# Sequential decisions under uncertainty Policy iteration 

Tomáš Svoboda, Matěj Hoffmann a Petr Pošík

Vision for Robots and Autonomous Systems, Center for Machine Perception
Department of Cybernetics
Faculty of Electrical Engineering, Czech Technical University in Prague

March 26, 2024

## Recap: Unreliable actions in observable grid world

- Walls block movement - agent/robot stays in place.
- Actions do not always go as planned.
- Agent receives rewards each time step:
- Small "living" reward/penalty.
- Big rewards/penalties at the end.
- Goal: maximize sum of (discounted) rewards



## MDPs recap

Markov decision processes (MDPs):

- Set of states $\mathcal{S}$
- Set of actions $\mathcal{A}$
- Transitions $p\left(s^{\prime} \mid s, a\right)$ or $T\left(s, a, s^{\prime}\right)$
- Rewards $r\left(s, a, s^{\prime}\right)$; and discount $\gamma$



## MDPs recap

Markov decision processes (MDPs):

- Set of states $\mathcal{S}$
- Set of actions $\mathcal{A}$
- Transitions $p\left(s^{\prime} \mid s, a\right)$ or $T\left(s, a, s^{\prime}\right)$
- Rewards $r\left(s, a, s^{\prime}\right)$; and discount $\gamma$

MDP quantities:

- Policy $\pi(s): \mathcal{S} \rightarrow \mathcal{A}$
- Utility - sum of (discounted) rewards.

- Values - expected future utility from a state (max-node), $v(s)$
- $Q$-Values - expected future utility from a $q$-state (chance-node), $q(s, a)$


## Optimal quantities

- The optimal policy: $\pi^{*}(s)$ - optimal action from state $s$
- Expected utility/return of a policy.

$$
U^{\pi}\left(S_{t}\right)=\mathrm{E}^{\pi}\left[\sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1}\right]
$$

Best policy $\pi^{*}$ maximizes above.

## Optimal quantities

- The optimal policy: $\pi^{*}(s)$ - optimal action from state $s$
- Expected utility/return of a policy.

$$
U^{\pi}\left(S_{t}\right)=\mathrm{E}^{\pi}\left[\sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1}\right]
$$

Best policy $\pi^{*}$ maximizes above.

- The value of a state $s: v^{*}(s)$ - expected utility starting in $s$ and acting optimally.


## Optimal quantities

- The optimal policy: $\pi^{*}(s)$ - optimal action from state $s$
- Expected utility/return of a policy.

$$
U^{\pi}\left(S_{t}\right)=\mathrm{E}^{\pi}\left[\sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1}\right]
$$

Best policy $\pi^{*}$ maximizes above.

- The value of a state $s: v^{*}(s)$ - expected utility starting in $s$ and acting optimally.
- The value of a $q$-state $(s, a): q^{*}(s, a)$ - expected utility having taken $a$ from state $s$ and acting optimally thereafter.
$v^{*}$ and $q^{*}$

The value of a $q$-state $(s, a)$ :

$$
q^{*}(s, a)=\sum_{s^{\prime}} p\left(s^{\prime} \mid a, s\right)\left[r\left(s, a, s^{\prime}\right)+\gamma v^{*}\left(s^{\prime}\right)\right]
$$


$v^{*}$ and $q^{*}$

The value of a $q$-state $(s, a)$ :

$$
q^{*}(s, a)=\sum_{s^{\prime}} p\left(s^{\prime} \mid a, s\right)\left[r\left(s, a, s^{\prime}\right)+\gamma v^{*}\left(s^{\prime}\right)\right]
$$

The value of a state $s$ :

$$
v^{*}(s)=\max _{a} q^{*}(s, a)
$$


$v^{*}$ and $q^{*}$

The value of a $q$-state $(s, a)$ :

$$
q^{*}(s, a)=\sum_{s^{\prime}} p\left(s^{\prime} \mid a, s\right)\left[r\left(s, a, s^{\prime}\right)+\gamma v^{*}\left(s^{\prime}\right)\right]
$$

