
B35APO: Computer Architectures
Lecture 07. Input and Output

Pavel Píša Petr Štěpán
pisa@fel.cvut.cz stepan@fel.cvut.cz

17. června, 2025

? 1 / 54

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture07-io-en, slide 1 ()&issue[description]=You can report the issue or sugestion there.

Input and Output

Outline

1 Input and Output

2 QtRvSim Peripherals

3 Interal Interconnection Buses

? 2 / 54

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture07-io-en, slide 2 (Outline)&issue[description]=You can report the issue or sugestion there.

Input and Output

Today’s Lecture Objective

Review what are the input and output options in a computer
Memory-mapped peripherals
Examples in QtRvSim
PCI and PCIe buses

? 3 / 54

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture07-io-en, slide 3 (Today's Lecture Objective)&issue[description]=You can report the issue or sugestion there.

Input and Output

Computer Architecture – John von Neumann

Processor

Input Output

Memory

ctrl
ALU

5 basic units – control unit, arithmetic-logic unit, memory, input (input
device), output (output device)
The architecture of a computer should not depend on the task being solved, it
should be able to execute a program stored in memory. The program controls
which sequence of instructions computer executes and thus what results are
computed.
The program and data are stored in the same memory, composed of cells
(units) of the same size. In contrast, the Harvard architecture had one type of
memory for the program and another type of memory for data.
The next instruction to be executed is stored in the next memory location
(excluding program jumps)
Instructions perform arithmetic and logical operations, data transfers to/from
memory, program jumps and branches, and special control instructions.

? 4 / 54

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture07-io-en, slide 4 (Computer Architecture -- John von Neumann)&issue[description]=You can report the issue or sugestion there.

Input and Output

Classification of Input/Output Devices/Peripherals
By behavior:

Input (read only)
Output (write only, cannot be read)
Input and output (currently, most devices, including keyboards – they
have an LED output)

By connection:
Direct connection between CPU and peripherals
Hierarchical – connection via other peripherals (bridge, switch)

By partner kind:
Human – other communication parameters
Computer – usually faster communication
Environment – sensors and actuators

By communication link/bus parameters:
Capacity/badwidth of the link – maximum data transfer capabilities
Latency – time in which data transfer is performed

? 5 / 54

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture07-io-en, slide 5 (Classification of Input/Output Devices/Peripherals)&issue[description]=You can report the issue or sugestion there.

Input and Output

Classification Peripherals – Continues
Examples of human-machine peripherals:

keyboard – only input, but often output on LED diodes, very small
transmission speed, latency up to 200ms (except games playing)
microphone/speakers – transfer speed up to 8Mb/s, latency depends
on application, for interactive communication (i.e. calls) requires
latency of less than 500 ms, optimally 150 – 300 ms
printer/scanner – transfer speed according to connection, latency
does not matter (in seconds / minutes)

Examples of peripherals for communication between computers
modem – modems 115.2 kb/s (the first 200 b/s), LTE max 300 Mb/s,
5G to 500 Mb/s
network/WLAN – from 10 Mb/s to 1 Gb/s to 1 Tb/s
data storage – HDD, SSD, magneto-tape units, communication speed
according to connection (later today), SSD latency best, HDD worse,
magneto-tape units – only sequential writing possible

? 6 / 54

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture07-io-en, slide 6 (Classification Peripherals -- Continues)&issue[description]=You can report the issue or sugestion there.

Input and Output

Classification Peripherals – Continues

Examples of sensors and actuators:
cameras, laser rage finders – communication speed by type of
connection

USB 2.0 max 480 Mb/s,
USB 3.1 max 5 Gb/s,
WLAN up to 10 Gb/s

actuators – DC/PMSM motors
transfer speed not so important, but latency
latency is the most important parameter for control
DC – latency 0.5–0.05 ms,
PMSM – latency 0.05–0.01 ms

? 7 / 54

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture07-io-en, slide 7 (Classification Peripherals -- Continues)&issue[description]=You can report the issue or sugestion there.

