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Recap: Unreliable actions in observable grid world

▶ Walls block movement – agent/robot
stays in place.

▶ Actions do not always go as planned.
▶ Agent receives rewards each time step:

▶ Small “living” reward/penalty.
▶ Big rewards/penalties at the end.

▶ Goal: maximize sum of (discounted)
rewards

Uncertain movement in a 
grid world

• If there is a wall - agent bounces 
and stays in place

• Rewards each time step:

• Small “living” reward each 
step (can be negative)

• Big rewards at the end

• Goal: maximize sum of 
(discounted) rewards
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Notes

This is a recap slide, we already know this from the last lecture.



MDPs recap

Markov decision processes (MDPs):

▶ Set of states S
▶ Set of actions A
▶ Transitions p(s ′|s, a) or T (s, a, s ′)

▶ Rewards r(s, a, s ′); and discount γ

MDP quantities:

▶ Policy π(s) : S → A
▶ Utility – sum of (discounted) rewards.

▶ Values – expected future utility from a state
(max-node), v(s)

▶ Q-Values – expected future utility from a q-state
(chance-node), q(s, a)

s

s, a

s ′

aπ(s)→ a

s, a, s ′ → r

v(s)

q(s, a)
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Notes

Q-values – like values but given that I have commited to do action a from state s.
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Optimal quantities

▶ The optimal policy: π∗(s) – optimal action from
state s

▶ Expected utility/return of a policy.

Uπ(St) = Eπ

[ ∞∑
k=0

γkRt+k+1

]

Best policy π∗ maximizes above.

▶ The value of a state s: v∗(s) – expected utility
starting in s and acting optimally.

▶ The value of a q-state (s, a): q∗(s, a) - expected
utility having taken a from state s and acting
optimally thereafter.

s

s, a

s ′

aπ∗(s)

s, a, s ′ is a transition

q-state

aπ∗(s ′)
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Notes
Remember: Discounted return Gt

Returns are successive steps related to each other

Gt = Rt+1 + γRt+2 + γ2Rt+3 + γ3Rt+4 + · · ·
= Rt+1 + γ(Rt+2 + γ1Rt+3 + γ2Rt+4 + · · · )
= Rt+1 + γGt+1

Gt
.
=

∑T
k=t+1 γ

k−t−1Rk including the possibility that T = ∞ or γ = 1, but not both.
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v ∗ and q∗

The value of a q-state (s, a):

q∗(s, a) =
∑
s′

p(s ′|a, s)
[
r(s, a, s ′) + γ v∗(s ′)

]

The value of a state s:

v∗(s) = max
a

q∗(s, a)

s

s, a

s ′

a

p(s ′|s, a)

q-stateq∗(s, a)

v∗(s ′)

v∗(s)
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Maze: V0 = [0, 0, 0]⊤, r(s) = −1, deterministic robot, A = {←, ↑, ↓,→},
γ = 1
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q∗(s, a) =
∑
s′

p(s ′|a, s)
[
r(s, a, s ′) + γ v∗(s ′)

]
v∗(s) = max

a
q∗(s, a)
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Notes



What will be V ∗ after first sweep? V ∗1 = [v ∗1 (1), v
∗
1 (2), v

∗
1 (3)]

⊤?
0

0

1
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0 00.000.000.00-10.00 10.00

Sweep is meant as the Bellmann update for all states: V ∗
1 = BV ∗

0 . r(s) = −1. Assume sync
version of the algorithm.

A: V ∗
1 = [−1,−1, 9]⊤

B: V ∗
1 = [0, 8, 9]⊤

C: V ∗
1 = [−1, 0, 0]⊤

D: V ∗
1 = [−11, 8, 9]⊤
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Notes

Live: Calculate q-values (it’s easy, robot is deterministic) and then choose max for every state.



What will be V ∗ after second sweep? V ∗2 = [v ∗2 (1), v
∗
2 (2), v

∗
2 (3)]

⊤?
0
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0 00.000.000.00-10.00 10.00

Sweep is meant as the Bellmann update for all states: V ∗
2 = B(BV ∗

0 ). r(s) = −1. Assume
sync version of the algorithm.

A: V ∗
2 = [−1,−1, 9]⊤

B: V ∗
2 = [−1, 8, 9]⊤

C: V ∗
2 = [−2, 8, 9]⊤

D: V ∗
2 = [7, 8, 9]⊤
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Notes



Maze: v ∗ vs. q∗, deterministic robot, A = {←, ↑, ↓,→}

q∗(s, a) =
∑
s′

p(s ′|a, s)
[
r(s, a, s ′) + γ v∗(s ′))

]
v∗(s) = max

a
q∗(s, a)

9 / 29

Notes

Deterministic robot/agent with four possible actions.



