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Supervised Learning

A training multi-set of examples is available. Correct answers (hidden state, class, the quantity
we want to predict) are known for all training examples.

Classification
» Nominal dependent variable

» Examples: predict spam/ham based on email contents, predict 0/1/.../9 based on the
image of a number, etc.

Regression
» Quantitative/continuous dependent variable

> Examples: predict temperature in Prague based on date and time, predict height of a
person based on weight and gender, etc.
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Notes

There are more kinds od machine learning:

Self-supervised
e Unsupervised

e Weakly supervised

but this lecture will be about fully supervised learning



Learning by minimization of empirical risk

> Given the set of parametrized strategies 0: X — D, penalty/loss function ¢: S x D — R,
the quality of each strategy ¢ could be described by the risk

R(8) =Y P(x,s)l(s,6(x)),

seS xeX

but P is unknown.
» We thus use the empirical risk Remp error on training (multi)set
T = {(X("),s("))}f\lzl, xeX,seS:
1 . .
Ramp(®) =5 D s, 0()).
(x0,seT
» Optimal strategy 6* = argming Remp(6).
> We expect the data are from the right distribution.
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Notes
Examples of some method: Perceptron, neural networks, classification trees, ...

It is essentially about statistic, out-of distribution data are always problematic. We can help somewhat to make

the methods a bit more robust - to generalize more. Remember regularization trick we learned last week (Laplacian

smoothing)?



Quiz: Line fitting

We would like to fit a line of the form y = wy + wyx to the following data:

4

The parameters of a line with a good fit will likely be

A

B
C
D

Woz—]., W1:—2
WoZ—%, wp =1
W0:3, le—%
wp = 2, le%
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Linear regression: lllustration

Given a dataset of input vectors x() and the respective values of output variable y(i) e
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For instance, think about fitting

.we would like to find a linear model of this dataset ...




Regression

Reformulating Linear algebra in a machine learning language.
Regression task is a supervised learning task, i.e.
> a training (multi)set 7 = {(xM),yM), ... (xM, (M)} is available, where
> the labels y() are quantitative, often continuous (as opposed to classification tasks where
y() are nominal).
> Its purpose is to model the relationship between independent variables (inputs)
x = (x1,...,xp) and the dependent variable (output) y.
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Linear Regression

Linear regression is a particular regression model which assumes (and learns) linear
relationship between the inputs and the output:

)7:5(x):W0+W1x1+...+WDxD:Wo+<w,x>:W0+WTx,

where
> y is the model prediction (estimate of the true value y),
> §(x) is the decision strategy (a linear model in this case),
> wp,...,wp are the coefficients of the linear function (weights), wy is the bias,
» (w,x) is a dot product of vectors w and x (scalar product),

» which can be also computed as a matrix product w ' x if w and x are column vectors, i.e.
matrices of size [D x 1].
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Notation remarks
Homogeneous coordinates :
> If we add "1" as the first element of x so that x = (1,xy,...,xp), and
» include the bias term wyg in the vector w so that w = (wop, wy, ..., wp), then

Y=0x)=wo-14+wx1+...+wpxp = (w,x) = w'x.

Matrix notation: If we organize the data 7 into matrices X and y, such that
1 .. 1
- = (y® (’V))
X <x(1) x(N)> and y (y yeees Y ,

and similarly with y, then we can write a batch computation of predictions for all data in X as
y= ((5(x(1)), . ,(5(x(N))> = (wa(l), ceey WTX(N)> =w'X.
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What are dimensions of y, w, X?



Two operation modes

Any ML model has 2 operation modes:

1. learning (training, fitting) of § and
2. application of § (testing, making predictions). o™ .. W
esting data ode! rediction

The dec. strategy ¢ can be viewed as a function of 2 variables: §(x, w).

Model application: ( Inference ) Given w, we can manipulate x to make predictions:
5/\: 5(X7 W) = 5W(X)'

Model learning: Given T, we can tune the model parameters w to fit the model to the data:

w* = argmin Remp(dw) = argmin J(w, T)
w w

J(w,T) and {(w,T) are closely related. Optimization criterium J() is a broader term. ¢()
essentially measures discrepancy between true data and the predictions. How to train the

model? o) 47

Notes
All ¢() can be used as J() but not the other way round.

e §(x,w) represents a whole family of strategies if w is not fixed.
e By fixing w we chose a particular strategy from this family.

e Empirical risk evalautes prediction error on all data points.



