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Notes

Some of the slides are more oriented to homework practice.

http://cyber.felk.cvut.cz/vras
http://cmp.felk.cvut.cz
http://cyber.felk.cvut.cz
http://fel.cvut.cz
http://cvut.cz


Games, man vs. algorithm

▶ Deep Blue

▶ Alpha Go

▶ Deep Stack

▶ Why Games, actually?

Games are interesting for AI because they
are hard (to solve).

https://en.wikipedia.org/wiki/Mechanical Turk 2 / 26

Notes

Please note, the hyperlinks at the main slides are not active in the slides with notes. Hyperlinks within the notes

should be active, though.

https://en.wikipedia.org/wiki/Deep_Blue_(chess_computer)
https://en.wikipedia.org/wiki/AlphaGo
https://arxiv.org/pdf/1701.01724.pdf
https://en.wikipedia.org/wiki/Mechanical_Turk


More: Adversarial Learning

Video: Adversing visual segmentation
Vision for Robotics and Autonomous Systems, http://cyber.felk.cvut.cz/vras, video at YT: https://youtu.be/KvdZmtVguOo
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Notes

• Fooling Tesla autopilot by adversarial attack:

file:///Users/svoboda/svoboda-git-clones/kui-felgit/kui-lectures/04_adversarial/figures/advers-pedestrians.avi
http://cyber.felk.cvut.cz/vras
https://youtu.be/KvdZmtVguOo
https://www.techradar.com/news/researchers-tricked-a-tesla-model-s-into-speeding-with-a-piece-of-tape-how-could-hackers-cheat-our-cars-in-the-future


Elements of the game

▶ s0: The initial state

▶ to-play(s). Which player has to move in s.

▶ actions(s). What are the legal moves?

▶ result(s, a). Transition, result of an action a in state s.

▶ is-terminal(s). Game over?

▶ utility(s, p). What is the prize? Examples for some games
...

https://commons.wikimedia.org/wiki/File:

Tic-tac-toe 5.png

Think about what do the functions return?
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Notes
Defining a game as a kind of search problem:
Considering the notation, we are making slight transition from [1] to [3].

• Players: P = {1, 2, . . . ,N} (often just N = 2)

• Transition functions: S × A→ S .

• Terminal utilities: S × P → R. (R - as a Reward)

What are we loking for? A strategy/policy S → A

https://commons.wikimedia.org/wiki/File:Tic-tac-toe_5.png
https://commons.wikimedia.org/wiki/File:Tic-tac-toe_5.png


Terminal utilitity: Zero–Sum and General games

▶ Zero-sum: players have opposite utilities (values)

▶ Zero-sum: playing against opponent

▶ General game: independent utilities

▶ General game: cooperations, competition, . . .
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Notes
Most common games—such as chess—have these properties:

• two-player

• turn-taking

• deterministic with perfect information (a.k.a. deterministic, fully observable environments)

In some games, there is imperfect information (evironment is not fully observable). E.g., poker – no access to

what cards opponents hold.
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<latexit sha1_base64="zdavbkJs7WA8sr3De73iVgu512I="></latexit>
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Notes

Init state, actions function, and result function defines game tree.

Note: game tree as opposed to search tree. Game tree are all possible evolutions of the game.
(With standard search, we similarly had state space graph vs. search tree.)

Note: Tic-tac-toe actually is literally zero-sum (at least in our slides, winner: 1, loser: -1, draw: both 0). Unlike

chess (sum is 1)... Conceptually, it is the same.



State Value V (s)

V (s) – value V of a state s : The best utility achievable from state s, assuming optimal

actions from s ′:

V (s) = max
s′∈children(s)

V (s ′)

For games, it (notion of the best) also depends on player p (assuming both players play
optimally from s ′):

V (s, p) = max
s′∈children(s)

V (s ′, p)
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Notes
Think about the State Value. It is a theoretical construct, definition. Depending on the problem, there may be
various computational algorithms. It is an analogy to c∗(s,G) in search.
In a game, what State Values are known? Usually, only terminal states.

Think, for a moment, you are the only player. You can control every step. How would you compute the V (s) for

a given state s?



What is the Value of the root V (A)?
A

B

8 12 6

C

7 9 16

D

14 2 6

a1 a2 a3

b1 b2 b3

V (s) – value V of a state s : The best utility achievable from this state.

A: V (A) = 6

B: V (A) = 2

C: V (A) = 7

D: V (A) = 16

A,B,C ,D - states of the game. I start, values represent values
of terminal states, more is better for me - think about the (my)
money prize. Assume (strictly) rational players.
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Notes
The correct answer is

Important is that we need to evaluate from the bottom and then go up.



Two-ply game: max for me, min for the opponent. What is the best
action a?