The value of a state $s$ :

$$
v^{*}(s)=\max _{a} q^{*}(s, a)
$$



Maze: $V_{0}=[0,0,0]^{\top}, r(s)=-1$, deterministic robot, $\mathcal{A}=\{\leftarrow, \uparrow, \downarrow, \rightarrow\}$, $\gamma=1$
0
1
2
3
4


$$
\begin{aligned}
q^{*}(s, a) & =\sum_{s^{\prime}} p\left(s^{\prime} \mid a, s\right)\left[r\left(s, a, s^{\prime}\right)+\gamma v^{*}\left(s^{\prime}\right)\right] \\
v^{*}(s) & =\max _{a} q^{*}(s, a)
\end{aligned}
$$

# What will be $V^{*}$ after first sweep? $V_{1}^{*}=\left[v_{1}^{*}(1), v_{1}^{*}(2), v_{1}^{*}(3)\right]^{\top}$ ? 



Sweep is meant as the Bellmann update for all states: $V_{1}^{*}=B V_{0}^{*} . r(s)=-1$. Assume sync version of the algorithm.

$$
\begin{aligned}
\mathrm{A}: & V_{1}^{*}=[-1,-1,9]^{\top} \\
\mathrm{B}: & V_{1}^{*}=[0,8,9]^{\top} \\
\mathrm{C}: & V_{1}^{*}=[-1,0,0]^{\top} \\
\mathrm{D}: & V_{1}^{*}=[-11,8,9]^{\top}
\end{aligned}
$$

What will be $V^{*}$ after second sweep? $V_{2}^{*}=\left[v_{2}^{*}(1), v_{2}^{*}(2), v_{2}^{*}(3)\right]^{\top}$ ?
2
3


Sweep is meant as the Bellmann update for all states: $V_{2}^{*}=B\left(B V_{0}^{*}\right) . r(s)=-1$. Assume sync version of the algorithm.

$$
\begin{aligned}
\mathrm{A}: & V_{2}^{*}=[-1,-1,9]^{\top} \\
\mathrm{B}: & V_{2}^{*}=[-1,8,9]^{\top} \\
\mathrm{C}: & V_{2}^{*}=[-2,8,9]^{\top} \\
\mathrm{D}: & V_{2}^{*}=[7,8,9]^{\top}
\end{aligned}
$$

Maze: $v^{*}$ vs. $q^{*}$, deterministic robot, $\mathcal{A}=\{\leftarrow, \uparrow, \downarrow, \rightarrow\}$


Maze: $v^{*}$ vs. $q^{*}, \gamma=1, T=[0.8,0.1,0.1,0]$
0.81

$$
\begin{aligned}
q^{*}(s, a) & \left.=\sum_{s^{\prime}} p\left(s^{\prime} \mid a, s\right)\left[r\left(s, a, s^{\prime}\right)+\gamma v^{*}\left(s^{\prime}\right)\right)\right] \\
v^{*}(s) & =\max _{a} q^{*}(s, a)
\end{aligned}
$$

## Value iteration

- Bellman equations characterize the optimal values

$$
v^{*}(s)=\max _{a \in A(s)} \sum_{s^{\prime}} p\left(s^{\prime} \mid s, a\right)\left[r\left(s, a, s^{\prime}\right)+\gamma v^{*}\left(s^{\prime}\right)\right]
$$

- Value iteration computes them:

$$
V_{k+1}(s) \leftarrow \max _{a \in A(s)} \sum_{s^{\prime}} p\left(s^{\prime} \mid s, a\right)\left[r\left(s, a, s^{\prime}\right)+\gamma V_{k}\left(s^{\prime}\right)\right]
$$



Value iteration is a fixed point solution method.

