
B35APO: Computer Architectures
Lecture 10. Function Calls and C Language

Pavel Píša Petr Štěpán
pisa@fel.cvut.cz stepan@fel.cvut.cz

27. června, 2025

? 1 / 41

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture10-call-en, slide 1 ()&issue[description]=You can report the issue or sugestion there.

C Language to Machine Code Translation

Outline

1 C Language to Machine Code Translation

2 RISC-V Calling Convention – Defined by ABI

3 Operating System Services – System Calls

? 2 / 41

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture10-call-en, slide 2 (Outline)&issue[description]=You can report the issue or sugestion there.

C Language to Machine Code Translation

Today’s Lecture Objective

Find out how a C program is translated into machine instructions
(RISC-V ISA as an example)
Main focus on how a function calls are translated
Where local and global variables are stored
Calling operating system functions differs from calling functions

? 3 / 41

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture10-call-en, slide 3 (Today's Lecture Objective)&issue[description]=You can report the issue or sugestion there.

C Language to Machine Code Translation

The Steps to Translate C Code to Machine One
A simple example – assignment translation a = b + c;

1 Assign registers to variables, e.g. b - t0, c - t1, a - t0
2 Load variable values into registers:

lw t0, &b(gp);
lw t1, &c(gp)

3 Perform a calculation:
add t0, t0, t1

4 Store a value in a variable a:
sw t0, &a(gp)

Expressions are analyzed using context-free grammar - it covers all
expressions possible in the C language.
The example is without optimization, the value i simediatelly stored
to memory even that it can be required and loaded again.
If the addresses of variables were not reachable by a register gp
relative addressing, then it would be necessary to load variable
address into register before lw instruction.? 4 / 41

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture10-call-en, slide 4 (The Steps to Translate C Code to Machine One)&issue[description]=You can report the issue or sugestion there.

C Language to Machine Code Translation

While Loop Translation
More complex example – translation of while (cond) body;

analysis of the context-free grammar of the
language detects the while construct
the condition expression cond is translated into
instruction sequence COND recursively and then
cycle body is translated to the BODY sequence.
the instruction j cond_1 is generated to jump to
cond_1 label
body_1 label is inserted
BODY instructions sequence is inserted
cond_1 label is inserted
COND instruction sequence is inserted, it stores
result to the register, i.e. t0
then the conditional branch is generated bne t0,
zero, body_1

j cond_1

body_1:

BODY

cond_1:

COND

bne t0, zero, body_1

? 5 / 41

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture10-call-en, slide 5 (While Loop Translation)&issue[description]=You can report the issue or sugestion there.

C Language to Machine Code Translation

Why Bother with Translation/Compilation?
Either interpreted languages are used, but they are inherently slower

They can be faster only if they use libraries translated into machine
instructions and are usually highly optimized, e.g. OpenCV, NumPy,
TensorFlow, PyTorch, etc.

or compiled languages are used, examples: C/C++, Rust, Fortran,
Pascal and program is not directly executed in C, it is translated into
machine instructions.
If programmers have no idea what is result of translation:

they rely fully on compiler optimizations and can be surprised
defining a local variable/array of 100MiB size in function can be a
problem and is no go for multithreaded programs
can overflow stack when recursion is used but depth of recursion is not
known

In homework 4, you will practice machine code analysis and try to
write a C program that will behave similarly (the ideal goal would be
to compile it into the specified or more optimized machine code).

? 6 / 41

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture10-call-en, slide 6 (Why Bother with Translation/Compilation?)&issue[description]=You can report the issue or sugestion there.

C Language to Machine Code Translation

How Is the Function Call Translated?
To compile a function, e.g. int addtwo(int a, int b);, next
questions has to be resolved:

How will arguments a, b be passed?
How will be returned result of addtwo?
How to finalize the function, which next instruction should be
executed?

The application binary interface (ABI) of caller and callee must match to
allow the correct behavior.

The compilation of the callee can be on a different computer, by a
different compiler (typically a library) than the compilation of the
caller - your compiler on your computer.
It is necessary to define a convention, mentioned ABI and all object
code units and libraries have to match. The ABI is stored in object
files and even final executables to allow check that they match.

? 7 / 41

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture10-call-en, slide 7 (How Is the Function Call Translated?)&issue[description]=You can report the issue or sugestion there.