Maze: v ∗ vs. q∗, γ = 1, T = [0.8, 0.1, 0.1, 0]
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q∗(s, a) =
∑
s′

p(s ′|a, s)
[
r(s, a, s ′) + γ v∗(s ′))

]
v∗(s) = max

a
q∗(s, a)
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Notes
This is the R = −0.04 for nonterminal states maze ([1] Fig. 17.3).

, γ = 1
Note that the Value of a state takes into account a number of things:

• the policy – which action will chosen in s

• the fact that the goal may be far away and

– there will be a number of living penalties incured before reaching it
– the final reward may be discounted (not the case here)

• the transition probabilities

Q-values - useful for choosing the best action – getting the policy.



Value iteration

▶ Bellman equations characterize the optimal values

v∗(s) = max
a∈A(s)

∑
s′

p(s ′|s, a)
[
r(s, a, s ′) + γv∗(s ′)

]
▶ Value iteration computes them:

Vk+1(s)← max
a∈A(s)

∑
s′

p(s ′|s, a)
[
r(s, a, s ′) + γVk(s

′)
]

s

s, a

s ′

a

p(s ′|s, a)

q∗(s, a)

v∗(s ′)

v∗(s)

Value iteration is a fixed point solution method.
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Notes
Bellman equations:

1. Take correct first action (1 ply of Expectimax)

2. Keep being optimal (recursion v∗(s ′))

Recall that we may simplify equations by marginalizing rewards if all r(s, a, s ′) are the same.

r(s) =
∑
s′

p(s ′|a, s)r(s, a, s ′)



Convergence

Vk+1(s)← max
a∈A(s)

∑
s′

p(s ′|s, a)
[
r(s, a, s ′) + γVk(s

′)
]

▶ Thinking about special cases: deterministic world, γ = 0, γ = 1.
▶ For all s, Vk(s) and Vk+1(s) can be seen as expectimax search trees of depth k and k + 1

Vk(s)
<latexit sha1_base64="mRDrMEb3HQBaQNYSPs0XDj7o148=">AAACKXicZVDLSgNBEJz1GeMr0aOXwSjoJezGgx6DXjwqmBjIhtA726tDZmaXmVklLPkJr/oHfo039eqPOIkRH2loKKq6oaqiTHBjff/Nm5tfWFxaLq2UV9fWNzYr1a22SXPNsMVSkepOBAYFV9iy3ArsZBpBRgKvo8HZWL++Q214qq7sMMOehBvFE87AOqqz1+4PDszhXr9S8+v+ZOgsCKagRqZz0a96q2GcslyiskyAMd3Az2yvAG05Ezgqh7nBDNgAbrDroAKJpldMDI/ovmNimqTarbJ0wv7+KEAaM5SRu5Rgb81/bUz+aBoV3rNUSlBxESYguRjGmEAu7KgITfKN/3qyyUmv4CrLLSr2ZSnJBbUpHfdEY66RWTF0AJjmLhVlt6CBWddmOcxAcxW78NTFLrv6gv9lzYJ2ox4c1f3LRq15Oi2yRHbILjkgATkmTXJOLkiLMCLIA3kkT96z9+K9eu9fp3Pe9Geb/Bnv4xO5VqXl</latexit>

Vk+1(s)
<latexit sha1_base64="ohs+7mNyl9kZ+/sxf5f9s2SIGso="></latexit>
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Notes

• Bottom (last) layer, zeros for Vk(s), true rewards for Vk+1(s)

• Last layer ⟨Rmin,Rmax⟩
• But the last layer is γk discounted . . .

• hence, Vk and Vk+1 are no more than γk max |R| apart.
• The k increases, the values converge.



From Values to Policy

13 / 29

Notes



Policy extraction - computing actions from Values
s

s, a

s ′

a

s, a, s ′

▶ Assume we have v∗(s)

▶ What is the optimal action?

▶ We need a one-step expectimax:
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0.81 1.00

-1.000.66

0.92

0.61

0.87

0.71

π∗(s) = argmax
a∈A(s)

∑
s′

p(s ′ | s, a)
[
r(s, a, s ′) + γv∗(s ′)

]
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Notes
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Policy extraction - computing actions from q-Values

▶ Assume we have q∗(s, a)

▶ What is the optimal action?

