Problem solving by search Finding the optimal sequence of states/decisions/actions

Tomáš Svoboda, Petr Pošík
Vision for Robots and Autonomous Systems, Center for Machine Perception
Department of Cybernetics
Faculty of Electrical Engineering, Czech Technical University in Prague

February 28, 2024

Problems to solve

[^0]Understanding the problem is the key, DALL-E.

DALL-E creations after correctly explaing the problem itself.

Outline

- Search problem. What do you want to solve?
- State space graphs. How do you formalize/represent the problem? Problem abstraction.
- Search trees. Visualization of the algorithm run.
- Strategies: which tree branches to choose?
- Strategy/Algorithm properties. Memory, time, ...
- Programming infrastructure.

Example: Traveling in Romania

Notes

Ok, start with a simple one, almost everybody knows about the navigation - path planning problem. Waze, Garmin, ... Here, the problem can be transferred into a graph quite directly - a map is a kind of a graph, states are location in a city.
Can you think about more problems?
For example:

- Touring problems. Special case: Traveling salesperson problem - each city must be visited exactly once.
- Planning robot movements - mobile robot or manipulator.
- VLSI (chip) layout.
- ...

Traveling Example: State and Actions

Goal:
be in Bucharest
Problem formulation:
states: position in a city (cities)
actions (decisions): select a road
Solution:
Sequence of cities (path)
(sequence of actions/decisions [2])
Optimality - Cost, Loss, Utility,
Energy, time, tolls, ...

Notes
Classical problem from the Book [2], we use it, too.
states and actions will be frequently discussed in several lectures and algorithms. It is important to fully understand them. At crossings, we need to decide about the next road - this is the action. We assume that we reach the next crossing - result of the action.

Example: The 8-puzzle

Goal State

```
states?
```

actions?
solution?
cost?

Also known as $n-1$ puzzle.
Toy problem (3.2.1) from [2].

A Search Problem

- State space (including Start/Initial state): position, board configuration,
- Actions : drive to, Up, Down, Left ...
- Transition model : Given state and action result state (and cost or reward)
- Goal test : Are we done?

[^1]
Discrete State Space

State space graph: a representation of a search problem

- States $s \in \mathcal{S}=\{\mathbf{S}, \mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathbf{G}\}$ (finite set)
- Arcs represent actions a, for each state $s, a \in \mathcal{A}(s)$ (\mathcal{A} is also finite)
- State transition function $s^{\prime}=\operatorname{result}(s, a)$
- Start (initial) state $s_{0} \in \mathcal{S}, s_{0}=\mathbf{S}$.
- Goal set $\mathcal{S}_{G} \subset \mathcal{S}$.

Each state occurs only once in a state (search) space.

Notes

Formalizing a real world problem - (creating) a state space graph - could be a problem in itself. I put creating into brackets as it may be also infinite.
Close connection to graph algorithms like Dijkstra, Floyd-Warshall.

- Graph algorithms assume complete info about the graphs - the main input.
- For many real-world problems, the graph is not known in advance.
- The state space graph is revealed during the search. The graph serves as an abstraction - mental model rather than as an actual data representation.
- Many real world problems have too many vertices, think about $n-1$ puzzle or chess, number of possible configurations is enormous.
- A solution can be actually quite shallow.
agent - problem dialog (a programmer's viewpoint)
(search) agent problem - env

$10 / 31$
$B F S, Q$ is FIFO data structure (queue)

1: function FORWARD_SEARCH

2 :
3:

9:
10
11:
12:
13:

return Failure

 Resolve duplicate s^{\prime}
else

 Mark s^{\prime} as visited Q.insert(s, s^{\prime}) $p, s \leftarrow Q \cdot \operatorname{pop}()$parent $[s] \leftarrow p$
if $s \in \mathcal{S}_{G}$ then return Success
for all $a \in \mathcal{A}(s)$ do
$s^{\prime} \leftarrow \operatorname{result}(s, a)$
if s^{\prime} not visited then Q.insert($\left.{ }_{-}, s_{0}\right)$ and mark s_{0} as visited while Q not empty do

- What does the Q.pop() function/method do?
- Do we need to resolve duplicates somehow? If not, why?
- Could we stop and report success earlier?
- Howe to create the path?

This is the key slide to understand the difference between graph problem and tree search.
Create the search tree by pencil, think about Q and visited (whatever it may be).
How would you name the data structure Q? What kind of data structure?
When building the search tree:

- white - result of transition
- gray - visited and inside Q
- dark gray - visited and explored (outside Q)
- (made) invisible - forgotten

Search algorithm partitions state space into 3 disjoint sets

Find good names

Guaranteed to find a solution (if exists)? Complete?

- Guaranteed to find the least cost path? Optimal?
- How many steps - an operation with a node? Time complexity?

How many nodes to remember? Space/Memory complexity?
How many nodes in a (search) tree? What are tree parameters?

Draw a (symbolic-think about a triangle) sketch of a (search) tree. It may grow upwards or downwards. How would you characterize/parametrize size of a tree.