Simple (univariate) linear regression

Simple regression

> x() = x() je. the examples are described by a single feature (they are 1-dimensional).

» Find parameters wy, wy of a linear model y = wy + wyx
N

given a training (multi)set 7 = {(x(), y(N)}N
How to fit a line depending on the number of training examples N:
» N =1 (1 equation, 2 parameters) = oo linear functions with zero error
» N =2 (2 equations, 2 parameters) = 1 linear function with zero error
» N >3 (> 2 equations, 2 parameters) = no linear function with zero error (in general)

= a line which minimizes the “size” of error y — ¥ can be fitted:

w* = (wg, wy) = argmin Remp(wo, wi) = argmin J(wo, wi, T).

wo, w1 wo, w1

10/ 47
Notes




The least squares method

Choose such parameters w which minimize the mean squared error (MSE)

Y

1 a0 2
Juse(w) = Nz (y(’) —y(’)>

wo

0

(@@ y@) @,

[y — 5|
@,y

w1

(o, 50

[y — ]
(1), M)

y® - 59|

Is there a (closed-form) solution? Explicit solution:

YD =)D —9) sy

wp =

covariance of X and Y

YL x2S

Notes

variance of X
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Universal fitting method: minimization of cost function J
The landscape of J in the space of parameters wy and wy:

20 30 60 80 100
w,

Gradually better linear models found by an optimization method (BFGS):

i

£

e
T
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Notes

Bottom images from left to right correspond to points on the polyline above.



Gradient descent algorithm

Given a function J(wp, wy) that should be minimized,

| 4
| 4
| 4

start with a guess of wy and wy and
change it, so that J(wp, wy) decreases, i.e.

update our current guess of wy and w;y by taking a step in the direction opposite to the
gradient:

w < w —aVJ(w, w), ie.

W +— W — « J(wo, wy),

ow;

where all w;s are updated simultaneously and « is a learning rate (step size).
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Gradient descent for MSE minimization
For the cost function
J 1N(i5(i)21N(i) ON%
(W07W1)—N;(y - W(X )) —NZ()/ —(W0+W1X )> ,
the gradient can be computed as

N
B?VOJ(W‘% wi) = —% Z (y(i) - 5W(X(i))>

) SN | |
3T,IJ(W07 wi) =~ Z (y(’) - 5W(X(,))> X0
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Multivariate linear regression

> x() = (Xp, e ,X(Di))T

, i.e. the examples are described by more than 1 feature (they are
D-dimensional).

» Find parameters w = (wp,...,wp)' of a linear model y = w ' x
given the training (multi)set 7 = {(x(), y()IN .
Training: foreach (i): y() = wTx().
In the matrix form:

The model is a hyperplane in the (D + 1) di-
mensional space.

y=w'X

What is the dimension of X7
A(D+1)x(D+1)

B(D+1)xN
C Nx(D+1)
D NxN
15 /47
Notes
Re-write set of (i) equations in to a matrix form:
y= w' X

Inspect dimensions, how are the elements contructed? Quiz



Multivariate linear regression: learning

1. Numeric optimization of J(w, T):

» Works as for simple regression, it only searches a space with more dimensions.

P> Sometimes one needs to tune some parameters of the optimization algorithm to work
properly (learning rate in gradient descent, etc.).

> May be slow (many iterations needed), but works even for very large D.

2. Normal equation:

wt = (XXT)—lxyT

» Method to solve for the optimal w* analytically!
» No need to choose optimization algorithm parameters. No iterations.
> Needs to compute (XX "), which is O((D + 1)3). Becomes intractable for large D.
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Notes

D could by quite big! Think about pixel values in images! We, humans are used to low dimensions - world is 3D,
not the machine.




Classification

Binary classification

Discriminant function

Classification as a regression problem (linear, logistic regression)
What is the right loss function?

Etalon classifier (meeting nearest neighbour and linear classifier)

Acuracy vs precision

17 /47
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Quiz: Importance of training examples

Intuitively, which of the training data points should have the biggest influence on the decision
whether a new, unlabeled data point shall be red or blue?

A Those which are closest to data points with the opposite color.