Input and Output

CPU Design from Lecture 5

MemWrite
MemToReg

Branch
ALUControl 2:0
ALUSrc
TypeRISBUJ

RegWrite

+

+
4

PC’ PC Instr 19:15

24:20

11:7

15:0, 24:0
11:7

SrcA

SrcB

Zero

AluOut

WriteData
WriteReg

PC
PCBranch

ReadData

Result

PCPlus4

Reg.
 File

A1 RD1

A2 RD2

A3
WD3

WE3

0
1

0
1

0
1

Imm
decode

6:0

31:25, 14:12

Control
Unit

Opcod
e

Funct

SignImm

ALU

Data
Memory

Control unit
(control path)

Data/ALU
(data path)

A RD

WD

WE

Memory

A RD A RD

WE

WD

Instr.
Memory

A RD

? 8 / 54

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture07-io-en, slide 8 (CPU Design from Lecture 5)&issue[description]=You can report the issue or sugestion there.

Input and Output

CPU Connection with Memory and Peripherals

 Data[0..31]

CTRL

C/BE[0..3]

address[0..31]

The address bus (A0..A31) can be
separated or multiplexed, or share the
same signals as the data part
Data bus (D0.. D31) can be
bidirectional or separated for each
direction, parallel or serial

Example in the picture – parallel
32-bit bus, the half-duplex data path
using same signals for both directions

Control bus signals
It controls the communication on the
bus, direction, when transfer starts,
ends, if the delay is required

BE0 to 3 – controls write (even read
sometimes) of individual bytes on a bus
wider than 8 bits.

? 9 / 54

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture07-io-en, slide 9 (CPU Connection with Memory and Peripherals)&issue[description]=You can report the issue or sugestion there.

Input and Output

CPU Peripherals Access
Two different approaches used:

Special instructions for input/output
”x86” uses the instructions in, out.
These instructions are similar to memory access ones, but data are read
and written on the bus where peripherals are connected and or with
special control signals.
The modern peripherals need often block access and larger addressing
ranges for which memory access oriented instructions serve better and
separated signalling for I/O access only complicates hardware and CPU.

Part of common (memory) address space reserved for input/output
The RISC (including RISC-V) and even lot of CISC CPUs do not have
special instructions for communication with peripherals, and therefore
use same method and instructions as are used for reading and writing
into data memory.
This methods is often runtime configurable, the peripherals are mapped
into reserved address range that serves to move data between CPU and
peripherals.

? 10 / 54

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture07-io-en, slide 10 (CPU Peripherals Access)&issue[description]=You can report the issue or sugestion there.

Input and Output

Memory Mapped Peripherals – RISC-V
There are no special instructions to access peripherals on RISC-V
The same instruction are used for peripheral access as for load and
store into data memory.
Address Decoder – controls where are data sent/which device is read

Address Decoder

RAM
Memory

CPU

I/O dev 1

I/O dev 2

address
data-write

W
E
1

W
E
2

CLK

CLK

CLK

W
E
M

WE

CLK

R
d
S
e
l

M
e
m
W
r
i
t
e

Unified
physical
address
space

I/O
peripherals

Main
memory
RAM

? 11 / 54

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture07-io-en, slide 11 (Memory Mapped Peripherals -- RISC-V)&issue[description]=You can report the issue or sugestion there.

Input and Output

Address Decoders Realizations

Central decoder (one per system or bus)

Address Decoder

RAM
memory

CPU
I/O dev 1 I/O dev 2 Bridge

I/O dev 3 I/O dev 4

Address Decoder

Autonomous – peripheral local/decentralized decoders

RAM
memory

CPU I/O dev 1 I/O dev 2 Bridge

I/O dev 3 I/O dev 4

Address decoder Address decoder Address decoder Address decoder

Address decoder Address decoder

? 12 / 54

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture07-io-en, slide 12 (Address Decoders Realizations)&issue[description]=You can report the issue or sugestion there.

Input and Output

Options to Exchange Data and Wait for Peripheral
Software active (busy) polling:

The device waits for CPU access and sends data to output, or
provides already received input
If the data sending or availability is slower than CPU then CPU has to
poll/read device status register (bits data ready/space available)

Interrupt driven/timed access to peripheral:
If the state changes (data became ready, space is available) hardware
signals interrupt (lecture 9)
This activates interrupt service handler and CPU then reads or writes
data under SW control

Peripheral uses direct memory access:
Uses interrupt for availability signalling as well
The CPU sets only from/to which address in the memory data will be
read/written and the periphery itself controls data transfer
Peripheral signals by interrupt that all data/packet is ready to be
processed by CPU or next one should be prepared by CPU

? 13 / 54

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture07-io-en, slide 13 (Options to Exchange Data and Wait for Peripheral)&issue[description]=You can report the issue or sugestion there.