- Depth d of a node in the tree.
- Max-Depth of the tree m. Can be ∞.
- (Averege) Branching factor b.
- s denotes the depth of the shallowest Goal.
- How many nodes in the whole tree?

Strategies

How to traverse/build a search tree?

- Depth d of a node in the tree.
- Max-Depth of the tree m. Can be ∞.
- (Average) Branching factor b.
- s denotes the depth of the shallowest Goal .
- How many nodes in the whole tree?

1 node
b nodes
b^{2} nodes 14/31

It is perhaps worth to remember that the search tree is built af the algorithm goos. Or better said, the tree is a human friendly representation of the machine run. Even small graphs (problems) may result in a large tree depending on the search algorithm.

BFS properties

Think about the Complexities in terms of $|\mathcal{S}|$ and $|\mathcal{A}|$ (Graph theory: vertices, edges)

DFS, Q is LIFO data structure (stack)

```
function FORWARD_SEARCH
        Q.insert( \({ }_{-}, s_{0}\) ) and mark \(s_{0}\) as visited
        while \(Q\) not empty do
            \(p, s \leftarrow Q \cdot \operatorname{pop}()\)
            parent[s] \(\leftarrow p\)
            if \(s \in \mathcal{S}_{G}\) then return Success
            for all \(a \in \mathcal{A}(s)\) do
            \(s^{\prime} \leftarrow \operatorname{result}(s, a)\)
            if \(s^{\prime}\) not visited then
                    Mark \(s^{\prime}\) as visited
                    Q.insert( \(s, s^{\prime}\) )
        else
            Resolve duplicate \(s^{\prime}\)
        return Failure
```


Do we need to resolve duplicates somehow? If not, why?

DFS properties

Think about the Complexities in terms of $|\mathcal{S}|$ and $|\mathcal{A}|$ (Graph theory: vertices, edges)

- Start with maxdepth = 1
- Perform DFS with limited depth. Report success or failure.
- If failure, forget everything, increase maxdepth and repeat DFS

Is it not a terrible waste to forget everything between steps?

Notes
Really, how much do we repeat/waste? The "upper levels", close to the root, are repeated many times. However, in a tree, most nodes are the bottom levels and nr. nodes traversed is what counts. More specifically, for a solution at depth s, the nodes on the bottm level are generated only once, those on the next-to-bottom level $2 x$... children of the root are generated $s \times$. Compare the number of nodes generated ID-DFS vs. BFS:

$$
\begin{gathered}
N(\text { ID-DFS })=(s) b+(s-1) b^{2}+(s-2) b^{3}+\cdots+(1) b^{s} \\
N(\mathrm{BFS})=b+b^{2}+b^{3}+\cdots+b^{s}
\end{gathered}
$$

Try some calculations for various s and b. For $b=10$ and $d=5$:

$$
N(\text { ID-DFS })=50+400+3000+20000+100000=123450
$$

(Example from [2].)

$$
N(\text { BFS })=10+100+1000+10000+100000=111110
$$

Uniform Cost Search (Dijkstra), Q is priority queue 1

1: function FORWARD_SEARCH	
2:	Q.insert $\left(-, s_{0}, 0\right)$ and mark s_{0} as visited
3:	while Q not empty do
4:	$p, s, \ldots \leftarrow$ Q.pop_first ()
5:	parent $[s] \leftarrow p$
6:	if $s \in \mathcal{S}_{G}$ then return Success
7:	for all $a \in \mathcal{A}(s)$ do
8:	$s^{\prime}, c \leftarrow$ result (s, a)
9:	if s^{\prime} not visited then
10:	Mark s^{\prime} as visited
11:	Q.insert $\left(s, s^{\prime}\right.$, cost_from_start $)$
12:	elsest
13:	Resolve duplicate s^{\prime}
	return Failure

- Do we need to resolve duplicates somehow? If not, why?
- How is the cost_from_start computed?
- Why is it (sometimes) called Uniform cost search?

UCS properties

Complete?
Optimal?
Complexities?

Parts of the (complete) search tree repeat, but with different costs

Node selection, take argmin $f(n)$. Search Node: $n=(p, s$, cost_value $)$
Selecting next node to explore (pop operation):

$$
\text { node } \leftarrow \underset{n \in \mathbb{Q}}{\operatorname{argmin}} f(n)
$$

What is $f(n)$ for DFS, BFS, and UCS?

- DFS:
- $f(n)=n$.cost_from_start
- BFS:
- $f(n)=n$.depth
- UCS:
- $f(n)=-n$.depth

The good: (one) frontier as a priority queue (I.e., priority queue will work universally. Still, stack (LIFO) and queue (FIFO) are (conceptually) the perfect data structures for DFS and BFS, respectively.)
The bad: All the $f(n)$ correspond to the accumulated cost from start to n, cost_from_start

- DFS: $f(n)=-n$. depth
- BFS: $f(n)=n$.depth
- UCS: $f(n)=n$. path_cost

Do humans look back when planing path? Is looking back important at all? If yes, when?

