Linear Models for Regression and Classification, Learning

Tomáś Svoboda and Petr Pošík
thanks to Matěj Hoffmann, Daniel Novák, Filip Železný, Ondřej Drbohlav
Vision for Robots and Autonomous Systems, Center for Machine Perception
Department of Cybernetics
Faculty of Electrical Engineering, Czech Technical University in Prague

May 18, 2023

Supervised Learning

A training multi-set of examples is available. Correct answers (hidden state, class, the quantity we want to predict) are known for all training examples.

There are more kinds od machine learning:

- Self-supervised
- Unsupervised
- Weakly supervised
- ...
but this lecture will be about fully supervised learning

Supervised Learning

A training multi-set of examples is available. Correct answers (hidden state, class, the quantity we want to predict) are known for all training examples.

Classification :

- Nominal dependent variable
- Examples: predict spam/ham based on email contents, predict $0 / 1 / \ldots / 9$ based on the image of a number, etc.

There are more kinds od machine learning:

- Self-supervised
- Unsupervised
- Weakly supervised
- ...
but this lecture will be about fully supervised learning

Supervised Learning

A training multi-set of examples is available. Correct answers (hidden state, class, the quantity we want to predict) are known for all training examples.

Classification :

- Nominal dependent variable
- Examples: predict spam/ham based on email contents, predict $0 / 1 / \ldots / 9$ based on the image of a number, etc.

Regression

- Quantitative/continuous dependent variable
- Examples: predict temperature in Prague based on date and time, predict height of a person based on weight and gender, etc.

There are more kinds od machine learning:

- Self-supervised
- Unsupervised
- Weakly supervised
- ...
but this lecture will be about fully supervised learning

Learning by minimization of empirical risk

- Given the set of parametrized strategies $\delta: \mathcal{X} \rightarrow \mathcal{D}$, penalty/loss function $\ell: \mathcal{S} \times \mathcal{D} \rightarrow \mathbb{R}$, the quality of each strategy δ could be described by the risk

$$
R(\delta)=\sum_{s \in \mathcal{S}} \sum_{x \in \mathcal{X}} P(x, s) \ell(s, \delta(x))
$$

but P is unknown.

- We thus use the empirical risk $R_{\text {emp }}$ error on training (multi)set $\mathcal{T}=\left\{\left(x^{(i)}, s^{(i)}\right)\right\}_{i=1}^{N}, x \in \mathcal{X}, s \in \mathcal{S}:$

$$
R_{\mathrm{emp}}(\delta)=\frac{1}{N} \sum_{\left(x^{(i)}, s^{(i)}\right) \in \mathcal{T}} \ell\left(s^{(i)}, \delta\left(x^{(i)}\right)\right)
$$

Optimal strategy $\delta^{*}=\operatorname{argmin}_{\delta} R_{\text {emp }}(\delta)$.

- We expect the data are from the right distribution.

Notes

Examples of some method: Perceptron, neural networks, classification trees, ...
It is essentially about statistic, out-of distribution data are always problematic. We can help somewhat to make the methods a bit more robust - to generalize more. Remember regularization trick we learned last week (Laplacian smoothing)?

Quiz: Line fitting

We would like to fit a line of the form $\hat{y}=w_{0}+w_{1} x$ to the following data:

The parameters of a line with a good fit will likely be
A $w_{0}=-1, w_{1}=-2$
B $w_{0}=-\frac{1}{2}, w_{1}=1$
C $w_{0}=3, w_{1}=-\frac{1}{2}$
D $w_{0}=2, w_{1}=\frac{1}{3}$

Linear regression: Illustration

Given a dataset of input vectors $\boldsymbol{x}^{(i)}$ and the respective values of output variable $y^{(i)} \ldots$

Linear regression: Illustration

... we would like to find a linear model of this dataset ...

Linear regression: Illustration

... minimizing the errors between target values and the model predictions.

Regression

Reformulating Linear algebra in a machine learning language.
Regression task is a supervised learning task, i.e.

- a training (multi)set $\mathcal{T}=\left\{\left(\boldsymbol{x}^{(1)}, y^{(1)}\right), \ldots,\left(\boldsymbol{x}^{(N)}, y^{(N)}\right)\right\}$ is available, where
- the labels $y^{(i)}$ are quantitative, often continuous (as opposed to classification tasks where $y^{(i)}$ are nominal).
- Its purpose is to model the relationship between independent variables (inputs) $\boldsymbol{x}=\left(x_{1}, \ldots, x_{D}\right)$ and the dependent variable (output) y.

Linear Regression

Linear regression is a particular regression model which assumes (and learns) linear relationship between the inputs and the output:

$$
\widehat{y}=\delta(\boldsymbol{x})=w_{0}+w_{1} x_{1}+\ldots+w_{D} x_{D}=w_{0}+\langle\boldsymbol{w}, \boldsymbol{x}\rangle=w_{0}+\boldsymbol{w}^{\top} \boldsymbol{x}
$$

where

- \hat{y} is the model prediction (estimate of the true value y),
- $\delta(\boldsymbol{x})$ is the decision strategy (a linear model in this case),
- w_{0}, \ldots, w_{D} are the coefficients of the linear function (weights), w_{0} is the bias,
- $\langle\boldsymbol{w}, \boldsymbol{x}\rangle$ is a dot product of vectors \boldsymbol{w} and \boldsymbol{x} (scalar product),
- which can be also computed as a matrix product $\boldsymbol{w}^{\top} \boldsymbol{x}$ if \boldsymbol{w} and \boldsymbol{x} are column vectors, i.e. matrices of size [$D \times 1$].