B Those which are farthest from the data points of the opposite color.
C Those which are near the middle of the points with the same color.
D None. All of the data points have the same importance.
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Notes
TS note: A,B,C can be visualized as areas in the figure




Binary classification task

Let's have a training dataset T = {(x(1),yM) . (x(N) y(N):
» each example described by a vector x = (xi,...,xp),
> labeled with the correct class y € {+1,—1}.

The goal:

» Find the classifier (decision strategy/rule) § that minimizes the empirical risk Remp(6).

19/47
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Discriminant function

Discriminant function f(x):

» It assigns a real number to each observation x, may
be linear or non-linear.

» For 2 classes, 1 discriminant function is enough. \/
-0.5]
» It is used to create a decision rule (which then

assigns a class to an observation):

f(x)

Yzé(x):{—i_l iff  f(x)>0,and

-1 iff f(x)<0O.
i.e. y = d(x) = sign (f(x)).
Decision boundary: {x|f(x) = 0}
Linear classification: the decision boundaries must be linear.
» Learning then amounts to finding (suitable parameters of) function f.
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Notes

Linearity is required for the decision boundary not for the discriminant function itself!




Example: Female/Male classification based on height

Training (multi)set 7 = {(x(), sONN  x() € x, s0) € S = {F, M}

i 1 2 3 4 5 6 7 8 9 10 11 12
Height x() 115 125 130 140 150 155 165 170 175 180 185 190
Genders F  F F F F F F M M M M M

01 Female/Male classification

A new point to clasify: x? = 163

0.08
Which class does x9 belong to? dQ =?
0.06
0.04 |

0.02

or O 00 O OO DOxxxxx

0.02 | | | | | | | |
60 80 100 120 140 160 180 200 220
2 = height [cm]
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Run onedim_linclass_learning



Linear function LSQ fit

150

O Female
x Male

f(@) = wiz +wp

05

Female/Male classification, linear classifiers
T T T

X X X x »

80

100 120 140 160 180 200
x = height [cm]

Notes

220
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Linear function LSQ fit, discriminant function

Female/Male classification, linear classifiers
T

2 T T T

O Female
15+ x Male n
f(z) =wiz + wp
H|—d() = sign(f(x)) T

05 —

-05 - -

-1.5 -

2 | | | | | | |
60 80 100 120 140 160 180 200 220

x = height [cm]
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Can we do better than fitting a linear function?

Recap the naive linear approach first.
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illustration

Learning linear classifier: naive approach
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Fitting a better function: Logistic regression
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Logistic regression model

Logistic regression uses a discriminant function which is a nonlinear transformation of the

values of a linear function 1

fu(x)=gw'x)= ———
() = w3 = T

1
where g(z) = 7oz is the sigmoid function (a.k.a logistic function).
e
Interpretation of the model:
» fu(x) is interpretted as an estimate of the probability that x belongs to class 1.
> The decision boundary is defined using a different level-set: {x : f,(x) = 0.5}.
» Logistic regression is a classification model!
>

The discriminant function £, (x) itself is not linear anymore; but the decision boundary is
still linear!

\4

Thanks to the sigmoidal transformation, logistic regression is much less influenced by
examples far from the decision boundary!

27 /47
Notes

Try to draw the course of the function by hand.



Sigmoid LSQ fit

Sigmoid fit to the data
I

1.5 I T I
o Female
x Male
_ 1
i f(m) T 14e(wiztuwg) —
0.5 |
0 c c-C c c-C <} -
05 \ \ \ \ \ \ \
60 80 100 120 140 160 180 200 220
x = height [cm)]
28 /47

Notes




Comparing Linear and Sigmoid LSQ fit

Comparing Linear LSQ with Sigmoid LSQ

2

o Female
= Male
f(z) = wiz + wp

—6(z) = sign(f(z))

150

—6(x) = sign(fy(z))

0.5 —

1’—fs(x)=2<m>_l (

(e _
1 =2 S—C =2 &—C < —
15— -
-2
60 80 100 120 140 160 180 200 220
2 = height [cm]
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Notes




What is the proper loss function £?

To train the logistic regression model, one can minimize the Jysg criterion:

P results in a non-convex, multimodal landscape which is hard to optimize.

Log. reg. uses a loss function called cross-entropy : i
=N Z x(0Y), where %9
-1 3
Iog ify=1 =28
—log(1 — ify=0" s 2
c 1.5
which can be rewritten in a single expression as ’
~ ~ ~ 0.5
Uy, y) = —y -log(y)—(1 —y) - log(1 - y).