Input and Output

Input/Output and Drivers in Linux Kernel (simplified)

The programs communicate
with the peripherals using the
operating system and system
call and periphery drivers
(overview in lecture 10,
detailed in the OSY course –
Operating Systems).

Another option is direct
access from the user
application by mapping
peripheral into process space
– the next topics of today’s
lecture. Low level kernel
driver works similar way.

Applications (processes)

VFS

Request-based
device mapper targets

dm-multipath

Physical devices

HDD SSD DVD
drive

Micron
PCIe card

LSI
RAID

Adaptec
RAID

Qlogic
HBA

Emulex
HBA

malloc

BIOs (block I/Os)

sysfs
(transport attributes) SCSI upper level drivers

/dev/sda

scsi-mq

.../dev/sd*

SCSI low level drivers
megaraid_sas

aacraid

qla2xxx ...libata

ahci ata_piix ... lpfc

Transport classes
scsi_transport_fc

scsi_transport_sas
scsi_transport_...

/dev/vd*

virtio_blk mtip32xx

/dev/rssd*

ext2 ext3
btrfs

ext4 xfs
ifs iso9660

...

NFS coda
Network FS

gfs ocfs
smbfs ...

Pseudo FS Special
purpose FSproc sysfs

futexfs
usbfs ...

tmpfs ramfs
devtmpfs

pipefs

network

nvme
device

mmap
(anonymous pages)

iscsi_tcp

network

/dev/rbd*

Block-based FS

re
ad

(2
)

w
rit

e(
2)

op
en

(2
)

st
at

(2
)

ch
m

od
(2

)

...

Page
cache

mdraid
...

stackable

Devices on top of “normal”
block devices drbd

(optional)

LVM
BIOs (block I/Os)

BIOs BIOs

Block Layer
blkmq hooked in device drivers

BIOs

I/O scheduler

Request
based drivers

BIO
based drivers

Request
based drivers

ceph

struct bio
- sector on disk
 - bio_vec cnt
- bio_vec index
- bio_vec list

- sector cnt

Fi
br

e
Ch

an
ne

l
ov

er
 E

th
er

ne
t

LIO

target_core_mod

tc
m

_f
c

Fi
re

W
ire

IS
CS

I

Direct I/O
(O_DIRECT)

device mapper

network

is
cs

i_t
ar

ge
t_

m
od

sb
p_

ta
rg

et

target_core_file

target_core_iblock

target_core_pscsi

vfs_writev, vfs_readv, ...

dm-crypt dm-mirror
dm-thindm-cache

tc
m

_q
la

2x
xx

tc
m

_u
sb

_g
ad

ge
t

U
SBFi
br

e
Ch

an
ne

l

tc
m

_v
ho

st
Vi

rt
ua

l H
os

t

/dev/nvme*n*

SCSI mid layer

virtio_pci

LSI 12Gbs
SAS HBA

mpt3sas

bcache

/dev/nullb*

vmw_pvscsi

/dev/skd*

skd

stec
device

virtio_scsi

para-virtualized
SCSI

VMware's
para-virtualized

SCSI

target_core_user

unionfs FUSE

/dev/mmcblk*p*

dm-raid

/dev/sr* /dev/st*

pm8001

PMC-Sierra
HBA

SD-/MMC-Card

/dev/rsxx*

rsxx

IBM flash
adapter

/dev/zram*

memory

null_blk

ufs

userspace

ecryptfs

Stackable FS

mobile device
flash memory

nvme

overlayfs

userspace (e.g. sshfs)

mmcrbdzram

dm-delay

? 14 / 54

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture07-io-en, slide 14 (Input/Output and Drivers in Linux Kernel (simplified))&issue[description]=You can report the issue or sugestion there.

Input and Output

System Calls and Services
System calls:

system calls are wrapped as regular C functions in libc library
functions and offered to user applications – POSIX API
open function/system call

for each periphery can be created handle same as for file
this ”file” handle is used to communicate with the peripheral

read function/system call
reads the data from the periphery same as data are read from the file
blocking operation

if no data are available, the function waits for at least one byte or
packed arrival
the process execution is suspended by operating system and does not
block CPU

non-blocking operation
if no byte/char is available, function return -1 and errrno
EAGAIN/EWOULDBLOCK
the process is responsible for waiting (i.e. by poll or select calls)
received data are stored into internal buffers by the driver up to
allocated buffers capacity? 15 / 54

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture07-io-en, slide 15 (System Calls and Services)&issue[description]=You can report the issue or sugestion there.