Notation remarks

Homogeneous coordinates :

- If we add " 1 " as the first element of \boldsymbol{x} so that $\boldsymbol{x}=\left(1, x_{1}, \ldots, x_{D}\right)$, and
- include the bias term w_{0} in the vector \boldsymbol{w} so that $\boldsymbol{w}=\left(w_{0}, w_{1}, \ldots, w_{D}\right)$, then

$$
\widehat{y}=\delta(\boldsymbol{x})=w_{0} \cdot 1+w_{1} x_{1}+\ldots+w_{D} x_{D}=\langle\boldsymbol{w}, \boldsymbol{x}\rangle=\boldsymbol{w}^{\top} \boldsymbol{x}
$$

Notation remarks

Homogeneous coordinates :

- If we add " 1 " as the first element of \boldsymbol{x} so that $\boldsymbol{x}=\left(1, x_{1}, \ldots, x_{D}\right)$, and
- include the bias term w_{0} in the vector \boldsymbol{w} so that $\boldsymbol{w}=\left(w_{0}, w_{1}, \ldots, w_{D}\right)$, then

$$
\widehat{y}=\delta(\boldsymbol{x})=w_{0} \cdot 1+w_{1} x_{1}+\ldots+w_{D} x_{D}=\langle\boldsymbol{w}, \boldsymbol{x}\rangle=\boldsymbol{w}^{\top} \boldsymbol{x}
$$

Matrix notation: If we organize the data \mathcal{T} into matrices \boldsymbol{X} and \boldsymbol{y}, such that

$$
\boldsymbol{X}=\left(\begin{array}{ccc}
1 & \ldots & 1 \\
\boldsymbol{x}^{(1)} & \ldots & \boldsymbol{x}^{(N)}
\end{array}\right) \quad \text { and } \quad \boldsymbol{y}=\left(y^{(1)}, \ldots, y^{(N)}\right)
$$

and similarly with $\widehat{\boldsymbol{y}}$, then we can write a batch computation of predictions for all data in \boldsymbol{X} as

$$
\widehat{\boldsymbol{y}}=\left(\delta\left(\boldsymbol{x}^{(1)}\right), \ldots, \delta\left(\boldsymbol{x}^{(N)}\right)\right)=\left(\boldsymbol{w}^{\top} \boldsymbol{x}^{(1)}, \ldots, \boldsymbol{w}^{\top} \boldsymbol{x}^{(N)}\right)=\boldsymbol{w}^{\top} \boldsymbol{X}
$$

What are dimensions of $\widehat{\boldsymbol{y}}, \boldsymbol{w}, \boldsymbol{X}$?

Two operation modes
Any ML model has 2 operation modes:

1. learning (training, fitting) of δ and
2. application of δ (testing, making predictions).

All $\ell()$ can be used as $J()$ but not the other way round.

- $\delta(\boldsymbol{x}, \boldsymbol{w})$ represents a whole family of strategies if \boldsymbol{w} is not fixed.
- By fixing w we chose a particular strategy from this family.
- Empirical risk evalautes prediction error on all data points.

Two operation modes
Any ML model has 2 operation modes:

1. learning (training, fitting) of δ and
2. application of δ (testing, making predictions).

The dec. strategy δ can be viewed as a function of 2 variables: $\delta(\boldsymbol{x}, \boldsymbol{w})$.

All $\ell()$ can be used as $J()$ but not the other way round.

- $\delta(\boldsymbol{x}, \boldsymbol{w})$ represents a whole family of strategies if \boldsymbol{w} is not fixed.
- By fixing w we chose a particular strategy from this family.
- Empirical risk evalautes prediction error on all data points.

Two operation modes
Any ML model has 2 operation modes:

1. learning (training, fitting) of δ and
2. application of δ (testing, making predictions).

The dec. strategy δ can be viewed as a function of 2 variables: $\delta(\boldsymbol{x}, \boldsymbol{w})$.
Model application: (Inference) Given \boldsymbol{w}, we can manipulate \boldsymbol{x} to make predictions:

$$
\widehat{y}=\delta(\boldsymbol{x}, \boldsymbol{w})=\delta_{\boldsymbol{w}}(\boldsymbol{x})
$$

All $\ell()$ can be used as $J()$ but not the other way round.

- $\delta(\boldsymbol{x}, \boldsymbol{w})$ represents a whole family of strategies if \boldsymbol{w} is not fixed.
- By fixing w we chose a particular strategy from this family.
- Empirical risk evalautes prediction error on all data points.

Two operation modes
Any ML model has 2 operation modes:

1. learning (training, fitting) of δ and
2. application of δ (testing, making predictions).

The dec. strategy δ can be viewed as a function of 2 variables: $\delta(\boldsymbol{x}, \boldsymbol{w})$.
Model application: (Inference) Given \boldsymbol{w}, we can manipulate \boldsymbol{x} to make predictions:

$$
\widehat{y}=\delta(\boldsymbol{x}, \boldsymbol{w})=\delta_{\boldsymbol{w}}(\boldsymbol{x})
$$

Model learning: Given \mathcal{T}, we can tune the model parameters \boldsymbol{w} to fit the model to the data:

$$
\boldsymbol{w}^{*}=\underset{\boldsymbol{w}}{\operatorname{argmin}} R_{\mathrm{emp}}\left(\delta_{\boldsymbol{w}}\right)=\underset{\boldsymbol{w}}{\operatorname{argmin}} J(\boldsymbol{w}, \mathcal{T})
$$

All $\ell()$ can be used as $J()$ but not the other way round.