RISC-V Calling Convention – Defined by ABI

Outline

1 C Language to Machine Code Translation

2 RISC-V Calling Convention – Defined by ABI

3 Operating System Services – System Calls

? 8 / 41

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture10-call-en, slide 8 (Outline)&issue[description]=You can report the issue or sugestion there.

RISC-V Calling Convention – Defined by ABI

RISC-V Calling Convention – Defined by ABI
Parameter values are stored to registers a0, ... , a7

If more than eight words in arguments are required then memory is
used, see latter.

The result of the function is stored to a0 and a1 registers.
If the result exceeds two words/registers then memory is used.
Caller has to reserve memory to store the result.
The pointer to that memory location is passed as the hidden first
argument to the function.
Callee stores result directly to the location pointed by the register.

struct a {
int a, b, c, d;

};

struct a permut(int x, int y);

struct a t;

t = permut(2, 3);

struct a {
int a, b, c, d;

};

void permut(struct a *r, int x, int y);

struct a t;

permut(&t, 2, 3);
? 9 / 41

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture10-call-en, slide 9 (RISC-V Calling Convention -- Defined by ABI)&issue[description]=You can report the issue or sugestion there.

RISC-V Calling Convention – Defined by ABI

How to Return from a Function to the Right Caller?

[0x100] j addtwo

...

[0x254] j addtwo

addtwo:

...

j ?
0x104 or 0x258?
or even somewhere else

The addtwo function is caller from many
different locations in the program
it is not possible to fill address of the
final/return jump at compile time
the restur address has to be set by caller
function call convention (ABI) – the return
address is stored in the ra (return address)
registr (x1)
including of an instruction to jump to the
address stored in the register is necessary
an instruction which stores next instruction
address into ra before branch would help a lot
as well

? 10 / 41

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture10-call-en, slide 10 (How to Return from a Function to the Right Caller?)&issue[description]=You can report the issue or sugestion there.

RISC-V Calling Convention – Defined by ABI

JAL, JALR (RET, JR) Instructions

jal rd, address
jump to address and store PC+4 into register rd
if rd is not specified, then x1 is substituted
if only one directional jump is requested (instruction j), then PC+4 is
discarded, x0 is encoded as rd with jal opcode
the target address is encoded into instruction as 21-bit signed
extended offset to PC/the jal instruction location, LSB is 0, the limit
of the target range is ±1MB

jalr rd, rs1, imm12
jump to address rs1 + imm12×2 and store PC+4 into rd register
if rd is not specified, then default x1 is used for jalr
if only return from the function is requested then x0 register is used
as rd which result in the same code as instruction alias jr

? 11 / 41

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture10-call-en, slide 11 (JAL, JALR (RET, JR) Instructions)&issue[description]=You can report the issue or sugestion there.

RISC-V Calling Convention – Defined by ABI

JAL and JALR Implementation

Stall F Stall D

0
1

1
0

Data
Memory

A RD

WD

WE

0
1

Control
unit

Hazard unit

RegWriteD
MemToRegD
MemWriteD
ALUControlD
ALUSrcD
TypeRISBUJ
BranchD

RegWriteE
MemToRegE
MemWriteE
ALUControlE
ALUSrcE

RegWriteM
MemToRegM
MemWriteM

RegWriteW

MemTo
RegW

PCSrcM

6:0

19:15

24:20

Rs1D Rs1E

SrcAE

SrcBE

WriteDataE

WriteRegE 4:0

WriteDataM

ALUOutM

WriteRegM 4:0 WriteRegW 4:0

ALUOutW

ReadDataW

ResultW

InstrDPC´ PC

Op

Funct

Forward
AE

Forward
BE RegWriteM

Reg.
 File

A1 RD1

A2 RD2
A3
WD3

WE3
00

10
01

00
01
10

ALU

Zero

BranchE BranchM

Instruction
Memory

A RD

31:25, 14:12

Imm
decode

31:25, 24:20
11:7

SignImmD

 WriteRegD 4:0

Rs2D Rs2E
19:15
24:20

11:7

SignImmE

PC+4D
PCBranch

PC+4F
PC+4E +

+
4

CLR

EN

EN

1
0

0
1

0
1

JAL(R)

JALR

JAL / AUIPC

PCD PCE

RegWriteW

Quiz: How many of the connections are you able to describe their use
A – none B – about one third C – about half D – almost all.

? 12 / 41

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture10-call-en, slide 12 (JAL and JALR Implementation)&issue[description]=You can report the issue or sugestion there.