▶ Just take the (arg) max:

π∗(s) = argmax
a∈A(s)

q∗(s, a)

Actions are easier to extract from
q-values.
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What is wrong with the Value iteration?

Vk+1(s)← max
a∈A(s)

∑
s′

p(s ′ | s, a)
[
r(s, a, s ′) + γVk(s

′)
]

▶ What is complexity of one iteration - over all S states?

▶ When does the iteration stop?

▶ When the does the policy converge?

▶ Can we compute the policy directly?

16 / 29

Notes

• Complexity: O(AS2) per iteration For every state (LHS), there can be up to ♯S also on RHS – if every
other state was reachable from the current state. In addition, all actions from every state need to be
considered.

• Iteration stops when max difference between Vk and Vk+1 becomes small enough.

• However, (change in) policy depends on change in max(A).

• max(A) does not change often.

• Policy often converges long before the values.

Notes for teacher: Run “AIMA Fig. 17.2 / 17.3 demo” with R = −0.04
mdp agents.py, value iteration with eps = 0.03, discount = 0.999999

• verbosity=SHOW.UTILS

• verbosity=SHOW.QVALS - max does not change often...



Policy evaluation

▶ Assume π(s) given.

▶ How to evaluate (compare)?

17 / 29

Notes

Remember last week’s quiz?



Fixed policy, do what π says

s

s, a

s ′

aπ(s)

s, π(s)

s, a, s ′s, π(s), s ′

q-state

aπ(s ′)

▶ Expectimax trees “max” over all actions . . .

▶ Fixed π for each state → no “max” operator!
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State values under a fixed policy
s

s, π(s)

s ′

π(s)

s, π(s), s ′

π(s ′)

vπ(s)

vπ(s ′)

▶ Expectimax trees “max” over all actions . . .

▶ Fixed π for each state → no “max” operator!

vπ(s) =
∑

s′ p(s
′ | s, π(s))

[
r(s, π(s), s ′) + γvπ(s ′)

]
19 / 29

Notes

Recall that vπ(s) quantity contains all the future – expected discounted sum of rewards – executing policy from

the state s onwards.
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Finding the best policy directly by the Policy iteration method

▶ Start with a random policy.

▶ Step 1: Evaluate it.

▶ Step 2: Improve it.

▶ Repeat steps until policy converges.

20 / 29

Notes



How to evaluate policy? Policy determines state values

vπ(s) =
∑
s′

p(s ′ | s, π(s))
[
r(s, π(s), s ′) + γvπ(s ′)

]
Case: γ = 1 and deterministic robot. What are V π(1),V π(2),V π(3)?

0

0

1

1

2

2

3

3

4

4

0 0>>>None None
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Notes

• by iteration

• solving set of equations



Policy iteration - equations

▶ Policy π evaluation. Solve equations or iterate until convergence.

V πi
k+1(s)←

∑
s′

p(s ′ | s, π(s))
[
r(s, π(s), s ′) + γV πi

k (s ′)
]

▶ Policy improvement. Look-ahead and keep optimality. Policy extraction from fixed values.

πi+1(s) = argmax
a∈A(s)

∑
s′

p(s ′ | s, a)
[
r(s, a, s ′) + γV πi

k (s ′)
]

22 / 29

Notes
A few demo runs of mdp agents.py.
Test of understanding: Policy evaluation: Repeats until convergence. Hmm, just like for Value iteration. So how
come we are saving time? Because we do not iterate (and max) over the actions. We can solve directly (system
of linear equations), even though for large problems in practice, iterative methods are still used.

Policy improvement: Note that the value is taken from “old policy” on RHS.



Policy iteration - a problem(?)

vπ(s) =
∑
s′

p(s ′ | s, π(s))
[
r(s, π(s), s ′) + γvπ(s ′)

]
Case: γ = 1 and deterministic robot. What are V π(1),V π(2),V π(3)?

23 / 29

Notes
What is wrong?



Policy iteration algorithm

function policy-iteration(env) returns: policy π
input: env - MDP problem
π(s)← random a ∈ A(s) in all states
V (s)← 0 in all states
repeat ▷ iterate values until no change in policy

V ← policy-evaluation(π,V , env)
unchanged ← True
for each state s in S do

if max
a∈A(s)

∑
s′ P(s

′|a, s)V (s ′) >
∑

s′ P(s
′|s, π(s))V (s ′) then

π(s)← argmax
a∈A(s)

∑
s′ P(s

′|a, s)V (s ′)

unchanged ← False

until unchanged

24 / 29

Notes



Policy vs. Value iteration

▶ Value iteration.
▶ Iteration updates values and policy. (policy only implicitly – can be extracted from values)
▶ No track of policy.