- $\delta(\boldsymbol{x}, \boldsymbol{w})$ represents a whole family of strategies if \boldsymbol{w} is not fixed.
- By fixing w we chose a particular strategy from this family.
- Empirical risk evalautes prediction error on all data points.

Two operation modes
Any ML model has 2 operation modes:

1. learning (training, fitting) of δ and
2. application of δ (testing, making predictions).

The dec. strategy δ can be viewed as a function of 2 variables: $\delta(\boldsymbol{x}, \boldsymbol{w})$.
Model application: (Inference) Given \boldsymbol{w}, we can manipulate \boldsymbol{x} to make predictions:

$$
\widehat{y}=\delta(\boldsymbol{x}, \boldsymbol{w})=\delta_{\boldsymbol{w}}(\boldsymbol{x})
$$

Model learning: Given \mathcal{T}, we can tune the model parameters \boldsymbol{w} to fit the model to the data:

$$
\boldsymbol{w}^{*}=\underset{\boldsymbol{w}}{\operatorname{argmin}} R_{\mathrm{emp}}\left(\delta_{\boldsymbol{w}}\right)=\underset{\boldsymbol{w}}{\operatorname{argmin}} J(\boldsymbol{w}, \mathcal{T})
$$

$J(\boldsymbol{w}, \mathcal{T})$ and $\ell(\boldsymbol{w}, \mathcal{T})$ are closely related. Optimization criterium $J()$ is a broader term. $\ell()$ essentially measures discrepancy between true data and the predictions. How to train the model?

All $\ell()$ can be used as $J()$ but not the other way round.

- $\delta(\boldsymbol{x}, \boldsymbol{w})$ represents a whole family of strategies if \boldsymbol{w} is not fixed.
- By fixing w we chose a particular strategy from this family.
- Empirical risk evalautes prediction error on all data points.

Simple (univariate) linear regression
Simple regression

- $\boldsymbol{x}^{(i)}=x^{(i)}$, i.e., the examples are described by a single feature (they are 1-dimensional).
- Find parameters w_{0}, w_{1} of a linear model $\hat{y}=w_{0}+w_{1} x$ given a training (multi)set $\mathcal{T}=\left\{\left(x^{(i)}, y^{(i)}\right)\right\}_{i=1}^{N}$.

Simple (univariate) linear regression

Simple regression

- $\boldsymbol{x}^{(i)}=x^{(i)}$, i.e., the examples are described by a single feature (they are 1-dimensional).
- Find parameters w_{0}, w_{1} of a linear model $\hat{y}=w_{0}+w_{1} x$ given a training (multi)set $\mathcal{T}=\left\{\left(x^{(i)}, y^{(i)}\right)\right\}_{i=1}^{N}$.

How to fit a line depending on the number of training examples N :

- $N=1$ (1 equation, 2 parameters) $\Rightarrow \infty$ linear functions with zero error
- $N=2$ (2 equations, 2 parameters) $\Rightarrow 1$ linear function with zero error
- $N \geq 3$ (>2 equations, 2 parameters) \Rightarrow no linear function with zero error (in general) \Rightarrow a line which minimizes the "size" of error $y-\hat{y}$ can be fitted:

$$
\boldsymbol{w}^{*}=\left(w_{0}^{*}, w_{1}^{*}\right)=\underset{w_{0}, w_{1}}{\operatorname{argmin}} R_{\mathrm{emp}}\left(w_{0}, w_{1}\right)=\underset{w_{0}, w_{1}}{\operatorname{argmin}} J\left(w_{0}, w_{1}, \mathcal{T}\right) .
$$

The least squares method
Choose such parameters w which minimize the mean squared error (MSE)

$$
\begin{aligned}
J_{M S E}(\boldsymbol{w}) & =\frac{1}{N} \sum_{i=1}^{N}\left(y^{(i)}-\widehat{y}^{(i)}\right)^{2} \\
& =\frac{1}{N} \sum_{i=1}^{N}\left(y^{(i)}-\delta_{\boldsymbol{w}}\left(\boldsymbol{x}^{(i)}\right)\right)^{2} .
\end{aligned}
$$

Is there a (closed-form) solution?

The least squares method

Choose such parameters \boldsymbol{w} which minimize the mean squared error (MSE)

$$
\begin{aligned}
J_{M S E}(\boldsymbol{w}) & =\frac{1}{N} \sum_{i=1}^{N}\left(y^{(i)}-\widehat{y}^{(i)}\right)^{2} \\
& =\frac{1}{N} \sum_{i=1}^{N}\left(y^{(i)}-\delta_{\boldsymbol{w}}\left(\boldsymbol{x}^{(i)}\right)\right)^{2} .
\end{aligned}
$$

Is there a (closed-form) solution? Explicit solution:

$$
w_{1}=\frac{\sum_{i=1}^{N}\left(x^{(i)}-\bar{x}\right)\left(y^{(i)}-\bar{y}\right)}{\sum_{i=1}^{N}\left(x^{(i)}-\bar{x}\right)^{2}}=\frac{s_{x y}}{s_{x}^{2}}=\frac{\text { covariance of } X \text { and } Y}{\text { variance of } X} \quad w_{0}=\bar{y}-w_{1} \bar{x}
$$

Universal fitting method: minimization of cost function J
The landscape of J in the space of parameters w_{0} and w_{1} :

Gradually better linear models found by an optimization method (BFGS):

Bottom images from left to right correspond to points on the polyline above.