RISC-V Calling Convention – Defined by ABI

JALR in QtRvSim Simulator

NONENONENONENONE

Immediate
decode

11

12

rs1

0
0

4
0

1
0

2
0

0
0

4
0

1
0

2
0

00401200

ALU
zero

Peripherals

MemToReg
MemWrite

BranchBxx

AluControl

Data
Memory

Cache

Hit:

Miss:

0

0

4

RegWrite

BranchJalr

RegWrite

rd

00c58533

0

1

0

0

0

1

0

1

1

1
0

0

1

1
0

0

1

0

0

0

add x11, x11, x12 add x10, x11, x12 jalr x1, 0(x7) addi x7, x7, -480 auipc x7, 0x1

07

Registers

00000000
07

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

Terminal

Cycles:

Stalls:

11

0

00000000

AuiPC

2

0BranchVal

0

0

00

0

IF/ID

rs2

00000000
0

0
4

0
1

0
2

0

0

AluSrc

BranchJal

0
0

4
0

1
0

2
0

ID/EX

0
0

0
0

0
0

0
0

Control
Unit

0

 PC+4
 PC

10rd 01

MEM/WB

WriteData

xor

Branch
Jalx

EX/MEM

BranchOutcome

0

Program
Memory

Cache

Hit:

Miss:

4

6

 PC+4

rd rd

00000000

 BranchTarget

Instruction

RegWriteData

 PC+4
 PC

AluMul 0

0

0

 AluOut

0

MemRead 0 0
MemWrite
MemRead

0
0

0
0

0
0

0
0

0

0

Branch
Jalr

0x00400210
PC

? 13 / 41

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture10-call-en, slide 13 (JALR in QtRvSim Simulator)&issue[description]=You can report the issue or sugestion there.

RISC-V Calling Convention – Defined by ABI

JALR – Control Hazard Caused by Jump

NONENONENONENONE

Immediate
decode

11

12

rs1

0
0

4
0

1
0

2
0

0
0

4
0

1
0

2
0

00401020

ALU
zero

Peripherals

MemToReg
MemWrite

BranchBxx

AluControl

Data
Memory

Cache

Hit:

Miss:

0

0

4

RegWrite

BranchJalr

RegWrite

rd

00c585b3

1

0

0

0

0

0

0

1

1

1
0

0

1

1
0

0

1

0

0

0

add x12, x11, x12 add x11, x11, x12 add x10, x11, x12 Jalr x1, 0(x7) Addi x7, x7, -480

01

Registers

00000000
07

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

Terminal

Cycles:

Stalls:

12

0

00000000

AuiPC

0

0BranchVal

0

0

00

0

IF/ID

rs2

00000000
0

0
0

0
0

0
0

0

0

AluSrc

BranchJal

0
0

0
0

0
0

0
0

ID/EX

0
0

0
0

0
0

0
0

Control
Unit

0

 PC+4
 PC

11rd 10

MEM/WB

 WriteData

xor

Branch
Jalx

EX/MEM

BranchOutcome

1

Program
Memory

Cache

Hit:

Miss:

5

6

 PC+4

rd rd

00000000

 BranchTarget

Instruction

 RegWriteData

 PC+4
 PC

AluMul 0

0

1

 AluOut

0

MemRead 0 0
MemWrite
MemRead

0
0

0
0

0
0

0
0

1

1

Branch
Jalr

0x00400214
PC

? 14 / 41

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture10-call-en, slide 14 (JALR -- Control Hazard Caused by Jump)&issue[description]=You can report the issue or sugestion there.

RISC-V Calling Convention – Defined by ABI

What to Do If the Function Calls Another One in Its Body?

The caller prepares the arguments in registers a0 to a7 and the return
address in register ra.

But how to solve, keep argument values, when a function calls another
function in its body?

It is necessary to store the register ra and registers a0–a7 somewhere, but
where?

Activation record or activation frame is used to store function
temporary variables over another function call.
This record, or frame, is stored on the stack (call stack or stack
frame).

? 15 / 41

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture10-call-en, slide 15 (What to Do If the Function Calls Another One in Its Body?)&issue[description]=You can report the issue or sugestion there.