How far are we from the goal cost-to-go ? - Heuristics

- A function that estimates how close a state is to the goal.
- Designed for a particular problem.
- $h(s)$ - it is function of the state (attribute of the search node)
- It is often shortened as $h(n)$ - heuristic value of node n.

What happens if $h(s)=$ true cost?

Example of heuristics

Notes
Straight-line distance to Bucharest.
Illustration of greedy failing: Imagine going from lasi to Fagaras. Neamt will be chosen for expansion. This will add lasi back. lasi is closer to Fagaras than Vaslui is and will be expanded again. Infinite loop... (3.5.1. in [2])

Greedy, take the $n^{*}=\operatorname{argmin}_{n \in Q} h(n)$

What is wrong (and nice) with the Greedy?

Also called "Greedy best-first search" [2].
What will happen in this example:

1. Expand " S ". Add " A " to frontier.
2. Expand "A". Add "B", "D", "E".
3. Expand "E" $(h=1)$. Get " G ".

Wrong:

- not optimal
- not complete (tree search version) (Can be shown on the Romania example - go back.)
- (graph search version is complete only in finite state spaces)

Nice: it is simple.

A* combines UCS and Greedy *

UCS orders (path) cost_from_start $g(n)$
Greedy uses heuristics (goal proximity) $h(n)$
A* orders nodes by: $f(n)=g(n)+h(n)$

Trace the search algorithm on the paper. Does it find the shortest path?

Is A^{*} optimal?

What is the problem?
${ }^{2}$ Graph example: Dan Klein and Pieter Abbeel

Try to answer the question before going to the next slide.

What is the right $h(A)$?

A: $0 \leq h(A) \leq 4$
B: $h(A) \leq 3$
C: $0 \leq h(A) \leq 3$
D: $0 \leq h(A)$

Negative $h(n)$ does not break the admissibility property but $h($ Goal $)=0$ must be kept, always.
For a discussion, see, e.g.
https://stackoverflow.com/questions/30067813/are-heuristic-functions-that-produce-negative-values-inadmissible

Admissible heuristics

A heuristic function h is admissible if:

$$
\begin{aligned}
h(n) & \leq \operatorname{cost}\left(n . \text { state, Goal }{ }_{\text {nearest }}\right) \\
h(\text { Goal }) & =0
\end{aligned}
$$

Even if negative heuristic value is allowed on the way to goal, does it make sense? How would you intepret $h(n)=0$? Is it a meaningful minimum? Why?

Consistent heuristic

function FORWARD_SEARCH

2: \quad Q.insert($-, s_{0}, 0$) and mark s_{0} visited
3: \quad while Q not empty do
4: $\quad p, s_{-} \leftarrow Q \cdot \operatorname{pop}()$
5: \quad parent $[s] \leftarrow p$
6: \quad if $s \in \mathcal{S}_{G}$ then return Success
7:
8:
9:
10
11:
for all $a \in \mathcal{A}(s)$ do
$s^{\prime}, c \leftarrow \operatorname{result}(s, a)$
if s^{\prime} not visited then

Mark s^{\prime} as visited
Q.insert(s, s^{\prime}, cost_from_start $+h\left(s^{\prime}\right)$)
else
Resolve duplicate s^{\prime}
return Failure

What would be the proper $h(A)$?
Consider other $h(s)$ fixed.
A: $h(A)=1$
B: $h(A)=2$
C: $1 \leq h(A) \leq 2$
D: $0 \leq h(A) \leq 1$

Consistent heuristics

$31 / 31$
Notes
Our heuristic was admissible.
With tree search it would have worked. It would have expanded C and found the alternative, cheaper path. For graph search, the problem is the $A \rightarrow C \rightarrow G$ subgraph where the consistent heuristic condition is violated. The general condition means we have two constraints for (A) for this particuar graph:
$h(S)-h(A) \leq c(S, A)$
$h(A)-h(C) \leq c(A, C)$
Yes, all consistent heuristics are also admissible. Btw., it is not easy to invent a heuristics that is admissible but not consistent.

- State space graph vs. Search Tree
- Search strategies - properties, complexities
- Evaluating states - cost_from_start and cost_to_go
- Effectivness - adding heuristic estimates of cost_to_go
- Not all heuristics are equally good (admissibility, consistence, informativeness)

References, further reading
Some figures from [2]. Chapter 2 in [1] provides a compact/dense intro into search algorithms.
[1] Steven M. LaValle.
Planning Algorithms.
Cambridge, 1st edition, 2006.
Online version available at: http://planning.cs.uiuc.edu.
[2] Stuart Russell and Peter Norvig.
Artificial Intelligence: A Modern Approach.
Prentice Hall, 4th edition, 2021.
http://aima.cs.berkeley.edu/.

[^0]: ${ }^{1}$ CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=228623

[^1]: Notes
 We will use the terminology throught the next 5-6 lectures; also for Markov (Sequential) Decision Processes, Reinforcement Learning.
 Make a mental test: You are a robot, going from home to school. What would be states, actions, transition model, goal test?
 Transition model can be also understood as a mapping between actions and results/outcome.