Gradient descent algorithm

Given a function $J\left(w_{0}, w_{1}\right)$ that should be minimized,

- start with a guess of w_{0} and w_{1} and
- change it, so that $J\left(w_{0}, w_{1}\right)$ decreases, i.e.
- update our current guess of w_{0} and w_{1} by taking a step in the direction opposite to the gradient:

$$
\begin{aligned}
\boldsymbol{w} & \leftarrow \boldsymbol{w}-\alpha \nabla J\left(w_{0}, w_{1}\right), \text { i.e. } \\
w_{i} & \leftarrow w_{i}-\alpha \frac{\partial}{\partial w_{i}} J\left(w_{0}, w_{1}\right),
\end{aligned}
$$

where all $w_{i} s$ are updated simultaneously and α is a learning rate (step size).

Gradient descent for MSE minimization

For the cost function

$$
J\left(w_{0}, w_{1}\right)=\frac{1}{N} \sum_{i=1}^{N}\left(y^{(i)}-\delta_{\boldsymbol{w}}\left(x^{(i)}\right)\right)^{2}=\frac{1}{N} \sum_{i=1}^{N}\left(y^{(i)}-\left(w_{0}+w_{1} x^{(i)}\right)\right)^{2}
$$

the gradient can be computed as

$$
\begin{aligned}
\frac{\partial}{\partial w_{0}} J\left(w_{0}, w_{1}\right) & =-\frac{2}{N} \sum_{i=1}^{N}\left(y^{(i)}-\delta_{\boldsymbol{w}}\left(x^{(i)}\right)\right) \\
\frac{\partial}{\partial w_{1}} J\left(w_{0}, w_{1}\right) & =-\frac{2}{N} \sum_{i=1}^{N}\left(y^{(i)}-\delta_{\boldsymbol{w}}\left(x^{(i)}\right)\right) x^{(i)}
\end{aligned}
$$

Multivariate linear regression

- $\boldsymbol{x}^{(i)}=\left(x_{1}^{(i)}, \ldots, x_{D}^{(i)}\right)^{\top}$, i.e. the examples are described by more than 1 feature (they are D-dimensional).
- Find parameters $\boldsymbol{w}=\left(w_{0}, \ldots, w_{D}\right)^{\top}$ of a linear model $\widehat{y}=\boldsymbol{w}^{\top} \boldsymbol{x}$ given the training (multi)set $\mathcal{T}=\left\{\left(\boldsymbol{x}^{(i)}, y^{(i)}\right)\right\}_{i=1}^{N}$.
Training: foreach $(i): y^{(i)}=\boldsymbol{w}^{\top} \boldsymbol{x}^{(i)}$. In the matrix form:

The model is a hyperplane in the $(D+1)$ dimensional space.

$$
\boldsymbol{y}=\boldsymbol{w}^{\top} \boldsymbol{X}
$$

Notes

Re-write set of (i) equations in to a matrix form:

$$
y=w^{\top} \boldsymbol{X}
$$

Inspect dimensions, how are the elements contructed? Quiz

Multivariate linear regression

- $\boldsymbol{x}^{(i)}=\left(x_{1}^{(i)}, \ldots, x_{D}^{(i)}\right)^{\top}$, i.e. the examples are described by more than 1 feature (they are D-dimensional).
- Find parameters $\boldsymbol{w}=\left(w_{0}, \ldots, w_{D}\right)^{\top}$ of a linear model $\widehat{y}=\boldsymbol{w}^{\top} \boldsymbol{x}$ given the training (multi)set $\mathcal{T}=\left\{\left(\boldsymbol{x}^{(i)}, y^{(i)}\right)\right\}_{i=1}^{N}$.
Training: foreach $(i): y^{(i)}=\boldsymbol{w}^{\top} \boldsymbol{x}^{(i)}$. In the matrix form:

The model is a hyperplane in the $(D+1)$ dimensional space.

$$
\boldsymbol{y}=w^{\top} \boldsymbol{X}
$$

What is the dimension of \boldsymbol{X} ?
A $(D+1) \times(D+1)$
B $(D+1) \times N$
C $N \times(D+1)$
D $N \times N$

Re-write set of (i) equations in to a matrix form:

$$
y=w^{\top} x
$$

Inspect dimensions, how are the elements contructed? Quiz

Multivariate linear regression: learning

1. Numeric optimization of $J(\boldsymbol{w}, T)$:

- Works as for simple regression, it only searches a space with more dimensions.
- Sometimes one needs to tune some parameters of the optimization algorithm to work properly (learning rate in gradient descent, etc.).
- May be slow (many iterations needed), but works even for very large D.
D could by quite big! Think about pixel values in images! We, humans are used to low dimensions - world is 3D, not the machine.

1. Numeric optimization of $J(\boldsymbol{w}, T)$:

- Works as for simple regression, it only searches a space with more dimensions.
- Sometimes one needs to tune some parameters of the optimization algorithm to work properly (learning rate in gradient descent, etc.).
- May be slow (many iterations needed), but works even for very large D.

2. Normal equation:

$$
\boldsymbol{w}^{*}=\left(\boldsymbol{X} \boldsymbol{X}^{\top}\right)^{-1} \boldsymbol{X} \boldsymbol{y}^{\top}
$$

- Method to solve for the optimal \boldsymbol{w}^{*} analytically!
- No need to choose optimization algorithm parameters. No iterations.
- Needs to compute $\left(\boldsymbol{X} \boldsymbol{X}^{\top}\right)^{-1}$, which is $O\left((D+1)^{3}\right)$. Becomes intractable for large D.
D could by quite big! Think about pixel values in images! We, humans are used to low dimensions - world is 3D, not the machine.