A

B

3 12 8

C

2 4 16

D

14 5 2

a1 a2 a3

b1 b2 b3

3 2 2

3

a1 = argmax
a∈Actions(state=A)

V (Result(state = A, a))
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Notes
One move consists of two plies (half-moves).
I’m the player that starts (state A) and want to decide what to play; actions/plies a1, a2, a3 are the options. B, C,
D are the possible outcomes of my moves (plies). Now the opponent is about to play. The numbers in terminal
states denote my profit/utility.

Node evaluation: minimax in action.



Zero-Sum game: max for me, min for the opponent.
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minimax(s) =


utility(s,max) if is-terminal(s)

max
a∈actions(s)

minimax(result(s, a)) if to-play(s) = max

min
a∈actions(s)

minimax(result(s, a)) if to-play(s) = min
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Notes
Max step: I want to maximize my outcome.
Min step: Opponent wants to maximize his outcome which is equivalent to minimizing my outcome.

utility of a state is here the same as value of a state



Minimax algorithm

function minimax(state) returns an action
return argmax

a∈Actions(s)

min-value(result(state, a))

function min-value(state) returns a utility value v
if terminal-test(state) then return utility(state)

v ←∞
for all a ∈ actions(state) do

v ← min(v , max-value(result(state,a)))

function max-value(state) returns a utility value v
if terminal-test(state) then return utility(state)

v ← −∞
for all a ∈ actions(state) do

v ← max(v , min-value(result(state,a)))
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Notes

Before implementing it, try a few plies with pencil and paper; see the next slide.



A two ply game, down to terminal and back again . . .

function minimax(s) returns a
argmax

a∈Actions(s)

minval(res(s, a))

function minval(s) returns v
if terminal(s) then util(s)

v ←∞
for all a ∈ actions(s) do

v ← min(v , maxval(res(s, a)))

function maxval(s) returns v
if terminal(s) then util(s)

v ← −∞
for all a ∈ actions(s) do

v ← max(v , minval(res(s, a)))

MAX A

B C D

3 12 8 2 4 6 14 5 2

3 2 2

3
a1 a2

a3

b1
b2

b3 c1
c2

c3 d1
d2

d3

MIN
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Notes
Before going to the animation on the next slide, try to follow the algorithm by a pencil and paper.



A two ply game, recursive run
A

B

3 12 8

C

2 4 6

D

14 5 2

a1 a2 a3

b1 b2 b3

3 2 2

3

Is it like DFS or BFS?

What is the complexity? How many nodes to visit?

Can we do better? How?
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Notes
Efficiency/complexity: Chess b ≈ 35,m ≈ 100 . . .
Note on implementation: Natural implementation of this? Recursion.... Similar to DFS, but there you could
circumvent it by using stack for the frontier. Here you have to really dive deep using recursive calls.

• We cannot go(dive) to the end

• Can we save something?



Nodes (sub-trees) worth visiting

A

B

3 12 8

C

2 4 6

D

14 2 5

< −∞, 3 >< 3, 3 > < −∞, 2 > ?< −∞, 2 > < −∞, 14 >< −∞, 2 >

< −∞,∞ >< 3,∞ >< 3, 14 >< 3, 3 >
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Notes
Constraining the possible node values as search progresses...



α-β pruning

α: highest (best) value choice found so far for any choice along max (think ”at least”)
β lowest (best) value choice found so far for any choice along min (think ”at most”)

v value of the state

A

B

3 12 8

C

2 4 6

D

14 2 5

α = −∞
β =∞, v = −∞

α = −∞
β = 3, v = 3
α = −∞

β = 3, v = 3
α = 3

β =∞, v = −∞
α = 3

v = 2, . . .
α = 3

β =∞, v = −∞
α = 3

β = 14, v = 14
α = 3

v = 2, v < α, . . .

α = −∞, β =∞, v =?α = 3, β =∞, v = 3

In min-val: v ← 2
v ≤ α then: return v !
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Notes
Functions scope: max-value min-value . The terminal nodes are served/answered within the max-value
function.
Once a node (subtree) is exhausted (fully expanded), values are propagated towards the root.
In MAX nodes α is changing and β is stopping, in MIN nodes β is changing and α is stopping.
α value can be also interpreted (thought about) as “at least” and β as “at most”.



α-β pruning – How much can we save?

original: Time: O(bm)

▶ how to consider next actions/moves (in what order)?

▶ perfect ordering?
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Notes

It is clear that ordering of child nodes matters. It is depth-first search. Picking useless action first may be a huge
waste of time—a complete subtree beneath the current node will be explored.