RISC-V Calling Convention – Defined by ABI

Stack
Stack is LIFO (Last In First Out) data stucture –
the last stored value is retrieved as the fisrt

push – store data onto stack top, stack is one
element deeper
pop – take value from the top, previous one is
on top now

Stack implementation where the top is defined by
sp (x2) register:

push
addi sp, sp, -4 – space allocation
sw x10, 0(sp) – value store
pop
lw x10, 0(sp) – value restore
addi sp, sp, 4 – space release

push(1)

push(2)

push(3)

pop() == 3

pop() == 2

push(4)

pop() == 4

pop() == 1

1

1

1

1

1

1

1

2

2

2

4

3

? 16 / 41

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture10-call-en, slide 16 (Stack)&issue[description]=You can report the issue or sugestion there.

RISC-V Calling Convention – Defined by ABI

What Is Stored onto Stack in Function?

Activation or stack frame stores:
Return address and arguments which are used latter when another
function is called.
Function local variables, which lifetime is limited by the function body
execution.
The ABI specification forbids to return from function with any of
s0-s11 modified from state at the call

s0 register is sometimes used as the pointer to start of an activation
frame – frame fp pointer
fp register points to the fixed stack position during function body and
this allows use it in relative addressing of local variables, arguments
stored on stack and for final stack restoring if alloca and or dynamic
length local arrays are used and allocated by sp register advances.

? 17 / 41

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture10-call-en, slide 17 (What Is Stored onto Stack in Function?)&issue[description]=You can report the issue or sugestion there.

RISC-V Calling Convention – Defined by ABI

RISC-V Calling Convention – Part of ABI
Which registers can be freely modified (clobbered) by callee and which
registers values have to be preserved to be returned the same to caller.
Mnemonic Register Role in function Calee

name can clobber
zero x0 fixed zero/discard – –

a0 - a7 x10 - x17 function input arguments yes
a0, a1 x10, x11 return value/result yes

ra x1 return address no
t0 - t6 x5-7, x28-x31 temporary/automatic

variables
yes

s0 - s11 x8-9, x18-x27 saved registers no
sp x2 stack pointer no
gp x3 global (variables) pointer – –
tp x4 thread pointer/thread lo-

cal store
– –

? 18 / 41

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture10-call-en, slide 18 (RISC-V Calling Convention -- Part of ABI)&issue[description]=You can report the issue or sugestion there.

RISC-V Calling Convention – Defined by ABI

32-bit RISC-V Calling Convention – Argument Type Rules

char, short, int, long, float, pointer – each argument in single register
long long int, double – each argument in two registers (the first one
aligned to even number)
the content of structure passed by value is copied into as many
registers as necessary
if code is compiled for the RISC-V with floting point extension, then
fload and double arguments are passed in FPU registers f10 – f17,
menmonic designation fa0 – fa7
if the arguments do not fit into appropriate argument registers then
the rest is passed on the stack in the new function stack frame
prepared for callee
when the function is called (jal/jalr executed), the stack has to be
16 bytes aligned

? 19 / 41

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture10-call-en, slide 19 (32-bit RISC-V Calling Convention -- Argument Type Rules)&issue[description]=You can report the issue or sugestion there.

RISC-V Calling Convention – Defined by ABI

Quiz

When are some of the registers s0-s11 stored onto stack?
A never.
B when they will be clobbered by calling of another function in the

function body.
C if they are used for function local variables or s0 as fp.
D unconditionally each time when function is called.

? 20 / 41

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture10-call-en, slide 20 (Quiz)&issue[description]=You can report the issue or sugestion there.

RISC-V Calling Convention – Defined by ABI

Quiz

When are some of the registers a0-a7 stored onto stack?
A never.
B if there are so many local variables in the function, that they do not

fit into registers.
C if the another function is called in the function body and given input

argument are used in computation after that call .
D only if the function is recurrent (calls itself recursively).

? 21 / 41

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture10-call-en, slide 21 (Quiz)&issue[description]=You can report the issue or sugestion there.

RISC-V Calling Convention – Defined by ABI

Function Calling

The function calling with max 8
parameters:
t = addfour(1, 2, 3, 4);

Compiled for RISC-V
li a3,4
li a2,3
li a1,2
li a0,1
jal ra,10054 <addfour>

Calling of the function with 10
arguments:
t = addten(1, 2, 3, 4, 5,

6, 7, 8, 9, 10);

Compiled for RISC-V
li a5,10
sw a5,4(sp)
li a5,9
sw a5,0(sp)
li a7,8
li a6,7
li a5,6
li a4,5
li a3,4
li a2,3
li a1,2
li a0,1
jal ra,10054 <addten>

? 22 / 41

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture10-call-en, slide 22 (Function Calling)&issue[description]=You can report the issue or sugestion there.