Classification

- Binary classification
- Discriminant function
- Classification as a regression problem (linear, logistic regression)
- What is the right loss function?
- Etalon classifier (meeting nearest neighbour and linear classifier)
- Acuracy vs precision

Quiz: Importance of training examples

Intuitively, which of the training data points should have the biggest influence on the decision whether a new, unlabeled data point shall be red or blue?

A Those which are closest to data points with the opposite color.
B Those which are farthest from the data points of the opposite color.
C Those which are near the middle of the points with the same color.
D None. All of the data points have the same importance.

TS note: A, B, C can be visualized as areas in the figure

Let's have a training dataset $T=\left\{\left(\boldsymbol{x}^{(1)}, y^{(1)}\right), \ldots,\left(\boldsymbol{x}^{(N)}, y^{(N)}\right)\right.$:

- each example described by a vector $\boldsymbol{x}=\left(x_{1}, \ldots, x_{D}\right)$,
- labeled with the correct class $y \in\{+1,-1\}$.

The goal:

- Find the classifier (decision strategy/rule) δ that minimizes the empirical risk $R_{\text {emp }}(\delta)$.

Discriminant function

Discriminant function $f(\boldsymbol{x})$:

- It assigns a real number to each observation \boldsymbol{x}, may be linear or non-linear.
- For 2 classes, 1 discriminant function is enough.
- It is used to create a decision rule (which then assigns a class to an observation):

$$
\widehat{y}=\delta(\boldsymbol{x})=\left\{\begin{array}{lll}
+1 & \text { iff } & f(\boldsymbol{x})>0, \text { and } \\
-1 & \text { iff } & f(\boldsymbol{x})<0
\end{array}\right.
$$

i.e. $\widehat{y}=\delta(\boldsymbol{x})=\operatorname{sign}(f(\boldsymbol{x}))$.

Discriminant function

Discriminant function $f(\boldsymbol{x})$:

- It assigns a real number to each observation \boldsymbol{x}, may be linear or non-linear.
- For 2 classes, 1 discriminant function is enough.
- It is used to create a decision rule (which then assigns a class to an observation):

$$
\widehat{y}=\delta(\boldsymbol{x})=\left\{\begin{array}{lll}
+1 & \text { iff } & f(\boldsymbol{x})>0, \text { and } \\
-1 & \text { iff } & f(\boldsymbol{x})<0
\end{array}\right.
$$

i.e. $\widehat{y}=\delta(\boldsymbol{x})=\operatorname{sign}(f(\boldsymbol{x}))$.

- Decision boundary: $\{\boldsymbol{x} \mid f(\boldsymbol{x})=0\}$
- Linear classification: the decision boundaries must be linear.
- Learning then amounts to finding (suitable parameters of) function f.

Example: Female/Male classification based on height
Training (multi)set $\mathcal{T}=\left\{\left(x^{(i)}, s^{(i)}\right)\right\}_{i=1}^{N}, x^{(i)} \in \mathcal{X}, s^{(i)} \in \mathcal{S}=\{F, M\}$

i	1	2	3	4	5	6	7	8	9	10	11	12
Height $x^{(i)}$	115	125	130	140	150	155	165	170	175	180	185	190
Gender $s^{(i)}$	F	F	F	F	F	F	F	M	M	M	M	M

Run onedim_linclass_learning

Example: Female/Male classification based on height
Training (multi)set $\mathcal{T}=\left\{\left(x^{(i)}, s^{(i)}\right)\right\}_{i=1}^{N}, x^{(i)} \in \mathcal{X}, s^{(i)} \in \mathcal{S}=\{F, M\}$

i	1	2	3	4	5	6	7	8	9	10	11	12
Height $x^{(i)}$	115	125	130	140	150	155	165	170	175	180	185	190
Gender $s^{(i)}$	F	F	F	F	F	F	F	M	M	M	M	M

A new point to clasify: $x^{Q}=163$
Which class does x^{Q} belong to? $d^{Q}=$?

Run onedim_linclass_learning

Linear function LSQ fit

Female/Male classification, linear classifiers

Linear function LSQ fit, discriminant function

Female/Male classification, linear classifiers

Can we do better than fitting a linear function?

Recap the naive linear approach first.

Learning linear classifier: naive approach, illustration

Given a dataset of input vectors $\boldsymbol{x}^{(i)}$ and their classes $y^{(i)} \ldots$

Learning linear classifier: naive approach, illustration

\ldots we shall encode the class label as $y=-1$ and $y=1 \ldots$

Learning linear classifier: naive approach, illustration

... and fit a linear discriminant function by minimizing MSE as in regression. The contour line $y=0 \ldots$

Learning linear classifier: naive approach, illustration

then forms a linear decision boundary in the original 2D space.
But is such a classifier good in general?

Fitting a better function: Logistic regression

Given a dataset of input vectors $\boldsymbol{x}^{(i)}$ and their classes $y^{(i)} \ldots$

Fitting a better function: Logistic regression

\ldots we shall encode the class label as $y=0$ and $y=1 \ldots$

Fitting a better function: Logistic regression

... and fit a sigmoidal discriminant function with the threshold $0.5 \ldots$

Fitting a better function: Logistic regression

... which forms a linear decision boundary in the original 2D space.

Logistic regression model

Logistic regression uses a discriminant function which is a nonlinear transformation of the values of a linear function

$$
f_{\boldsymbol{w}}(\boldsymbol{x})=g\left(\boldsymbol{w}^{\top} \boldsymbol{x}\right)=\frac{1}{1+e^{-\boldsymbol{w}^{\top} \boldsymbol{x}}},
$$

where $g(z)=\frac{1}{1+e^{-z}}$ is the sigmoid function (a.k.a logistic function).