Draw a tree of α-β search in case of perferct ordering. Effective branching factor becomes
√
b instead of b which

effectively doubles the depth that can be searched: Time: O(bm/2)



function alpha-beta-search(state) returns an action
v ← max-value(state, α = −∞, β =∞)
return action corresponding to v

function max-value(state,α, β) returns a utility value v
if terminal-test(state) return utility(state)
v ← −∞
for all a ∈ actions(state) do

v ← max(v , min-value(result(state,a),α, β))
if v ≥ β return v
α← max(α, v)

function min-value(state, α, β) returns a utility value v
if terminal-test(state) return utility(state)
v ←∞
for all a ∈ actions(state) do

v ← min(v , max-value(result(state,a),α, β))
if v ≤ α return v
β ← min(β, v)
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Notes

Take the tree from the previous slide and try to go step-by-step, watch α, β and v



Recall: Iterative deepening DFS (ID-DFS)
▶ Start with maxdepth = 1

▶ Perform DFS with limited depth. Report success or failure.

▶ If failure, forget everything, increase maxdepth and repeat DFS.

The “wasting” of resources is not too bad. Recall:

▶ Most nodes are at the deepest levels.

▶ Asymptotic complexity unchanged.

m
<latexit sha1_base64="4Gt0MY3yLD/OalBm/rL7VXeHCpc=">AAACJHicZVDLSgNBEJz1GeMzevQymAiewq4e9Ch68RjRJIIbQu9sbzJkZnaZmVXCkk/wqn/g13gTD178FicP8dXQUFR1Q1VFmeDG+v67Nze/sLi0XFopr66tb2xuVbZbJs01wyZLRapvIjAouMKm5VbgTaYRZCSwHQ3Ox3r7DrXhqbq2www7EnqKJ5yBddRVTda6W1W/7k+G/gfBDFTJbBrdircaxinLJSrLBBhzG/iZ7RSgLWcCR+UwN5gBG0APbx1UINF0ionXEd13TEyTVLtVlk7Ynx8FSGOGMnKXEmzf/NXG5LemUeE9S6UEFRdhApKLYYwJ5MKOitAkX/i3J5ucdAqustyiYlNLSS6oTem4IhpzjcyKoQPANHepKOuDBmZdkeUwA81V7MJTF7vs6gv+lvUftA7rwVHdvzysnp7NiiyRXbJHDkhAjskpuSAN0iSM9MgDeSRP3rP34r16b9PTOW/2s0N+jffxCWrApDw=</latexit>
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…………………

…

s
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Bonus for α-β pruning: previous “shallower” iterations can be reused for node ordering.
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Notes
α-β pruning is good. Still, in chess, for example, there is no way we can compute till the end.
Time is limited. We need to respond within a certain amount of time.
Possible solution: iterative deepening search. If I can’t complete the computation for the current depth, I can
use the previous shallower one that finished (also called anytime algorithm).



Imperfect but real-time decisions: iterative deepening

h-minimax(s, d) =


eval(s, max) if Is-Cutoff(s, d)

max
a∈actions(s)

h-minimax(result(s, a), d + 1) if to-play(s) = max

min
a∈actions(s)

h-minimax(result(s, a), d + 1) if to-play(s) = min

What do we want from the eval(s, p)?:

▶ For terminal states: eval(s, p) = utility(s, p)

▶ For non-terminal states: utility(loss, p) ≤ eval(s, p) ≤ utility(win, p)

▶ Fast enough
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Notes
Even with perfect ordering, α-β pruning is O(bm/2). It doubles the depth we can search. Often, we still cannot
go the very bottom of the search tree.

One problem left: can’t compute till the end and need to cut off. Need for Evaluation function.



Cutting off search into minimax and α, β search

Replace
if is-terminal(s) then return utility(s,p)
with:
if is-cutoff(s,d) then return eval(s,p)

Historical note: cutting search off earlier and use of heuristic evaluation functions proposed by
Claude Shannon in Programming a Computer for Playing Chess (1950).
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Notes

Cutting depends on d only, why we need s as the input parameter?



eval(s) – Evaluation functions

(Estimate of) State value for non-terminal states.
We need an easy-to-compute function correlated with “chance of winning”. For chess:

▶ f1(s) Material value for pieces—1 for pawn, 3 for knight/bishop, 5 for rook, 10 for queen.
(minus opponent’s pieces)

▶ f2(s) Finetuning: 2 bishops are worth 6.5; knights are worth more in closed positions...

▶ Other features worth evaluating: controlling the center of the board, good pawn structure
(no double pawns), king safety...

▶ fi (s) = · · · We can create many. How to combine them?