RISC-V Calling Convention – Defined by ABI

Function Translation – Simple Function
Example with few parameters without internal function call with four local
variables

Space for local/automatic variables is
allocated on the stack
addi sp,sp,-16
Local variables are accessible on the stack:
0(sp), 4(sp), 8(sp), 12(sp)

If there is enough available registers then
stack is not for leaf-node function used at
all

Function finalization:
Release/free space for local variables
addi sp,sp,16
Return to the caller after jal/jalr
jalr 0(x1) – ret

Calling
function

0(sp)
4(sp)
8(sp)
12(sp)

sp

sp

? 23 / 41

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture10-call-en, slide 23 (Function Translation -- Simple Function)&issue[description]=You can report the issue or sugestion there.

RISC-V Calling Convention – Defined by ABI

The Function with 10 Arguments and Call in the Body
The function allocates space for two local variables in addition.

Function prologue/start:
addi sp,sp,-48
sw ra,44(sp)
sw s0,40(sp)
sw s1,36(sp)
sw s2,32(sp)
sw s3,28(sp)
sw s4,24(sp)

Access to the local
variables:
lw t0,8(sp)
lbu t1,15(sp)

int i; location 8(sp)
char c; location 15(sp)
0(sp) – 7(sp) unused or
reserved for inner call
argumens

Function
finalization/epilogue:
lw ra,44(sp)
lw s0,40(sp)
lw s1,36(sp)
lw s2,32(sp)
lw s3,28(sp)
lw s4,24(sp)
addi sp,sp,48
ret

Remark: the stack
allocations are aligned
to 16 bytes.

Calling
function

44(sp)=ra
48(sp) = 9
52(sp) = 10

sp

sp

not used

4(sp)
8(sp)

40(sp)=s0
36(sp)=s1
32(sp)=s2
28(sp)=s3
24(sp)=s4

not used

0(sp)

12(sp)

? 24 / 41

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture10-call-en, slide 24 (The Function with 10 Arguments and Call in the Body)&issue[description]=You can report the issue or sugestion there.

RISC-V Calling Convention – Defined by ABI

Function Frame Pointer
The function frame pointer contains the value of the sp at function entry
The s0 register is used as fp (frame pointer), it is callee save
(non-clobberable) register, which has to be saved at function entry and
restored at exit.
Advantages of fp use:

Arguments and local variables of the function addressable by fixed offsets
to fp even if sp is changed inside function body (e.g. arguments for
function calls) which requires offsets to sp recalculations or make it
impossible in alloca case
The stack frames unwinding is much easier, i.e. for debugging

Stack unwinding is required even in case of exception processing in C++
when the exception is catch in same function in the caller chain to the
throwing function
It is necessary to restore stack into state which corresponds its state inside
catching caller function at time of the call of the function leading to the one
causing the exception.

Disadvantages of fp use:
Slows down the program, although it is only a few instructions when
entering and exiting the function, but if the function is called often and its
body is short, it can be a significant overhead.
fp occupies the register s0, which could be used to store something else. If
there are no free registers, then the value must be stored on the stack in
RAM (via cache), which is slower than using the register.

? 25 / 41

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture10-call-en, slide 25 (Function Frame Pointer)&issue[description]=You can report the issue or sugestion there.

RISC-V Calling Convention – Defined by ABI

Compile Function with Enforced Frame Pointer
The GCC compiler switch -fno-omit-frame-pointer is used to enforce
frame pointer

Prologue of the
function in RISC-V
case
addi sp,sp,-48
sw ra,44(sp)
sw s0,40(sp)
sw s1,36(sp)
sw s2,32(sp)
sw s3,28(sp)
sw s4,24(sp)
sw s5,20(sp)
addi s0,sp,48

Access to the local variable:
sw a0,-36(s0)

in the case without fp:
sw a0, 12(sp)

Function finalization:
lw ra,44(sp)
lw s0,40(sp)
lw s1,36(sp)
lw s2,32(sp)
lw s3,28(sp)
lw s4,24(sp)
lw s5,20(sp)
addi sp,sp,48
ret

Calling
funtion

44(sp)=ra
48(sp) = 9
52(sp) = 10

sp

sp

not used

4(sp)
8(sp)

40(sp)=s0
36(sp)=s1
32(sp)=s2
28(sp)=s3
24(sp)=s4

not used

0(sp)

12(sp)

s0

? 26 / 41

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture10-call-en, slide 26 (Compile Function with Enforced Frame Pointer)&issue[description]=You can report the issue or sugestion there.