## Convergence

$$
V_{k+1}(s) \leftarrow \max _{a \in A(s)} \sum_{s^{\prime}} p\left(s^{\prime} \mid s, a\right)\left[r\left(s, a, s^{\prime}\right)+\gamma V_{k}\left(s^{\prime}\right)\right]
$$

- Thinking about special cases: deterministic world, $\gamma=0, \gamma=1$.
- For all $s, V_{k}(s)$ and $V_{k+1}(s)$ can be seen as expectimax search trees of depth $k$ and $k+1$


From Values to Policy

Policy extraction - computing actions from Values


- Assume we have $v^{*}(s)$
- What is the optimal action?

|  | 0 | 1 | 2 | 3 |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0.81 | 0.87 | 0.92 | 1.00 | 0 |
| 1 | 0.76 |  | 0.66 | -1.00 | 1 |
| 2 | 0.71 | 0.66 | 0.61 | 0.39 | 2 |
|  | 0 | 1 | 2 | 3 |  |

Policy extraction - computing actions from Values


- Assume we have $v^{*}(s)$
- What is the optimal action?
- We need a one-step expectimax:


$$
\pi^{*}(s)=\underset{a \in \mathcal{A}(s)}{\arg \max } \sum_{s^{\prime}} p\left(s^{\prime} \mid s, a\right)\left[r\left(s, a, s^{\prime}\right)+\gamma v^{*}\left(s^{\prime}\right)\right]
$$

## Policy extraction - computing actions from $q$-Values

- Assume we have $q^{*}(s, a)$
- What is the optimal action?



## Policy extraction - computing actions from $q$-Values

- Assume we have $q^{*}(s, a)$
- What is the optimal action?
- Just take the (arg) max:

$$
\pi^{*}(s)=\underset{a \in \mathcal{A}(s)}{\arg \max } q^{*}(s, a)
$$

Actions are easier to extract from $q$-values.


## What is wrong with the Value iteration?

$$
V_{k+1}(s) \leftarrow \max _{a \in \mathcal{A}(s)} \sum_{s^{\prime}} p\left(s^{\prime} \mid s, a\right)\left[r\left(s, a, s^{\prime}\right)+\gamma V_{k}\left(s^{\prime}\right)\right]
$$

- What is complexity of one iteration - over all $S$ states?
- When does the iteration stop?
- When the does the policy converge?
- Can we compute the policy directly?


## Policy evaluation

- Assume $\pi(s)$ given.
- How to evaluate (compare)?

Fixed policy, do what $\pi$ says


- Expectimax trees "max" over all actions...

Fixed policy, do what $\pi$ says


- Expectimax trees "max" over all actions...
- Fixed $\pi$ for each state $\rightarrow$ no "max" operator!


## State values under a fixed policy

$$
\begin{aligned}
& \sqrt{s} v^{\pi}(s) \\
& \pi(s) \\
& s, \pi(s) \\
& s, \pi(s), s^{\prime} \\
& \begin{array}{c}
\substack{\downarrow \\
s^{\prime}} \\
\pi\left(s^{\prime}\right) \\
\downarrow
\end{array} v^{\pi}\left(s^{\prime}\right) \\
& v^{\pi}(s)=\sum_{s^{\prime}} p\left(s^{\prime} \mid s, \pi(s)\right)\left[r\left(s, \pi(s), s^{\prime}\right)+\gamma v^{\pi}\left(s^{\prime}\right)\right]
\end{aligned}
$$

How to compute $v^{\pi}(s)$ ?

$$
v^{\pi}(s)=\sum_{s^{\prime}} p\left(s^{\prime} \mid s, \pi(s)\right)\left[r\left(s, \pi(s), s^{\prime}\right)+\gamma v^{\pi}\left(s^{\prime}\right)\right]
$$

Case: $\gamma=1$ and deterministic robot. What are $V^{\pi}(1), V^{\pi}(2), V^{\pi}(3)$ ?

0
4


## Policy iteration - idea

- Start with a random policy.
- Step 1: Evaluate it.
- Step 2: Improve it.
- Repeat steps until policy converges.


## Policy iteration - equations

- Policy $\pi$ evaluation. Solve equations or iterate until convergence.

$$
V_{k+1}^{\pi_{i}}(s) \leftarrow \sum_{s^{\prime}} p\left(s^{\prime} \mid s, \pi(s)\right)\left[r\left(s, \pi(s), s^{\prime}\right)+\gamma V_{k}^{\pi_{i}}\left(s^{\prime}\right)\right]
$$

- Policy improvement. Look-ahead and keep optimality. Policy extraction from fixed values.