Eval(s) = w1f1(s) + w2f2(s) + · · ·wnfn(s)

How to find/compute proper weights?
How to find/create fi (s)?
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Notes
For many problems it is not so easy to find/construct a proper function. We may try more functions and combine
them conveniently.

f1(s) = number of white pawns− number of black pawns

Weighted sum:
Eval(s) = w1f1(s) + w2f2(s) + · · ·wnfn(s)

How to tune weights wi?

• Look (read) into (abundant) chess literature.

• Ask experts.

• Machine analysis of historical records - machine learning .

• We will talk about learning linear classifiers, weights, later in this course.

• New: have the computer play against itself and learn everything himself. See AlphaZero (2017) - learned
to play chess, Go, and shogi like this, achieving superhuman level of play within 24 hours.

If we do not know the individual functions, is there a way for creating them? Deep Convolution Nets! Yeah!

How to get training data for supervised learning? More later.



eval(s) – Problems
What if something important happens just after the cut – in the next ply?

(b) White to move(a) White to move

Additional improvements:

▶ “Killer moves”—moves that prevent oponent to play a very good move.
▶ Quiescence search – EVAL function should be applied only once things calm down.

During capturing of pieces, depth should be locally increased.
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Cutting search at a wrong moment – im-
portant moves/changes are beyond horizon.
Think about the two situations – states sa, sb
on the right. They are almost indentical. The
only difference is the position of white rook,
see bottom right corner. Very likely:

Eval(sa) ≈ Eval(sb)

for many possible Eval functions.
(b) White to move(a) White to move

A good heuristics – which moves to be considered first – may help a lot. Remember perfect ordering from α-β
pruning?

Killer moves/heuristics essentially improves efficiency of α-β pruning. Killer heuristing ranks certain moves high.

More about Killer moves and Killer heuristics, see e.g. https://www.chessprogramming.org/Killer Heuristic

https://www.chessprogramming.org/Killer_Heuristic


Horizon effect

Pushing unavoidable loss deeper in tree by a
delaying tactics. We know it is useless but
does the machine?
See the situation on right. Black is on move,
her bishop is surely doomed. However, the in-
evitable loss can be postponed by moving her
pawns and checking the white king. Depend-
ing on the searchable depth this may put the
loss over the horizon and moving pawns may
look promising.

62 Chapter 5. Adversarial Search

a     b    c    d    e     f     g    h

1 

2 

3 

4 

5 

6 

7 

8

Figure 5.9 FILES: figures/horizon.eps (Tue Nov 3 16:23:03 2009). The horizon effect. With
Black to move, the black bishop is surely doomed. But Black can forestall that event by checking the
white king with its pawns, forcing the king to capture the pawns. This pushes the inevitable loss of the
bishop over the horizon, and thus the pawn sacrifices are seen by the search algorithm as good moves
rather than bad ones.
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The horizon effect is difficult to mitigate. Singular extension may help. It is a move that is clearly better

than others at this position. Once discovered in the search tree, remember it and use whenever appropriate.



Computer play vs. grandmaster play

▶ Computers are better since 1997 (Deep Blue defeating Garry Kasparov).
▶ The way they play is still very different: “dumb”, relying on “brute force”.

▶ Deep Blue examined 200M positions per second.
▶ In some cases, depth of search was 40 ply.

▶ Grandmasters do not excel in being able to compute very deep—many moves ahead.
▶ They play based on experience: super-effective pruning and evaluation functions.
▶ They consider only 2 to 3 moves in most positions (branching factor).
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Monte Carlo Tree Search (MCTS)

▶ Simulate from state s.

▶ V (s) average utility from the simulations

▶ Pure randomness may be not enough.

▶ Selection policy.

▶ Exploration vs. Exploitation (see RL in few weeks)

▶ Combine MCTS with evaluation heurstics.

▶ Learn from available game recordings.
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Notes

In simulation, we take only one action. Hence, we can simulate very deep, possibly to the end. However, number

of variants grows exponentially, we already know this.



Adversarial search - Summary

▶ Recursive algorithm – repeating What–if

▶ Search tree too huge – cutting, sorting candidate branches

▶ Value of a state V (s, p) = max
s′∈children(s)

V (s ′, p)

▶ V (s, p) estimate for non-terminal states

▶ utility(loss, p) ≤ eval(s, p) ≤ utility(win, p)
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References and further reading

Many images, including the chess plates are from Chapter 5, “Adversarial search” in [1].
Notation has been modified according to the new edition [2]; Chapter 6, “Adversarial search
and games”. Connection to Reinforcement Learning that comes in few weeks can be easily
seen in section 1.5 in [3].
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Prentice Hall, 4th edition, 2021.

[3] Richard S. Sutton and Andrew G. Barto.
Reinforcement Learning; an Introduction.
MIT Press, 2nd edition, 2018.
http://www.incompleteideas.net/book/the-book-2nd.html.
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