Try to draw the course of the function by hand.

Logistic regression model
Logistic regression uses a discriminant function which is a nonlinear transformation of the values of a linear function

$$
f_{\boldsymbol{w}}(\boldsymbol{x})=g\left(\boldsymbol{w}^{\top} \boldsymbol{x}\right)=\frac{1}{1+e^{-\boldsymbol{w}^{\top} \boldsymbol{x}}},
$$

where $g(z)=\frac{1}{1+e^{-z}}$ is the sigmoid function (a.k.a logistic function).

Interpretation of the model:

- $f_{\boldsymbol{w}}(\boldsymbol{x})$ is interpretted as an estimate of the probability that \boldsymbol{x} belongs to class 1 .
- The decision boundary is defined using a different level-set: $\left\{\boldsymbol{x}: f_{w}(\boldsymbol{x})=0.5\right\}$.
- Logistic regression is a classification mode!!
- The discriminant function $f_{\boldsymbol{w}}(\boldsymbol{x})$ itself is not linear anymore; but the decision boundary is still linear!
- Thanks to the sigmoidal transformation, logistic regression is much less influenced by examples far from the decision boundary!

Try to draw the course of the function by hand.

Sigmoid LSQ fit
Sigmoid fit to the data

Comparing Linear and Sigmoid LSQ fit

Comparing Linear LSQ with Sigmoid LSQ

What is the proper loss function ℓ ?
To train the logistic regression model, one can minimize the $J_{M S E}$ criterion:
results in a non-convex, multimodal landscape which is hard to optimize.

What is the proper loss function ℓ ?

To train the logistic regression model, one can minimize the $J_{\text {MSE }}$ criterion:
results in a non-convex, multimodal landscape which is hard to optimize.
Log. reg. uses a loss function called cross-entropy :

$$
\begin{aligned}
J(\boldsymbol{w}, \mathcal{T}) & =\frac{1}{N} \sum_{i=1}^{N} \ell\left(y^{(i)}, f_{\boldsymbol{w}}\left(\boldsymbol{x}^{(i)}\right)\right), \text { where } \\
\ell(y, \widehat{y}) & =\left\{\begin{aligned}
-\log (\widehat{y}) & \text { if } y=1 \\
-\log (1-\widehat{y}) & \text { if } y=0
\end{aligned}\right.
\end{aligned}
$$

which can be rewritten in a single expression as

$$
\ell(y, \widehat{y})=-y \cdot \log (\widehat{y})-(1-y) \cdot \log (1-\widehat{y}) .
$$

simpler to optimize for numerical solvers.

MSE vs cross entropy loss

Sigmoidal $f(x)$ can be also interpreted as $p(s=$ Male $\mid x)$ - Learning Dicriminative model directly.
Cross-entropy loss strongly penalizes hard errors, complete mismatches.

Alternative idea: F/M classification - Etalons

Represent each class by a single example called etalon! (Or by a very small number of etalons.)

$$
\begin{aligned}
& e_{F}=\operatorname{ave}\left(\left\{x^{(i)}: s^{(i)}=F\right\}\right)=140 \\
& e_{M}=\operatorname{ave}\left(\left\{x^{(i)}: s^{(i)}=M\right\}\right)=180
\end{aligned}
$$

Alternative idea: F/M classification - Etalons
Represent each class by a single example called etalon! (Or by a very small number of etalons.)

Alternative idea: F/M classification - Etalons
Represent each class by a single example called etalon! (Or by a very small number of etalons.)

$e_{F}=\operatorname{ave}\left(\left\{x^{(i)}: s^{(i)}=F\right\}\right)=140$
$e_{M}=\operatorname{ave}\left(\left\{x^{(i)}: s^{(i)}=M\right\}\right)=180$
Based on etalons: $d_{Q}=$?
$\mathrm{A} d^{Q}=F$
B $d_{Q}=M$
C Both classes equally likely
D Cannot provide any decision

Classify as $d^{Q}=\operatorname{argmin}_{s \in \mathcal{S}} \operatorname{dist}\left(x^{Q}, e_{s}\right)$
What type of function is $\operatorname{dist}\left(x^{Q}, e_{s}\right)$?

Based on etalons: $d^{Q}=M$

Etalon classifier is a Linear classifier
Assuming dist $(x, e)=(x-e)^{2}$, then

$$
\begin{aligned}
\underset{s \in S}{\operatorname{argmin} \operatorname{dist}\left(x, e_{s}\right)} & =\underset{s \in S}{\operatorname{argmin}}\left(x-e_{s}\right)^{2}=\underset{s \in S}{\operatorname{argmin}}(\underbrace{x^{2}}_{\text {const. }}-2 e_{s} x+e_{s}^{2})= \\
& =\underset{s \in S}{\operatorname{argmin}}\left(-2 e_{s} x+e_{s}^{2}\right)=\underset{s \in S}{\operatorname{argmax}}(\underbrace{e_{s} x-\frac{1}{2} e_{s}^{2}}_{\text {linear function of } x})
\end{aligned}
$$

