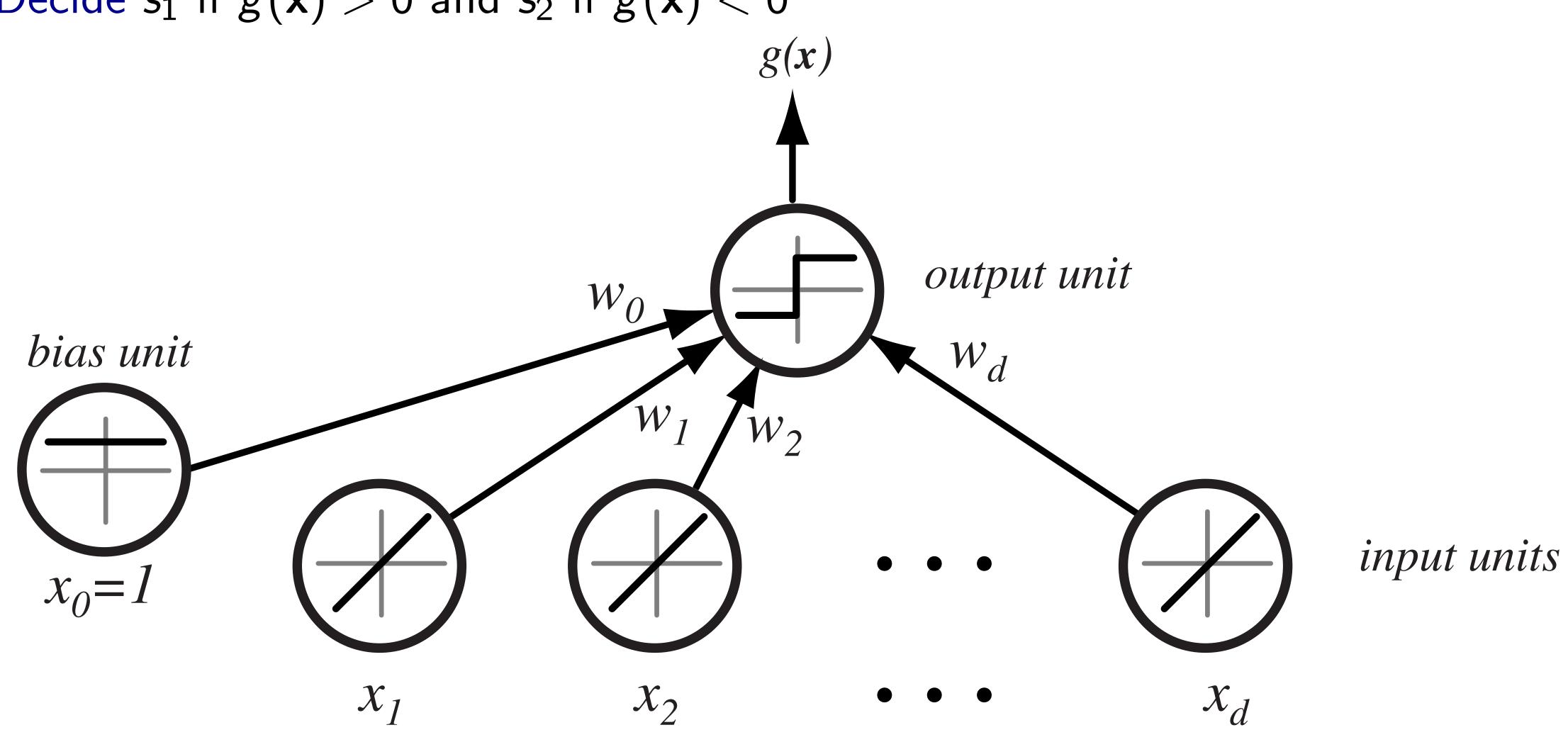
A single discriminant function separating 2 classes:

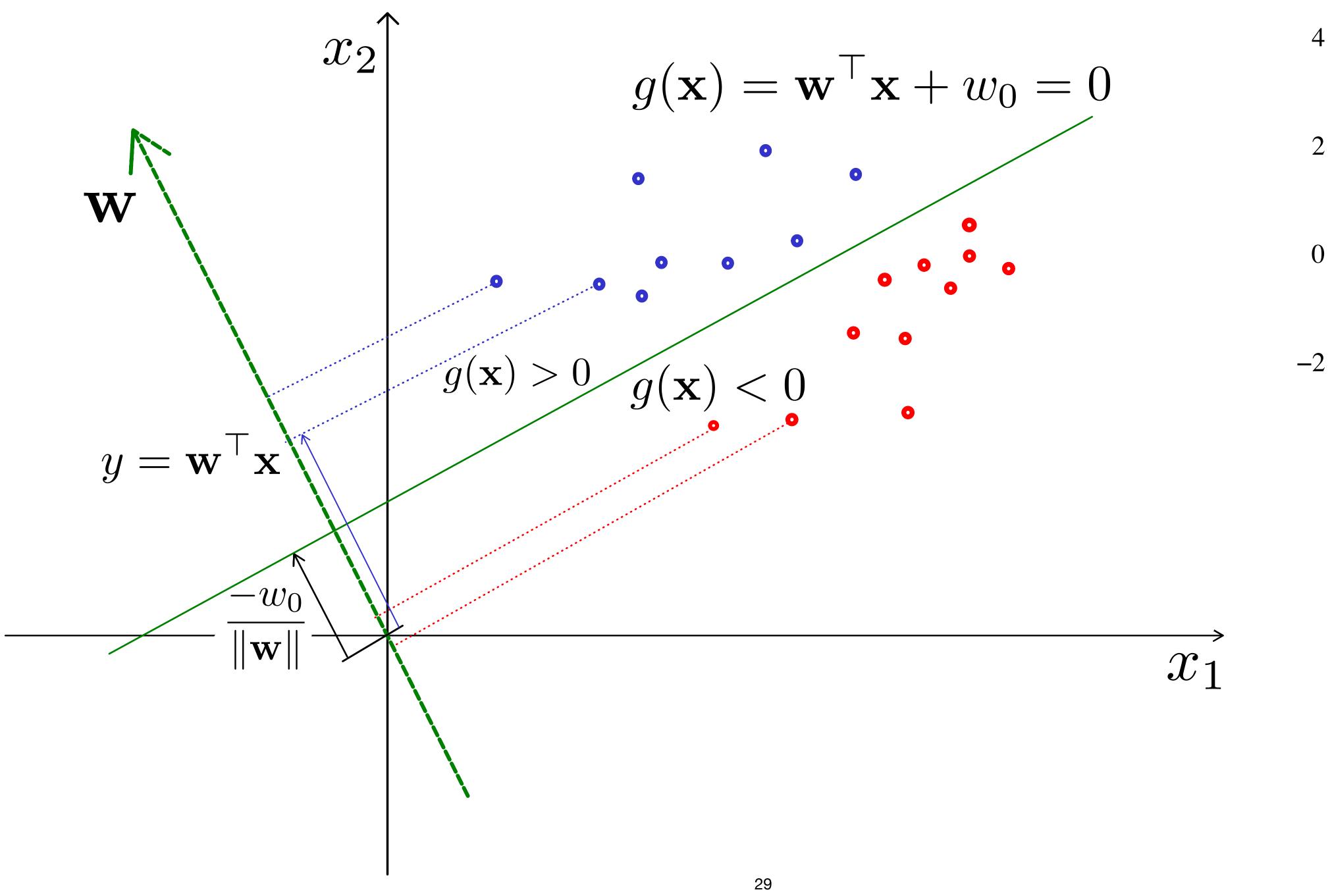
$$g(x) = f_F(x) - f_M(x) =$$

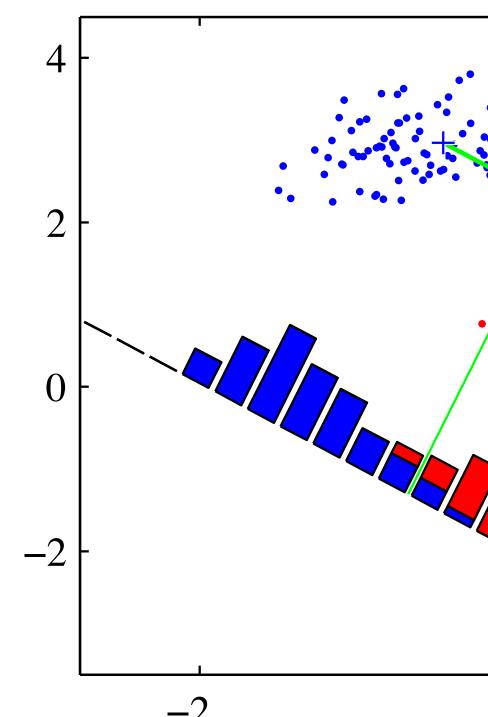
= $-40x + 6400$

$$g(\mathbf{x}) = \mathbf{w}^{\top} \mathbf{x} + w_0$$

Decide s_1 if $g(\mathbf{x}) > 0$ and s_2 if $g(\mathbf{x}) < 0$





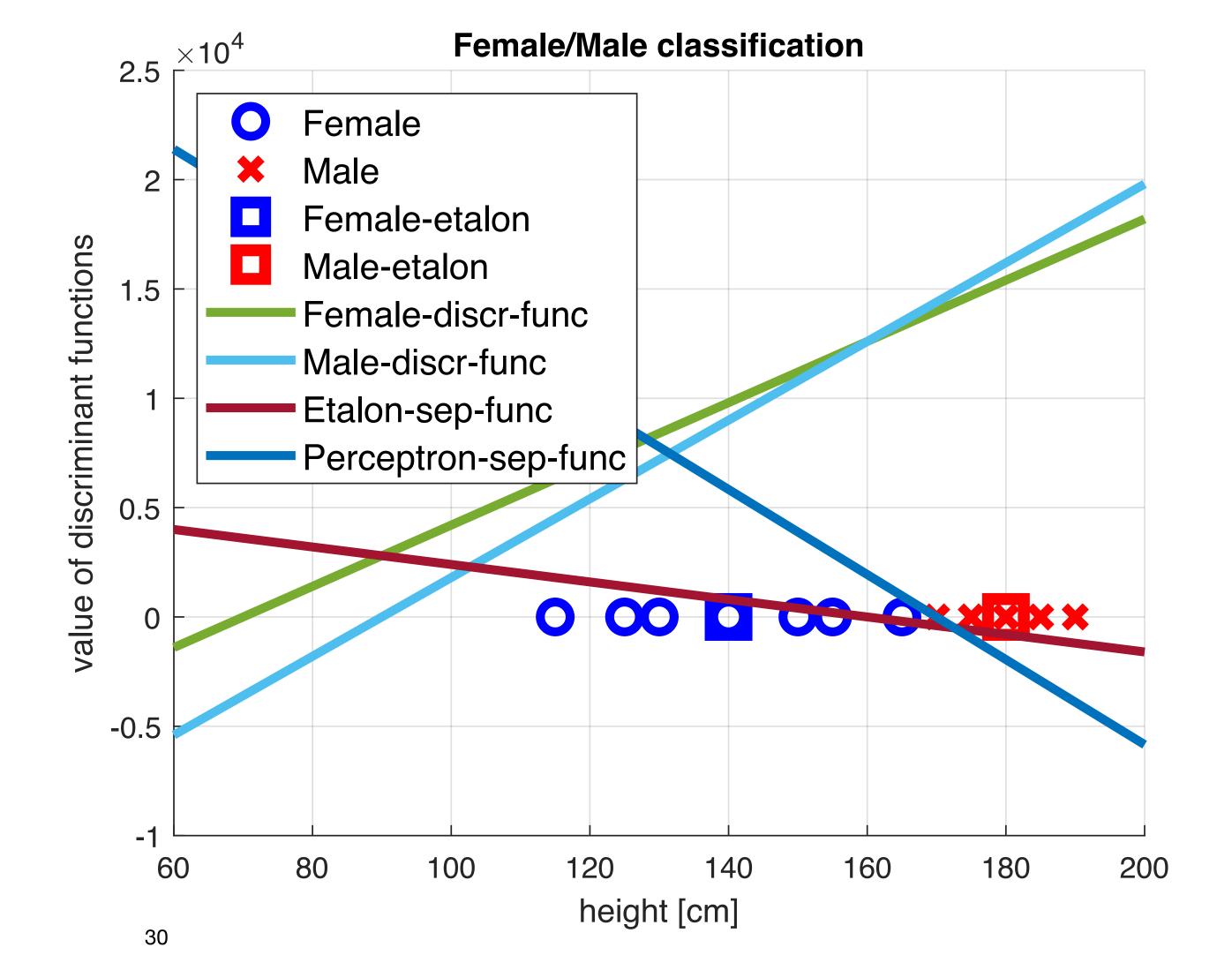


Gradient descent

Initialize **w**, threshold θ , learning rate α

$$k \leftarrow 0$$
repeat
$$k \leftarrow k + 1$$

$$\mathbf{w} \leftarrow \mathbf{w} - \alpha(k) \nabla J(\mathbf{w})$$
until $|\alpha(k) \nabla J(\mathbf{w})| < \theta$
return \mathbf{w}



What next?

- gradient descent, linear programming, ... Optimization, <u>B0B33OPT</u>
- machine learning, classifiers, Bayesian and non-Bayesian decisions, ...
 Pattern Recognition and Machine Learning (<u>B4B33RPZ</u>), Statistical Machine Learning (<u>BE4M33SSU</u>)
- machine learning pragmatically, deep nets Robot Learning (B3B33UROB)
- deeper in deep nets, Deep Learning, <u>BEV033DLE</u>
- perception, Computer Vision Methods, <u>B4M33MPV</u>
- planning, Artificial Intelligence in Robotics, <u>B4M36UIR</u>