
1B35APO Computer Architectures

Computer Architectures

I/O subsystem 2

Pavel Píša, Richard Šusta,
Michal Štepanovský, Miroslav Šnorek

Czech Technical University in Prague, Faculty of Electrical Engineering

Ver.1.10

2B35APO Computer Architectures

Lecture outline

● I/O subsystem – final part
● Memory mapped I/O
● PCI as seen by PC system
● PCI device controller

● Secondary memory – disk
● Speedup and reliability
● RAID – Redundant Array of Inexpensive/

Independent Disks

3B35APO Computer Architectures

Memory-mapped I/O

● The idea: Processors can use the interface used for
memory access (MIPS: lw, sw instructions) to
communicate with input/output (I/O) devices such as
keyboards, monitors, and printers.

Common address space
for I/O and memory

memory-mapped
peripheral (I/O)
registers

Main/system
memory

4B35APO Computer Architectures

Example: Speech Synthesizer – Hardware

● Words are composed of one or more allophones, the
fundamental units of sound. The 64 different allophones
appear in the English language.

● Problem: Integrate HW support and write synthesizer driver
● Simplified assumption: 5 units (allophones) are placed at

address 0x10000000. They are read by driver and sent to
SP0256 synthesizer chip.

http://little-scale.blogspot.cz/2009/02/sp0256-al2-
creative-commons-sample-pack.html

5B35APO Computer Architectures

Example: Speech Synthesizer – Integration

● When the SBY output is 1, the speech chip is standing by and is ready to
receive a new allophone. On the falling edge of the address load input
ALD#, the speech chip reads the allophone specified by A6:1.

● We arbitrarily have chosen that the A6:1 port is mapped to address
0xFFFFFF00, ALD# to 0xFFFFFF04, and SBY to 0xFFFFFF08.

6B35APO Computer Architectures

The device driver controls the speech synthesizer by sending an appropriate series
of allophones over the memory-mapped I/O interface. It follows the protocol
expected by the SPO256 chip, given below:

Example: Speech Synthesizer – Driver

1.Set ALD# to 1

2.Wait until the chip asserts SBY
to indicate that it is finished
speaking the previous
allophone and is ready for the
next

3.Write a 6-bit code selecting
allophone to A6:1

4.Reset ALD# to 0 to initiate
speech

This sequence can be repeated for
any number of allophones and
speech is synthesized

7B35APO Computer Architectures

Example: Speech Synthesizer – Driver on MIPS

1.Set ALD# to 1

2.Wait until the chip asserts
SBY to indicate that it is
finished speaking the
previous allophone and is
ready for the next

3.Write a 6-bit allophone
code to A6:1

4.Reset ALD# to 0 to initiate
speech

init:
 addi t1,$0,1 // t1 = 1 (value to write to ALD#)
 addi t2,$0,20 // t2 = array size ×4 (20 bytes)
 lui t3,0x1000 // t3 = array base address
 addi t4,$0,0 // t4 = 0 (array index)
start:
 sw t1,0xFF04($0) // ALD#=1
loop:
 lw t5,0xFF08($0) // t5 = SBY (monitor state)
 beq $0,t5,loop // loop until SBY == 1
 add t5,t3,t4 // t5 = address of allophone
 lw t5,0(t5) // t5 = allophone
 sw t5,0xFF00($0) // A6:1 = allophone
 sw $0,0xFF04($0) // ALD# = 0 (to initiate speech)
 addi t4,t4,4 // increment array index
 beq t4,t2,done // all allophone in array done?
 j start // repeat
done:

Instead of polling, the processor could use an interrupt connected to SBY. When SBY rises,
the processor stops what it is doing and jumps to code that handles the interrupt.

Notice polling loop to check for
ready to speak condition. CPU is
blocked to do useful work.

8B35APO Computer Architectures

Generalized summary based on example

● There are two methods for I/O devices (peripherals) access
● memory mapped I/O
● I/O specialized instructions (if implemented/available) – they use address

space independent of memory access
● There are address range(s) dedicated to device access in the case of

memory mapped I/O. Reads/writes from/to these addresses are
interpreted as commands or data transfers from/to peripheral devices.
Memory subsystem is informed about I/O ranges and ignores these
accesses. I/O devices/bus controller is aware of addresses assigned to
it and fulfills requests.