▶ Policy iteration.
▶ Update of values is faster – only one action per state.
▶ New policy from values (slower).
▶ New policy is better or done.

▶ Both methods belong to Dynamic programming realm.

25 / 29

Notes
Complexity (of one iteration step):
Value iteration: O(S2 ∗ A)
For every state (LHS), there can be up to ♯S also on RHS – if every other state was reachable from the current
state.
In addition, all actions from every state need to be considered.
Max(A) does not change often.
Policy often converges long before the values.
Policy evaluation: O(S3) (after AIMA, pg. 657)
The Bellman equations are linear because the max operator is gone.
For ♯S states, we have ♯S equations, which can be solved exactly in time O(S3) using standard linear algebra
methods.
For small state spaces - ok.

For large state spaces - may be prohibitive → modified policy iteration with only a certain number of simplified

Bellman update.
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▶ No track of policy.

▶ Policy iteration.
▶ Update of values is faster – only one action per state.
▶ New policy from values (slower).
▶ New policy is better or done.

▶ Both methods belong to Dynamic programming realm.
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Complexity (of one iteration step):
Value iteration: O(S2 ∗ A)
For every state (LHS), there can be up to ♯S also on RHS – if every other state was reachable from the current
state.
In addition, all actions from every state need to be considered.
Max(A) does not change often.
Policy often converges long before the values.
Policy evaluation: O(S3) (after AIMA, pg. 657)
The Bellman equations are linear because the max operator is gone.
For ♯S states, we have ♯S equations, which can be solved exactly in time O(S3) using standard linear algebra
methods.
For small state spaces - ok.

For large state spaces - may be prohibitive → modified policy iteration with only a certain number of simplified

Bellman update.
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Value/policy iteration (dynamic programming) vs. direct search

Vk+1(s)← R(s) + γ max
a∈A(s)

∑
s′

p(s ′|s, a)Vk(s
′)

▶ value/policy iteration is an off-line method

▶ direct (expectimax) search is an on-line method

▶ sometimes too many states, . . .

▶ but for γ close to 1 the tree is too deep

▶ we will learn about approximate methods (RL)

s

s, a

s ′

a

p(s ′|s, a)

q-stateq∗(s, a)

v∗(s ′)

v∗(s)
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(Multi-armed) Bandits

p(s ′|s, a) and r(s, a, s ′) not known!
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10 armed bandit, what arm to pull?

28 Chapter 2: Multi-armed Bandits

select randomly from among all the actions with equal probability, independently of
the action-value estimates. We call methods using this near-greedy action selection rule
"-greedy methods. An advantage of these methods is that, in the limit as the number of
steps increases, every action will be sampled an infinite number of times, thus ensuring
that all the Qt(a) converge to q⇤(a). This of course implies that the probability of selecting
the optimal action converges to greater than 1� ", that is, to near certainty. These are
just asymptotic guarantees, however, and say little about the practical e↵ectiveness of
the methods.

Exercise 2.1 In "-greedy action selection, for the case of two actions and " = 0.5, what is
the probability that the greedy action is selected? ⇤

2.3 The 10-armed Testbed

To roughly assess the relative e↵ectiveness of the greedy and "-greedy action-value
methods, we compared them numerically on a suite of test problems. This was a set
of 2000 randomly generated k -armed bandit problems with k = 10. For each bandit
problem, such as the one shown in Figure 2.1, the action values, q⇤(a), a = 1, . . . , 10,

0

1

2

3

-3

-2

-1

q⇤(1)

q⇤(2)

q⇤(3)

q⇤(4)

q⇤(5)

q⇤(6)

q⇤(7)

q⇤(8)

q⇤(9)

q⇤(10)

Reward
distribution

1 2 63 54 7 8 9 10

Action
Figure 2.1: An example bandit problem from the 10-armed testbed. The true value q⇤(a) of
each of the ten actions was selected according to a normal distribution with mean zero and unit
variance, and then the actual rewards were selected according to a mean q⇤(a) unit variance
normal distribution, as suggested by these gray distributions.
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• 10 different arms

• action pulling k−th arm

• value of the action, i.e. q(a) is stochastic (Gaussian around q∗(a))

• Playing (pulling) many times, what is the policy?
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