» simpler to optimize for numerical solvers.
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MSE vs cross entropy loss

Various loss functions

Sigmoid fit to the data
T T

= 15 ‘ ‘
Y
45 A o Female
B ~ log(§) x Male
. 1H f(z) — 1 x x X X Mt
as ——log(1l—79) Tre (wiztug)
—{(x) by cross-entropy loss
0.5 B
0 < c-C < S0 o0 (]
-05 1 1 1 1 1 1 1
- : 60 80 100 120 140 160 180 200 220
0 02 0.4 06 0.8 1 )
7 2 = height [cm)]

Sigmoidal f(x) can be also interpreted as p(s = Male | x) — Learning Dicriminative model
directly.

Cross-entropy loss strongly penalizes hard errors, complete mismatches.
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Alternative idea: F/M classification — Etalons

Represent each class by a single example called etalon! (Or by a very small number of etalons.)

08

0.6

0.4

02r

-0.2

-0.4

-0.6

-0.8 |

Female/Male classification

er = ave({x() : s() = F}) = 140

60

o) . .
% e em = ave({x() : s() = M}) =180
O Female-etalon
n Male-etalon
Based on etalons: dg =7
0 0O [ 00 OxEk A d=F
23 23

B do=M

C Both classes equally likely

D Cannot provide any decision

8‘0 1(30 1%0 14‘10 1230 260 CIaSSify as dQ = argminses diSt(XQ, es)

height [cm]

What type of function is dist(x?, e;)?
32/47
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Based on etalons: d® = M




Etalon classifier is a Linear classifier
Assuming dist(x, ) = (x — e)?, then

argmin dist(x, e5) = argmin(x — e;)? = argmin(_ x> —2e;x + e2) =
seS seS seS comst.
. 2 L
= argmin(—2esx + €;) = argmax( esx — —es )
s€s ses . 2

linear function of x

Multiclass classification: each class s has a linear discriminant function f;(x) = asx + bs and

0(x) = argmax f5(x)
seS

Binary classification: a single linear discriminant function g(x) is sufficient and

[ s ifg(x)>0
5(X)_{s; ifg(x)<0
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Example: F/M — Linear discriminant functions based on etalons

2 x10* Female/Male classification

Discriminant functions for 2 classes:

O Female
®  Male
157 [ Female-etalon / fr(x) = apx + b =
B Male-etalon 1
1 | |[===Female-discr-func — eFx — *6,2: — 140x — 9800
Male-discr-func 2

g
E
5
£ sl m(x) = ayx + by =
1,
S = epyx — —epy = 180x — 16200
5 of O 00 O 00 OxxfFxx 2 M
E
-0.5 b
A single discriminant function separating 2
1 L L L L L L | .
60 80 100 120 140 160 180 200 classes:
height [cm]
4 Female/Male classification
2 210 g(x) = fr(x) — fm(x) =
F |
QO Female — —40x + 6400
151 [ remale-etalon 34 /47
1 Male-etalon : Notes

1 | |[===Female-discr-func
Male-discr-func

Etalon-sep-func

05

value of discriminant functipns

or O OO x
-0.55
1 I I I I I I |
60 80 100 120 140 160 180 200

height [cm]



Example: F/M — Can we do better etalons?

value of discriminant functions

-0.5

4
25 x10

Female/Male classification

Etalon-based linear classifier makes some

o
N %
O
O

151

Female

Male
Female-etalon
Male-etalon

Male-discr-func
Etalon-sep-func

= Perceptron-sep-func

€errors.

e e / A perceptron algorithm may be used to find

a zero-error classifier (if one exists).

0.5

60

80 100 120 140 160 180 200
height [cm]
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Etalon based classification

Pentagon data

1.5¢
it
X% * ;i *
X sk
L X
05 x))(( X Xx *-ﬂ‘}&
x

1.5 -1 -0.5 0 05
1

15¢

0.5}

minimum distance from etalons

-15
-15

Represent X by etalon , € per each class s € S.

-1

x

15
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Separate etalons

minimum distance from etalons

s* = argmin||X — &||?

seS

37/47
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What etalons?