● The CPU can be informed about I/O device request for service by:
● repeated monitoring of its ready condition (status register) – polling
● interrupt request – interrupt-driven I/O – it is asynchronous to the actual

program execution (is initiated by device when it needs servicing)
● Have you noticed address decoder function?
● What about caches in the case of I/O range/region access?

9B35APO Computer Architectures

PCI Continued

10B35APO Computer Architectures

Some points from last lecture to remember

PCI
device

INTA#

INTB#

INTC#

INTD#

AD[31::00]

C/BE[3::0]#

FRAME#

TRDY#

IRDY#

STOP#

DEVSEL#

IDSEL#

PERR#

SERR#

REQ#

GNT#

CLK#

RST#

address
and data

PAR

interface
control

error
reporting

access
arbitration

(master only)

system

There will be test during week 9

Memory read timing

Why is sending byte bit-by-bit (serial) is faster? Signal interferences, differential
signaling, clock skew and different paths lengths, reflection and common voltage.

11B35APO Computer Architectures

PCI devices examples

12B35APO Computer Architectures

Computer startup procedure (from PCI perspective)

1. CPU is directed by BIOS code to retrieve device identification for each PCI slot.
This is done by read cycle from PCI configuration space. The read (topological)
address decodes to IDSEL (Initialization Device Select) signal to the
corresponding PCI slot (bus/device/function) + register number

2. Each device identification (Vendor ID, Device ID) and request for I/O resources
(sizes of I/O ports and memory ranges and interrupt link (A/B/C/D) use by function)
are read. All this information is available in card/slot configuration space. This
search is done together with bus numbers assignment when bridge is found.

3. BIOS allocates non-overlapping ranges to the devices. It ensures that there is no
collision with system memory and I/O. Interrupts can be, and are, shared but
sharing level can be balanced. Allocated ranges/resources are written to the
corresponding device/function Base Address Register (BAR). They usually stay
constant till computer power off but OS can reconfigure them under certain
circumstances.

4. Operating System is loaded and given control. OS reads devices identifications
again from PCI configuration space and locates device drivers according to VID:PID
(+class,+subsystem IDs).

● This process of device “searching” is called enumeration and is used in some form
by each PnP aware bus (PCI, USB, etc.).

13B35APO Computer Architectures

PCI bus hierarchy

DI D2

1
Bridge

DI D2

DI

DI D2

CPU

Bus 0

Bus 1

Bridge Bridge
3 2

Bus 4

Bridge
4

Bus 2Bus 3

Subordinate=4

Primary Bus = 0
Secondary Bus = 1

Subordinate=2

Primary Bus = 1
Secondary Bus = 2

Subordinate=4

Subordinate=4

Primary Bus = 1
Secondary Bus = 3

Primary Bus = 3
Secondary Bus = 4

14B35APO Computer Architectures

PCI BUS address space(s)

● PCI bus recognizes three address spaces:
● memory – address is 32 or 64-bit
● I/O – exists mainly for compatibility with x86 specific I/O ports and

I/O instructions concept
● configuration space – 256 bytes are assigned to each device

function in the basic PCI bus variant, 8 functions per
device/slot/card and 32 devices per bus can exist in maximum.

● Each end-point device can implement up to 6 Base Address
Registers (BARs) which can define up to 6 independent regions
(address ranges) – each for I/O or memory mapped access. For
64-bit ranges BARs are used in pairs. The requested size is
obtained by writing ones into BAR bits and reading back where
BAR's bits corresponding to the range size are fixed on zero.
LSB bits then informs about address space type. Then
BIOS/OS writes allocated region start address back to the BAR.