RISC-V Calling Convention – Defined by ABI

The Homework No. 4 – Subroutine
Analyze (reverse engineering source code) of function subroutine_fnc:

find which of a0 – a7 are used in function and are filled by arguments before its call
WARNING: compiler uses aX registers as temporal variables for computation same as t0 –
t6 registers, their values can be changes without care about caller

find meaning of return value in a0 when ret (jalr 0(x1)) instruction is reached
analyze prologue of the function:

if it starts by instructions sequence similar to
addi sp,sp,-48
sw ra,44(sp)
sw s0,40(sp)
sw s1,36(sp)
sw s2,32(sp)
sw s3,28(sp)
sw s4,24(sp)

then function uses stack to store return address (ra) and local variables or makes sX available
for local variables
locations 0(sp) to 23(sp) can be used for local/automatic variables
s0 – s4 are used for local variables in this case, usually to keep arguments over other function
or system calls

if the function does not contain addi sp,sp,-X then it is a ”simple” function which does
not use stack

all local/automatic variables and intermediate calculations are stored in unused a0 – a7 and
t0 – t6 registers

? 27 / 41

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture10-call-en, slide 27 (The Homework No. 4 -- Subroutine)&issue[description]=You can report the issue or sugestion there.

RISC-V Calling Convention – Defined by ABI

Process Address Space Organization – 32-bit Example

Each process has it own memory context with 4GiB of
virtual address space:

The operating system reserves the top 1GiB for itself
(3GiB limit)
Stack is below the limit (if the process has multiple
threads, then the thread stacks are allocated from heap)
Below is space used to map dynamic libraries
Dynamically allocated memory grows from global
.data+.bss end – heap (malloc,new/free,delete)
Global data (initialized .data and uninitialized .bss)
Program (.text)
Some range above 0 is left unmapped to catch NULL
pointer dereference errors.

Operating
system

Stack (main thread)

Shared/dynamic libraries

Heap
malloc/free

Global data
.data,.bss

Program
.text

? 28 / 41

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture10-call-en, slide 28 (Process Address Space Organization -- 32-bit Example)&issue[description]=You can report the issue or sugestion there.

RISC-V Calling Convention – Defined by ABI

The Homework No. 4 – Global Variables
Global variables presence indication:

A global variable is a variable defined outside a function, or inside a
function using the static keyword
Global initialized variables are placed in the .data section, uninitialized
(but zeroed in the C case) variables in the .bss section
How do I find out if my program has global variables?

look at the end of the RISC-V assembler listing and find the my_data
section.
This section might look like this:
Contents of section my_data:

11008 00000000
11008 is the address in the process virtual address space
00000000 is hexadecimal listing/representation of the stored data (its initial
value)
.... are values displayed as ASCII representation, if the character is
unprintable, the dot is on given position
if the global variable/data is used inside code then the access can look as:
lui a5, 0x11
addi a5, a5, 8 # 11008
lw a4, 0(a5)

? 29 / 41

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture10-call-en, slide 29 (The Homework No. 4 -- Global Variables)&issue[description]=You can report the issue or sugestion there.

RISC-V Calling Convention – Defined by ABI

Quiz

Consider the function below
int fce (int a) {

int i;

// function body

return i+a;
}

Where are argument a and variable i stored in the RISC-V case:
A both on the stack or in registers
B both in the data section
C a on the stack or in register, i in the data section
D a in the data section, i on stack or in register

? 30 / 41

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture10-call-en, slide 30 (Quiz)&issue[description]=You can report the issue or sugestion there.

RISC-V Calling Convention – Defined by ABI

Security Vulnerability – Attacking a Program via the Stack
Consider following program:
int virus() {

// attaceker code
return 0;

}

int addnum(int a, int b, int c,
int d, int e, int f, int g,
int h, int i, int j) {

volatile int ii,jj=i+j;
volatile int array[2];

// some computations
// function calling

array[11] = (int)&virus;

return array[0]+array[1];
}

The function
prologue:
addi sp,sp,-48
sw ra,44(sp)
sw s0,40(sp)
sw s1,36(sp)
sw s2,32(sp)
sw s3,28(sp)
array[11]=(int)&virus;
lui a5,0x10
addi a5,a5,84 # <virus>
sw a5,44(sp)