If N(X|ii, X); all classes same covariance matri-
ces, then

minimum distance from etalons

odef L P
€s = Hs |XS|Z

ieXxs

and separating hyperplanes halve distances be-
tween pairs. ~

38/47
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Etalon based classification, €5 = ji.

s Pentagon data minimum distance from etalons
s
*
x
x,}‘);( X *f ol
05f x X X Xx q*i *S;
x o) -ﬂ‘*;
x O )
0% §
& 0 o°0.
A fA 80
-05 ﬁ%
A A
AR08
s
= -1 -05 0 05 1 15
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Notes
Some wrongly classified samples. We like the simple idea. Are there better etalons? How to find them?




Digit recognition - etalons € = ji,

etalon for 0 etalon for 1 etalon for 2 etalon for 3 etalon for 4 etalon for 5 etalon for 6 etalon for 7 etalon for 8 etalon for 9

D923 456789

Figures from [7].
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Keep in mind, that etalon — mean value is a kind of handcrafted heuristics. In general, it does not optimize
(minimize) any loss function.



Bayesian Discriminant functions f(X,s), gs(X)

Pentagon data

s* = argmax f(X,s)
seS
i
Bayes: x x * X .
xgx X *
> 0.5 x x X o R K
. o _ P(X15s)P(s) ' XX, 00 i
s* = argmax P(s|X) = ——=—— x 0~
seS P(X) o ol Q O .
x A AA O&& . .
Discriminant function: gé&gg
-0 A AL
F(%.5) = &(%) = P(%| 5)P(s) KR8
1+
-15 i i i i i i
-15 -1 -0.5 0 0.5 1 15
X1
4147
Notes
Normal distribution for general dimensionality D:
o 1 1 1., 1,5 -
N (%], X) = [COCEIALE exp{—5 (X~ i) ETHE - i)}
Discriminant function:
s = argmax F(%,5) = P(SIN(RILE) = =~ —* _exp{— (3 — i) = 1% — i)}
= §€5 ) - 122 - (27’[’)D/2 ‘Z|1/2 p 2 H M

How about learning f(X,s) directly without explicit modeling of underlying probabilities?

What about f(X,s) = wJ X + wso



Etalon classifier — Linear classifier, generalization to higher dimensions

s s =12 . ST o ST =To
= —_ P —_ 2 =
st =arg rsn€|2||x &l|“ = arg r;nelg(x X —268,X+ & €s)

1
. (ST ST o 2Tz
:argrsn€|2<x X—2( SX_E(eS es))> =

S “To
= argrsnelg(x X —2(8 X+ bs)) =

= |arg max(&] X + bs) | = arg max g,(X). bs = —-€, &
seS seS

Linear function (plus offset)

gs(x) = wsTx -+ Wep

42 /47

Notes
The result is a linear discriminant function — hence etalon classifier is a linear classifier.
We classify into the class with highest value of the discriminant function.
w; is a generalized etalon. How do we find it? Such that it is better than just the mean of the class members in
the training set.



Learning and decision

Learning stage - learning models/function/parameters from data.

Decision stage - decide about a query X.
What to learn?

> Generative model : Learn P(X,s). Decide by computing P(s|X).
» Discriminative model : Learn P(s|X).

—

» Discriminant function : Learn g(X) which maps X directly into class labels.
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Notes

Generative models because by sampling from them it is possible to generate synthetic data points X.



Accuracy vs precision

(b)

https://commons.wikimedia.org/wiki/File:Precision_versus_accuracy.svg

Notes
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Accuracy: how close (is your model) to the truth. Precision: how consistent/stable
In German:

e Accuracy: Richtigkeit

e Precision: Prazision

e Both together: Genauigkeit
In Czech:

e Accuracy: Vé&rnost, pfesnost.

e Precision: Rozptyl.


https://commons.wikimedia.org/wiki/File:Precision_versus_accuracy.svg

Accuracy vs precision

Reference value

Probability Accuracy
density N g

>

< — > Value
Precision

https://en.wikipedia.org/wiki/Accuracy_and_precision 4547

Notes
Accuracy: how close (is your model) to the truth. Precision: how consistent/stable.
Think about terms bias and error. |

/ Dichte

Mangel an /

Richtigkeit

Mar

an Pr3zision

richtiger _WEI:t
Wert


https://en.wikipedia.org/wiki/Accuracy_and_precision

References |

Further reading: Chapter 18 of [6], or chapter 4 of [1], or chapter 5 of [2]. Many figures
created with the help of [3]. You may also play with demo functions from [7].
Human deciding and predicting under noise, [4] (in Czech [5])
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