15B35APO Computer Architectures

PCI configuration space address and access

● There are two mechanisms of accessing configuration space
on x86 PC:

● Through well known I/O ports
0xCF8 – PCI CONFIG_ADDRESS (write address first, A0:1=0)

0xCFC – PCI CONFIG_DATA (read/write corresponding byte,
16-bit or 32-bit entity, address bits 0 and 1 added to 0xCFC)

● Enhanced Configuration Access Mechanism (ECAM) –
required for PCI express – 4kB per slot, memory mapped

071131 10 8 2 1
00Func RegisterDevice Select

071131 10 8 2 1
0Func Register 1Reserved DeviceBus

24 23 16 15
Topological/geographical BDF address

1 from n original IDSEL activation address – not used today

16B35APO Computer Architectures

PCI Device Header
31 1516 0

Device Id Vendor Id
CommandStatus

Class Code

00h
04h

08h

24h

10h

3Ch

Base Address Registers

Line Pin

Rev ID

BIST Hdr.Type Max.Lat. Cache LS

3ChCap ptr

0131

Reserved

Base Address 1

Base Address for PCI I/O Space

2

234

Base Address

Typeprefetchable

Base Address for PCI Memory Space

01

0

31

Device's PCI header is located in PCI bus
configuration space

17B35APO Computer Architectures

PCI Device Header Type 0 – End-point device

Device ID Vendor ID

Status Command

Class Code Revision ID

BIST Header Type Master Lat. Timer Cache Line Size

Base Address Registers
6 max

Cardbus CIS Pointer

Subsystem ID Subsystem vendor ID

Expansion ROM Base Address

Reserved Capabilities Pointer

Reserved

Max_Lat Min_Gnt Interrupt Pin Interrupt Line

Byte
Offset

00h

04h

08h

0Ch

10h

14h

18h

1Ch

20h

24h

28h

2Ch

30h

34h

38h

3Ch

18B35APO Computer Architectures

PCI Device Header Type 1 – Bus Bridges
Byte
Offset

00h

04h

08h

0Ch

10h

14h

18h

1Ch

20h

24h

28h

2Ch

30h

34h

38h

3Ch

Reserved Capabilities Pointer

Expansion ROM Base Address

Bridge Control Interrupt Pin Interrupt Line

Device ID Vendor ID

Status Command

Class Code Revision ID

BIST Header Type Master Lat. Timer Cache Line Size

Base Address Register 0

Base Address Register 1

Secondary Latency
Timer

Subordinate Bus
Number

Secondary Bus
Number

Primary Bus
Number

Secondary Status I/O Limit I/O Base

Prefetchable Memory Limit Prefetchable Memory Base

Prefetchable Base Upper 32 Bits

Prefetchable Limit Upper 32 Bits

I/O Limit Upper 16 Bits I/O Limit Base Upper 16 Bits

Memory Limit Memory Base

19B35APO Computer Architectures

I/O address space (x86 in, out instructions)

BAR 0
BAR 1
BAR 2
BAR 3
BAR 4
BAR 5

Mem

I/O

Mem

Memory space:
common for I/O and
system memory

BAR 0
BAR 1
BAR 2
BAR 3
BAR 4
BAR 5 Mem

PCI card #0

PCI card #1

If CPU writes to
this location, write
is recognized by
PCI device/card
#0. Its effect
depends on card
logic. I.e. for
graphic card
frame-buffer it
behaves same as
regular memory,
but data are seen
on the screen.

Mem

I/O

Memory

PCI device/card is informed
about assigned addresses …

BAR registry

data
data
data

data

data
data

20B35APO Computer Architectures

I/O address space (x86 in, out instructions)

BAR 0
BAR 1
BAR 2
BAR 3
BAR 4
BAR 5

Mem

I/O

Mem

Memory space:
common for I/O and
system memory

BAR 0
BAR 1
BAR 2
BAR 3
BAR 4
BAR 5 Mem

PCI card #0

PCI card #1

If CPU writes to
this location, write
is recognized by
PCI device/card
#0. Its effect
depends on card
logic…

Mem

I/O

Memory

PCI device/card is informed
about assigned addresses …

BAR registry

data
data
data

data

data
data

This is
physical

/bus
address

Study mmap()
function
manual.