Function epilogue:
lw ra,44(sp)
lw s0,40(sp)
lw s1,36(sp)
lw s2,32(sp)
lw s3,28(sp)
addi sp,sp,48
ret

Calling
function

44(sp)=ra
48(sp) = 9
52(sp) = 10

sp

sp

not used

4(sp)
8(sp)

40(sp)=s0
36(sp)=s1
32(sp)=s2
28(sp)=s3
24(sp)=s4

not used

0(sp)

12(sp)

array[0]
array[1]
array[2]
array[3]
array[4]
array[5]
array[6]
array[7]
array[8]
array[9]
array[10]
array[11]

array[0]
array[1]

ii
jj

? 31 / 41

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture10-call-en, slide 31 (Security Vulnerability -- Attacking a Program via the Stack)&issue[description]=You can report the issue or sugestion there.

RISC-V Calling Convention – Defined by ABI

Variadic Functions in C – Arguments Access with va_list

Definition of the function with variable arguments count:
#include <stdarg.h>

int sum_n_args(int n, ...) {
int sum = 0;
int i;
va_list ap;

va_start(ap, n);
for (i=0; i<n; i++) {

sum+=va_arg(ap,int);
}
va_end(ap);
return sum;

}

Function calling:
int main() {
printf("Sum %d\n", sum_n_args(10, 1,2,3,

4,5,6,7,8,9,10);
printf("Sum %d\n", sum_n_args(2, 1,2);
printf("Sum %d\n", sum_n_args(8, 1,2,3,

4,5,6,7,8);
}

? 32 / 41

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture10-call-en, slide 32 (Variadic Functions in C -- Arguments Access with va_list)&issue[description]=You can report the issue or sugestion there.

RISC-V Calling Convention – Defined by ABI

Translation of the Var. Arg. Function sum_n_args
Preprocessor macros va_start and va_arg requires that all arguments are
stored in the memory:

Function prologue:
addi sp,sp,-64
sw ra,28(sp)
sw s0,24(sp)
sw s1,20(sp)
sw a1,36(sp)
sw a2,40(sp)
sw a3,44(sp)
sw a4,48(sp)
sw a5,52(sp)
sw a6,56(sp)
sw a7,60(sp)

va_start(ap, n):
addi a5,sp,36
sw a5,8(sp)

va_arg(ap, int):
lw a4,8(sp)
addi a3,a4,4
sw a3,8(sp)
lw s0,0(a4)

Function epilogue:
lw ra,28(sp)
lw s0,24(sp)
lw s1,20(sp)
addi sp,sp,64
ret

56(sp) = 6
60(sp) = 7

Calling
function

28(sp)=ra

64(sp) = 8
68(sp) = 9

sp

sp

4(sp)
8(sp)

24(sp)=s0
20(sp)=s1

not used

0(sp)

12(sp)

48(sp) = 4
52(sp) = 5

44(sp) = 3

36(sp) = 1
40(sp) = 2

not used

72(sp) = 10

? 33 / 41

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture10-call-en, slide 33 (Translation of the Var. Arg. Function sum_n_args)&issue[description]=You can report the issue or sugestion there.

Operating System Services – System Calls

Outline

1 C Language to Machine Code Translation

2 RISC-V Calling Convention – Defined by ABI

3 Operating System Services – System Calls

? 34 / 41

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture10-call-en, slide 34 (Outline)&issue[description]=You can report the issue or sugestion there.

Operating System Services – System Calls

Basic of Operating System Protection Mechanisms
A user process cannot directly access the computer’s HW.
A user process must ask the OS to make the HW available or to
handle a request.
OS offers services with HW privileged access to processes in form of
system calls.
Unlike a function call, we do not know the addresses of functions in
the kernel.
A system call function is selected by the system call number.
The actual function call is realized through an interrupt or exception
with a specialized instruction:

x86 old – uses int 0x80 directly – invoke interrupt number 0x80.
x86 newer – specialized instructions sysenter/syscall – direct, no
interrupt gates and accesses less memory → is faster.
RISC-V – specialized instruction ecall – invokes exception.

Interrupt/exception is handled by the service routine starting at
preconfigured address (i.e. mtvec/stvec) in priviledged mode
(system or machine) and the user cannot change it.? 35 / 41

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture10-call-en, slide 35 (Basic of Operating System Protection Mechanisms)&issue[description]=You can report the issue or sugestion there.