$$
\pi_{i+1}(s)=\underset{a \in \mathcal{A}(s)}{\arg \max } \sum_{s^{\prime}} p\left(s^{\prime} \mid s, a\right)\left[r\left(s, a, s^{\prime}\right)+\gamma V_{k}^{\pi_{i}}\left(s^{\prime}\right)\right]
$$

Policy iteration - a problem(?)

$$
v^{\pi}(s)=\sum_{s^{\prime}} p\left(s^{\prime} \mid s, \pi(s)\right)\left[r\left(s, \pi(s), s^{\prime}\right)+\gamma v^{\pi}\left(s^{\prime}\right)\right]
$$

Case: $\gamma=1$ and deterministic robot. What are $V^{\pi}(1), V^{\pi}(2), V^{\pi}(3)$ ?
0
1
2
3
4


None

0
1
2
3
4

## Policy iteration algorithm

function POLICY-ITERATION(env) returns: policy $\pi$
input: env - MDP problem
$\pi(s) \leftarrow$ random $a \in A(s)$ in all states
$V(s) \leftarrow 0$ in all states
repeat $\quad \triangleright$ iterate values until no change in policy
$V \leftarrow \operatorname{POLICY}-\operatorname{EVALUATION}(\pi, V$, env $)$
unchanged $\leftarrow$ True
for each state $s$ in $S$ do

$$
\text { if } \max _{a \in A(s)} \sum_{s^{\prime}} P\left(s^{\prime} \mid a, s\right) V\left(s^{\prime}\right)>\sum_{s^{\prime}} P\left(s^{\prime} \mid s, \pi(s)\right) V\left(s^{\prime}\right) \text { then } \quad \begin{aligned}
& \quad \pi(s) \leftarrow \underset{a \in A(s)}{\arg \max _{a \in} \sum_{s^{\prime}} P\left(s^{\prime} \mid a, s\right) V\left(s^{\prime}\right)} \\
& \quad \text { unchanged } \leftarrow \text { False }
\end{aligned}
$$

until unchanged

## Policy vs. Value iteration

- Value iteration.
- Iteration updates values and policy. (policy only implicitly - can be extracted from values)
- No track of policy.


## Policy vs. Value iteration

- Value iteration.
- Iteration updates values and policy. (policy only implicitly - can be extracted from values)
- No track of policy.
- Policy iteration.
- Update of values is faster - only one action per state.
- New policy from values (slower).
- New policy is better or done.


## Policy vs. Value iteration

- Value iteration.
- Iteration updates values and policy. (policy only implicitly - can be extracted from values)
- No track of policy.
- Policy iteration.
- Update of values is faster - only one action per state.
- New policy from values (slower).
- New policy is better or done.
- Both methods belong to Dynamic programming realm.


## Value/policy iteration (dynamic programming) vs. direct search

$$
V_{k+1}(s) \leftarrow R(s)+\gamma \max _{a \in A(s)} \sum_{s^{\prime}} p\left(s^{\prime} \mid s, a\right) V_{k}\left(s^{\prime}\right)
$$

- value/policy iteration is an off-line method
- direct (expectimax) search is an on-line method
- sometimes too many states, ...
- but for $\gamma$ close to 1 the tree is too deep
- we will learn about approximate methods (RL)



## References

Further reading: Chapter 17 of [1] however, policy iteration is quite compact there. More detailed discussion can be found in chapter Dynamic programming in [2] with slightly different notation, though. This lecture has been also greatly inspired by the 9th lecture of CS 188 at http://ai.berkeley.edu as it convincingly motivates policy search and offers an alternative convergence proof of the value iteration method.
[1] Stuart Russell and Peter Norvig.
Artificial Intelligence: A Modern Approach.
Prentice Hall, 3rd edition, 2010.
http://aima.cs.berkeley.edu/.
[2] Richard S. Sutton and Andrew G. Barto.
Reinforcement Learning; an Introduction.
MIT Press, 2nd edition, 2018.
http://www.incompleteideas.net/book/the-book-2nd.html.

## (Multi-armed) Bandits


(Multi-armed) Bandits

$p\left(s^{\prime} \mid s, a\right)$ and $r\left(s, a, s^{\prime}\right)$ not known!

## 10 armed bandit, what arm to pull?