Do not forget to
munmap()…

mmap(BAR1)

base addr. +4
mmap(BAR0)

mmap(BAR1)

CPU/code use
virtual

addresses and
are translated

by MMU !!!

21B35APO Computer Architectures

Linux /proc/bus/pci directory

● Each directory represents one PCI bus (with its number
assigned) and each file mirrors one PCI device function PCI
header (the first 64 bytes)

● Homework: Write C/C++ language program that can traverse and
open files in given directory and its subdirectory and searches for
given sequence of four characters (4B) at each file start. The full
path of the first matching file is printed.

22B35APO Computer Architectures

Linux /proc/bus/pci directory – command lspci -vb

00:00.0 Host bridge: Intel Corporation 82X38/X48 Express DRAM Controller
 Subsystem: Hewlett-Packard Company Device 1308
 Flags: bus master, fast devsel, latency 0
 Capabilities: [e0] Vendor Specific Information <?>
 Kernel driver in use: x38_edac
 Kernel modules: x38_edac

00:01.0 PCI bridge: Intel Corporation 82X38/X48 Express Host-Primary PCI
Express Bridge
 Flags: bus master, fast devsel, latency 0
 Bus: primary=00, secondary=01, subordinate=01, sec-latency=0
 I/O behind bridge: 00001000-00001fff
 Memory behind bridge: f0000000-f2ffffff
 Kernel driver in use: pcieport
 Kernel modules: shpchp

00:1a.0 USB Controller: Intel Corporation 82801I (ICH9 Family) USB UHCI
Controller #4 (rev 02)
 Subsystem: Hewlett-Packard Company Device 1308
 Flags: bus master, medium devsel, latency 0, IRQ 5
 I/O ports at 2100
 Capabilities: [50] PCI Advanced Features
 Kernel driver in use: uhci_hcd

23B35APO Computer Architectures

PCI Device Card Interface Design Example

● The card requires three address ranges
● Two memory mapped, 4kiB each
● One I/O space mapped, size 16B

● Design steps
● Analyze bus cycles sequences that should be recognized
● Remember electronics (CPU, bus) building blocks
● Define interface structure
● Implement address decoder
● Implement control logic
● Implement data path
● And then think what the card should be used for

– NO, regular design starts from function and its needs

24B35APO Computer Architectures

Bus Cycle (Transaction)

25B35APO Computer Architectures

Interface Building Blocks

● Data bus and block to control datapath (enable,
direction)

● Address signals, address decoder
● Command decoder
● Control logic
● (Interrupt signal generator – INT#)

● Only when card uses interrupt – but highly
desirable

● Logic to request bus control (initiator/master) role from
the bus arbiter
● Only if card is/can act as master (bus master DMA

etc.)

26B35APO Computer Architectures

PCI Device/Card Interface

data

Address decoder
32 bits

Datapaths control

AD
BAR addr

C/BE# Command
decoder4 bity

Control logic

FRAME#

TRDY#

IRDY#
and more

reg index/addr

27B35APO Computer Architectures

Address Decoder

● The basic block is address comparator
● It compares significant bits (according to the region size)

of the address sent on bus with the address stored in one
of the base address registers (one comparator for each
BAR)

● Address is present on AD signals only in the first phase of
the bus cycle ⇒ the address has to be latched (stored) in
card's address register

● If block transfers are supported then address register has
to provide autoincrement function – it is realized by up
counter with parallel preset (LOAD)

● Consider relocable address decoder. Consider reduced
comparator – mirroring.

28B35APO Computer Architectures

Example of DIP Switch Programmed Address Decoder

SN74LS688N – 8-bit comparator
74LS138 – 3 to 1of8 decoder

29B35APO Computer Architectures

Configurable Address Decoder (i.e. BAR Based)

Address
register

COMP_MEM1KOMP_MEM2COMP_I/O

32 bits

20 bits

Config.
registers

20 bits28 bits
A[31:4]

LOAD
INC1
INC4

I/O range
selected
ADDRIO

ADDRMEM

12 bits
A[11:0]
to internal
logic

AD[1:0]

A[31:12]

AD[31:0]