Operating System Services – System Calls

Device Input Realized by System Calls
The user program prepares the call parameters and system call number in
the registers and triggers a special interrupt/exception (ecall on RISC-V).
The OS calls the corresponding function based on the system call number.

User space process...

System call...

read device file

request for data
programmed

into peripheral

sleep

Other
processes

are
scheduled

... finalization

Interrupt
handler

data ready
notification

wake up

...user task
continues

return

Return from system call to user program uses same or similar mechanism
as return from interrupt/exception (usually sret on RISC-V).? 36 / 41

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture10-call-en, slide 36 (Device Input Realized by System Calls)&issue[description]=You can report the issue or sugestion there.

Operating System Services – System Calls

Application Binary Interface (ABI) – System Calls
API – application programming interface – standard, which function can
program call program from libraries.

API is defined for the C language by header files.
API also defines what the given functions do, what are their return values,
how they behave in error case
try e.g. man 2 read

ABI – application binary interface – description of which registers and
which instructions to use
ABI for system calls on the RISC-V architecture

a7 – contains the system call number (for an overview, e.g.
https://jborza.com/post/2021-05-11-riscv-linux-syscalls/ or
https:
//marcin.juszkiewicz.com.pl/download/tables/syscalls.html)
a0 to a5 – system call parameters (Linux system calls have a maximum of
6 parameters)
a system call is made with the ecall instruction
a0 contains the return value of the system call

if the call should return more data (e.g. reading from a file), the user must
specify a pointer to the buffer and the size of the buffer where the OS will
write the data.

? 37 / 41

https://jborza.com/post/2021-05-11-riscv-linux-syscalls/
https://marcin.juszkiewicz.com.pl/download/tables/syscalls.html
https://marcin.juszkiewicz.com.pl/download/tables/syscalls.html
https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture10-call-en, slide 37 (Application Binary Interface (ABI) -- System Calls)&issue[description]=You can report the issue or sugestion there.

Operating System Services – System Calls

Hello World! Example for RISC-V and Linux kernel
.global _start
.text
_start:
write(1, "Hello world!\n", 13);

addi a7, zero, 64
addi a0, zero, 1
la a1, zero, text_1
addi a2, zero, 13
ecall

final:
exit(0);

addi a7, zero, 93
addi a0, zero, 0
ecall
ebreak
j final

.data
store ASCII text, no termination
text_1: .ascii "Hello world!\n"

? 38 / 41

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture10-call-en, slide 38 (Hello World! Example for RISC-V and Linux kernel)&issue[description]=You can report the issue or sugestion there.

Operating System Services – System Calls

The Homework No. 4 – System Calls

How to identify and analyze system calls?
locate ecall instructions.
determine value set in a7 before ecall, it specifies which system
service is requested.
find out the values of registers a0, a1, a2 (or a3 if used).
find out corresponding function prototype in the C runtime library and
combine it with found arguments.
Example: you find out that register a7 has the value 63 – read,
re-implement code as the system library function call
read(a0, a1, a2);

the only problem is with the function open/openat, whose O_XXXX
flags have different values for the x86 system and for RISC-V
because programs are checked by Brute on the x86 system, it is better
to verify the values of the parameters in the dump program-x86.list

? 39 / 41

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture10-call-en, slide 39 (The Homework No. 4 -- System Calls)&issue[description]=You can report the issue or sugestion there.

Operating System Services – System Calls

x86 Linux Kernel System Calls

the system call is realized by the instruction int 0x80.
the system call number is passed in the eax register.

ATTENTION the x86 and RISC-V system call numbers are different.
system call parameters are stored sequentially in registers:

ebx
ecx
edx
esi
edi
ebp

In the next lecture, x86 assembler will be described which allows to
use x86 code variant listing to be used to solve homework 4.

? 40 / 41

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture10-call-en, slide 40 (x86 Linux Kernel System Calls)&issue[description]=You can report the issue or sugestion there.

Operating System Services – System Calls

Quiz

Consider the function bellow
int fce (int a) {

static int s;
int i;

// funtion body

return i+s;
}

Where are variables s and i located?
A both allocated on the stack
B both in the .data section
C s on the stack, i in the .data section
D s in the .data section, i on the stack

? 41 / 41

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture10-call-en, slide 41 (Quiz)&issue[description]=You can report the issue or sugestion there.

	C Language to Machine Code Translation
	RISC-V Calling Convention – Defined by ABI
	Operating System Services – System Calls