Etalon classifier is a Linear classifier
Assuming $\operatorname{dist}(x, e)=(x-e)^{2}$, then

$$
\begin{aligned}
\underset{s \in S}{\operatorname{argmin}} \operatorname{dist}\left(x, e_{s}\right) & =\underset{s \in S}{\operatorname{argmin}}\left(x-e_{s}\right)^{2}=\underset{s \in S}{\operatorname{argmin}}(\underbrace{x^{2}}_{\text {const. }}-2 e_{s} x+e_{s}^{2})= \\
& =\underset{s \in S}{\operatorname{argmin}}\left(-2 e_{s} x+e_{s}^{2}\right)=\underset{s \in S}{\operatorname{argmax}}(\underbrace{e_{s} x-\frac{1}{2} e_{s}^{2}}_{\text {linear function of } x})
\end{aligned}
$$

Multiclass classification: each class s has a linear discriminant function $f_{s}(x)=a_{s} x+b_{s}$ and

$$
\delta(x)=\underset{s \in S}{\operatorname{argmax}} f_{s}(x)
$$

Etalon classifier is a Linear classifier
Assuming $\operatorname{dist}(x, e)=(x-e)^{2}$, then

$$
\begin{aligned}
\underset{s \in S}{\operatorname{argmin}} \operatorname{dist}\left(x, e_{s}\right) & =\underset{s \in S}{\operatorname{argmin}}\left(x-e_{s}\right)^{2}=\underset{s \in S}{\operatorname{argmin}}(\underbrace{x^{2}}_{\text {const. }}-2 e_{s} x+e_{s}^{2})= \\
& =\underset{s \in S}{\operatorname{argmin}}\left(-2 e_{s} x+e_{s}^{2}\right)=\underset{s \in S}{\operatorname{argmax}}(\underbrace{e_{s} x-\frac{1}{2} e_{s}^{2}}_{\text {linear function of } x})
\end{aligned}
$$

Multiclass classification: each class s has a linear discriminant function $f_{s}(x)=a_{s} x+b_{s}$ and

$$
\delta(x)=\underset{s \in S}{\operatorname{argmax}} f_{s}(x)
$$

Binary classification: a single linear discriminant function $g(x)$ is sufficient and

$$
\delta(x)= \begin{cases}s_{1} & \text { if } g(x) \geq 0 \\ s_{2} & \text { if } g(x)<0\end{cases}
$$

Example: F / M - Linear discriminant functions based on etalons

Discriminant functions for 2 classes:

$$
\begin{aligned}
f_{F}(x) & =a_{F} x+b_{F}= \\
& =e_{F} x-\frac{1}{2} e_{F}^{2}=140 x-9800 \\
f_{M}(x) & =a_{M} x+b_{M}= \\
& =e_{M} x-\frac{1}{2} e_{M}^{2}=180 x-16200
\end{aligned}
$$

Example: F / M - Linear discriminant functions based on etalons

Discriminant functions for 2 classes:

$$
\begin{aligned}
f_{F}(x) & =a_{F} x+b_{F}= \\
& =e_{F} x-\frac{1}{2} e_{F}^{2}=140 x-9800 \\
f_{M}(x) & =a_{M} x+b_{M}= \\
& =e_{M} x-\frac{1}{2} e_{M}^{2}=180 x-16200
\end{aligned}
$$

A single discriminant function separating 2 classes:

$$
\begin{aligned}
g(x) & =f_{F}(x)-f_{M}(x)= \\
& =-40 x+6400
\end{aligned}
$$

Example: F/M - Can we do better etalons?

Etalon-based linear classifier makes some errors.

A perceptron algorithm may be used to find a zero-error classifier (if one exists).

Etalon based classification

Represent \vec{x} by etalon , \vec{e}_{s} per each class $s \in S$.

Separate etalons

$$
s^{*}=\underset{s \in S}{\arg \min }\left\|\vec{x}-\vec{e}_{s}\right\|^{2}
$$

$37 / 47$

What etalons?

If $\mathcal{N}(\vec{x} \mid \vec{\mu}, \Sigma)$; all classes same covariance matrices, then

$$
\vec{e}_{s} \stackrel{\text { def }}{=} \vec{\mu}_{s}=\frac{1}{\left|\mathcal{X}^{s}\right|} \sum_{i \in \mathcal{X}^{s}} \vec{x}_{i}^{s}
$$

and separating hyperplanes halve distances between pairs.
minimum distance from etalons

$$
\mathcal{N}(\vec{x} \mid \vec{\mu}, \Sigma)=\frac{1}{(2 \pi)^{D / 2}} \frac{1}{|\Sigma|^{1 / 2}} \exp \left\{-\frac{1}{2}(\vec{x}-\vec{\mu})^{\top} \Sigma^{-1}(\vec{x}-\vec{\mu})\right\}
$$

Etalon based classification, $\vec{e}_{s}=\vec{\mu}_{s}$

Notes
Some wrongly classified samples. We like the simple idea. Are there better etalons? How to find them?

Digit recognition - etalons $\vec{e}_{s}=\vec{\mu}_{s}$
etalon for 0

etalon for 1

etalon for 5

etalon for 7

etalon for 9

Figures from [7].

Notes

Keep in mind, that etalon - mean value is a kind of handcrafted heuristics. In general, it does not optimize (minimize) any loss function.