30B35APO Computer Architectures

Configurable Address Decoder Signals

● ADDRIO
● Address matches I/O range

● ADDRMEM
● Address matches one of two memory mapped ranges

● Address register is a synchronous counter with parallel
synchronous preset

● LOAD – synchronous address load on the next rising edge
of the clocks

● INC1 – increment stored value/address by 1
● INT4 – increment stored value/address by 4

● AD[1:0] – informs internal logic about burst mode type

31B35APO Computer Architectures

Other Required Blocks

● Configuration space
● Register array (size 256B). All cells can be read, writes to

some registers/bits are ignored (i.e. BAR's low order bits)
● Parity check (generates PERR# signal)
● Error control, i.e. check for the address register/counter

overflow during continuous/burst transfer (generates
SERR# signal)

● Consider wait cycles logic TRDY# assignment etc.
● Address for memory reads/writes has to be 4 bytes aligned

(partial bus use/data validity can be controlled by C/BE[3:0]
signals) ⇒ address increment is 4 for memory accesses

● but for I/O byte wide accesses INC1 required as well

32B35APO Computer Architectures

Datapaths and their Control

● Data bus is bidirectional the interface requires ⇒
(bidirectional) transceiver with three-state outputs

● 8/16/32-bit data transfers the direction and the high
impedance state control is based on command type
(read/write) and on mask selecting valid octets of bits on the
bus C/BE#

33B35APO Computer Architectures

Datapath Interfacing and Separation

AD[31:0]

AD[31:24] AD[23:16] AD[15:8] AD[7:0]

C
/B

E

3
C

/B
E

2

C
/B

E

1
C

/B
E

0

R
D

W
R

34B35APO Computer Architectures

Pre-PCI Style I/O Port Realization Example

74LS244N - Edge Triggered Flip-Flop
74LS245N - Octal Bus Transceiver with 3-State Outputs

35B35APO Computer Architectures

PCI Command Decoder

● Command is latched into command register
● Command decoder is then realized as combinatorial logic
● Outputs are control signals which specify:

● data transaction direction
● transaction type

I/O operation, memory space operation, configuration access/
cycle, interrupt request/acknowledge

● Use of combinatorial decoder simplifies control logic design
● Compare with opcodes decode and arithmetic operation

specifications described in lecture “Processor”

36B35APO Computer Architectures

Command Decoder

Command
register

C/BE[3:0]#

LOAD_CMD

Command
decoder

37B35APO Computer Architectures

Command Decode – C/BE[3..0]# Meaning

C/BE[0::3]# Bus command (BUS CMD)

0000 Interrupt Acknowledge

0001 Special Cycle

0010 I/O Read

0011 I/O Write

0100 Reserved

0101 Reserved

0110 Memory Read

0111 Memory Write

1000 Reserved

1001 Reserved

1010 Configuration Read (only 11 low addr bits for fnc and reg + IDSEL)

1011 Configuration Write (only 11 low addr bits for fnc and reg + IDSEL)

1100 Memory Read Multiple

1101 Dual Address Cycle (more than 32 bits for address – i.e. 64-bit)

1110 Memory Read Line

1111 Memory Write and Invalidate

38B35APO Computer Architectures

Command Decoder Output Signals

● RD – read operation
● WR – write operation
● IO – operation targets I/O space
● MEM – operation targets memory space
● CONF – read/write from/to configuration space
● INT – command Interrupt Acknowledge

39B35APO Computer Architectures

Interface Control

● Detect start and end of a cycle
● Generates DEVSEL# if address recognized by

device/card, controls address register, command register
and decoder, monitors IRDY# signal (wait cycle inserted
by initiator – master) to inform card logic that given
transaction phase is prolonged

● Input signals are
● FRAME# – controls transaction start and transaction last

transfer phase
● IRDY# – initiator ready/wait request
● ADDRIO, ADDRMEM, MEM, IO

40B35APO Computer Architectures

Interface Control Realization

● Sequential circuit can be described/realized as finite state
machine

● PCI clock signal is used as clock input for designed FSM,
synchronous bus and control design

● Quiz:
● Should be design based on Moore FSM or Meally FSM or

it is not important?