Bayesian Discriminant functions $f(\vec{x}, s), g_{s}(\vec{x})$

$$
s^{*}=\underset{s \in \mathcal{S}}{\operatorname{argmax}} f(\vec{x}, s)
$$

Bayes:

$$
s^{*}=\underset{s \in \mathcal{S}}{\operatorname{argmax}} P(s \mid \vec{x})=\frac{P(\vec{x} \mid s) P(s)}{P(\vec{x})}
$$

Discriminant function:

$$
f(\vec{x}, s)=g_{s}(\vec{x})=P(\vec{x} \mid s) P(s)
$$

Notes

Normal distribution for general dimensionality D:

$$
\mathcal{N}(\vec{x} \mid \vec{\mu}, \Sigma)=\frac{1}{(2 \pi)^{D / 2}} \frac{1}{|\Sigma|^{1 / 2}} \exp \left\{-\frac{1}{2}(\vec{x}-\vec{\mu})^{\top} \Sigma^{-1}(\vec{x}-\vec{\mu})\right\}
$$

Discriminant function:

$$
s^{*}=\underset{s \in \mathcal{S}}{\operatorname{argmax}} f(\vec{x}, s)=P(s) \mathcal{N}(\vec{x} \mid \vec{\mu}, \Sigma)=\frac{1}{(2 \pi)^{D / 2}} \frac{1}{|\Sigma|^{1 / 2}} \exp \left\{-\frac{1}{2}(\vec{x}-\vec{\mu})^{\top} \Sigma^{-1}(\vec{x}-\vec{\mu})\right\}
$$

How about learning $f(\vec{x}, s)$ directly without explicit modeling of underlying probabilities?
What about $f(\vec{x}, s)=\vec{w}_{s}^{\top} \vec{x}+w_{s 0}$

Etalon classifier - Linear classifier, generalization to higher dimensions

$$
\begin{aligned}
s^{*} & =\arg \min _{s \in S}\left\|\vec{x}-\vec{e}_{s}\right\|^{2}=\arg \min _{s \in S}\left(\vec{x}^{\top} \vec{x}-2 \vec{e}_{s}^{\top} \vec{x}+\vec{e}_{s}^{\top} \vec{e}_{s}\right)= \\
& =\arg \min _{s \in S}\left(\vec{x}^{\top} \vec{x}-2\left(\vec{e}_{s}^{\top} \vec{x}-\frac{1}{2}\left(\vec{e}_{s}^{\top} \vec{e}_{s}\right)\right)\right)= \\
& =\arg \min _{s \in S}\left(\vec{x}^{\top} \vec{x}-2\left(\vec{e}_{s}^{\top} \vec{x}+b_{s}\right)\right)= \\
& =\arg \max _{s \in S}\left(\vec{e}_{s}^{\top} \vec{x}+b_{s}\right)=\arg \max _{s \in S} g_{s}(\vec{x}) . \quad b_{s}=-\frac{1}{2} \vec{e}_{s}^{\top} \vec{e}_{s}
\end{aligned}
$$

Linear function (plus offset)

$$
g_{s}(\mathbf{x})=\mathbf{w}_{s}^{\top} \mathbf{x}+w_{s 0}
$$

Notes

The result is a linear discriminant function - hence etalon classifier is a linear classifier.
We classify into the class with highest value of the discriminant function.
\mathbf{w}_{s} is a generalized etalon. How do we find it? Such that it is better than just the mean of the class members in the training set.

Learning and decision

Learning stage - learning models/function/parameters from data.
Decision stage - decide about a query \vec{x}.
What to learn?

- Generative model : Learn $P(\vec{x}, s)$. Decide by computing $P(s \mid \vec{x})$.
- Discriminative model : Learn $P(s \mid \vec{x})$.
- Discriminant function : Learn $g(\vec{x})$ which maps \vec{x} directly into class labels.

Accuracy vs precision

(b)

https://commons.wikimedia.org/wiki/File:Precision_versus_accuracy.svg

Accuracy: how close (is your model) to the truth. Precision: how consistent/stable In German:

- Accuracy: Richtigkeit
- Precision: Präzision
- Both together: Genauigkeit

In Czech:

- Accuracy: Věrnost, přesnost.
- Precision: Rozptyl.

Accuracy vs precision

Reference value

https://en.wikipedia.org/wiki/Accuracy_and_precision
Notes
Accuracy: how close (is your model) to the truth. Precision: how consistent/stable.
Think about terms bias and error. I

References I

Further reading: Chapter 18 of [6], or chapter 4 of [1], or chapter 5 of [2]. Many figures created with the help of [3]. You may also play with demo functions from [7].
Human deciding and predicting under noise, [4] (in Czech [5])
[1] Christopher M. Bishop.
Pattern Recognition and Machine Learning.
Springer Science+Bussiness Media, New York, NY, 2006.
https://www.microsoft.com/en-us/research/uploads/prod/2006/01/
Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf.
[2] Richard O. Duda, Peter E. Hart, and David G. Stork.
Pattern Classification.
John Wiley \& Sons, 2nd edition, 2001.
[3] Vojtěch Franc and Václav Hlaváč.
Statistical pattern recognition toolbox.
http://cmp.felk.cvut.cz/cmp/software/stprtool/index.html.

References II

[4] D. Kahneman, O. Sibony, and C.R. Sunstein.
Noise: A Flaw in Human Judgment.
Little Brown Spark, 2021.
[5] D. Kahneman, O. Sibony, and C.R. Sunstein.
Šum, O chybách v lidském úsudku.
Jan Melvil Publishing, 2021.
[6] Stuart Russell and Peter Norvig.
Artificial Intelligence: A Modern Approach.
Prentice Hall, 3rd edition, 2010.
http://aima.cs.berkeley.edu/.
[7] Tomáś Svoboda, Jan Kybic, and Hlaváč Václav.
Image Processing, Analysis and Machine Vision - A MATLAB Companion.
Thomson, Toronto, Canada, $1^{\text {st }}$ edition, September 2007.
http://visionbook.felk.cvut.cz/.