41B35APO Computer Architectures

Quiz Answer

● The control logic design has to be Meally FSM, because
control signals have to be prepared even before first
rising clock of the PCI clock to select the right function of
address latch register and other components

● Design choice
● We consider all control signals in positive logic for

simplicity

42B35APO Computer Architectures

 Interface Controller/FSM Signals

● Output signals
● LOAD
● LOAD_CMD
● DEVSEL#
● VALID_TRANS
● INC1, INC4, PAUSE (wait/phase hold for internal logic)

● Design choices
● only active output signals are shown in the transition graph
● ADDRESS = ((ADDRIO==1 and IO==1) or (ADDRMEM==1

and MEM==1))

43B35APO Computer Architectures

PCI Interface FSM

Q0

Q1

FRAME# = 1
FRAME# = 0 / LOAD=1,
LOAD_CMD=1

FRAME# = 1 and ADDRES=1 /
DEVSEL# = 0, VALID_TRANS=1

Q3

FRAME# = 1

FRAME# = 0

FRAME# = 0
and ADDRESS=0

IRDY# = 1 /
PAUSE = 1

Q2

FRAME# = 0 and ADDRMEM=1 and
MEM=1 / DEVSEL# = 0,
VALID_TRANS=1, INC4=1

IRDY# = 1 / PAUSE = 1,
VALID_TRANS = 1

FRAME# = 0, ADDRIO=1 /
INC = 1,VALID_TRANS=1

FRAME# = 0, ARDMEM = 1 /
INC4 = 1, VALID_TRANS=1

FRAME# = 1 /
VALID_TRANS=1

FRAME# = 0 a ADDRIO=1 and
IO=1/ DEVSEL# = 0,
VALID_TRANS=1, INC=1

FRAME# = 1 and ADDRESS=0

44B35APO Computer Architectures

Data Path Direction and HiZ Control

● The data path transceiver direction and high impedance
state control can be derived from signals

● VALID_TRANS and WR
● VALID_TRANS and RD

generated by command decoder

45B35APO Computer Architectures

Disk – Another Critical Memory Hierarchy Component

● Enhancement required
● Speedup
● Reliability

46B35APO Computer Architectures

RAID 0

● RAID – Redundant Array of
Inexpensive/Independent Disks

● Can be used to achieve higher
performance/throughput of the
hard disks

● Method called stripping
● Raw bandwidth up to two times

higher
● Capacity is sum of the both

devices

Images source: Wikipedia

47B35APO Computer Architectures

RAID 1

● Each data block exists in two
copies, each on one of two
independent disks

● The total capacity is same as of a
single disk

● Data reliability is much higher,
probability of coincidence of two
independent events (disk failures) is
much much lower than for single
device

● Method is called mirroring
● Write has some overhead against

single device. Reads can be
optimized for less head movement

48B35APO Computer Architectures

RAID 10

● It is combination of both previous techniques
● RAID 0 is created first on two (or more) devices and all

data are copied on the second set of devices (same as
for RAID1)

● RAID 10 contributes to both – reliability and performance
● Disadvantage – at least 4 drives with same capacity are

required.
● Total capacity T, disk capacity D, number of drives n

n=2⋅ceil(T
2⋅D)RAID 0 n=2⋅ceil  T

D RAID 1

n=4⋅ceil(T
2⋅D)RAID 10

49B35APO Computer Architectures

RAID 5

● The data blocks are
distributed over n-1 drives (for
each disk LBA) and last block
represents parity (XOR for
example) of previous blocks

● But disk used for parity is
chosen sequentially for each
disk LBA – it balances
number of rewrites and speed
gain for degraded mode

● It speeds-up reads, single
block write is slower because
of checksum computation
overhead

n=ceil  T
D 1

50B35APO Computer Architectures

RAID 6

● Uses two parity blocks on
different disks for given
disk LBA. Each parity is
computed different way.

● It is resistant to two
concurrent disk failures

● The read is speed similar
to RAID 5, write is more
demanding/complex

n=ceil  T
D 2

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50