Input and Output

Quiz

the scanf function (read formatted input) behavior if data are not
currently available to fill/parse into all specified fields:

A actively repeats call to check wheather data are available
B the process is suspended and it is necessary to restart it
C the process is suspended and it is woken u by operating system when

data arrives
D the function returns -1

? 16 / 54

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture07-io-en, slide 16 (Quiz)&issue[description]=You can report the issue or sugestion there.

QtRvSim Peripherals

Outline

1 Input and Output

2 QtRvSim Peripherals

3 Interal Interconnection Buses

? 17 / 54

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture07-io-en, slide 17 (Outline)&issue[description]=You can report the issue or sugestion there.

QtRvSim Peripherals

QtRvSim – Rotary Knobs and RGB LEDs

the same data format for RGB LEDs as for reads of the rotary knobs
state

only bits 24 – 31 are not used for RGB LEDs

Bits 31 ... 27 26 25 24 23 ... 16 15 ... 8 7 ... 0
Meaning not used red

push.
green
push.

blue
push. red value green

value
blue
value

one word sized register on appropriate address for each RGB LED
color value store, all three knobs state is read from the single 32-bit
word size register/address
the write of the value to RGB LED register changes its color and
intensity to written value immediately
the read of the register at rotary knobs representing address returns
state of the knobs at the current time

? 18 / 54

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture07-io-en, slide 18 (QtRvSim -- Rotary Knobs and RGB LEDs)&issue[description]=You can report the issue or sugestion there.

QtRvSim Peripherals

QtRvSim – Rotary Knobs and RGB LEDs
base of SPILED port region
.equ SPILED_REG_BASE, 0xffffc100

RGB LED 1 - color components, 8 bits each
.equ SPILED_REG_LED_RGB1, 0xffffc110
.equ SPILED_REG_LED_RGB1_o, 0x0010

RGB LED 2 - color components, 8 bits each
.equ SPILED_REG_LED_RGB2, 0xffffc114
.equ SPILED_REG_LED_RGB2_o, 0x0014

read 8-bit color component value for each
knob and knob push states in the MSB
.equ SPILED_REG_KNOBS_8BIT, 0xffffc124
.equ SPILED_REG_KNOBS_8BIT_o, 0x0024

32 LEDs - each of 32 bits controls one LED
.equ SPILED_REG_LED_LINE, 0xffffc104
.equ SPILED_REG_LED_LINE_o, 0x0004
? 19 / 54

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture07-io-en, slide 19 (QtRvSim -- Rotary Knobs and RGB LEDs)&issue[description]=You can report the issue or sugestion there.

QtRvSim Peripherals

Example of Using Rotary Knobs Value to Control RGB

a0 set to provide base for SPILED I/O memory mapped region
li a0, SPILED_REG_BASE
ori t2, t2, -1

loop:
read values from rotary knobs
lw t0, SPILED_REG_KNOBS_8BIT_o(a0)
set RGB LED 1 to corresponding color
sw t0, SPILED_REG_LED_RGB1_o(a0)
xor t1, t0, t2
set RGB LED 2 to complementary color
sw t1, SPILED_REG_LED_RGB2_o(a0)
srli t0, t0, 24
andi t0, t0, 4
beq t0, zero, loop # repeat until red knob is pressed

ebreak # stop/finish the program

? 20 / 54

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture07-io-en, slide 20 (Example of Using Rotary Knobs Value to Control RGB)&issue[description]=You can report the issue or sugestion there.

QtRvSim Peripherals

Quiz – Rotary Knobs

Choose how to obtain value of the green knob if the 32-bit/word value
representing position of the knobs is read from
SPILED_REG_BASE+SPILED_REG_KNOBS_8BIT_o register and stored into
variable unsigned int v;. Available solutions:

A ((v<<24) & 0x00ff00)
B ((v>>8) & 0xff)
C (v & 0x30303030)
D ((v>>24) & 0xf0)

? 21 / 54

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture07-io-en, slide 21 (Quiz -- Rotary Knobs)&issue[description]=You can report the issue or sugestion there.

QtRvSim Peripherals

Asynchronous and Synchronous Buses
Asynchronous bus:

two basic variants:
The start and end of each bit is detectable by the other side
The duration of a single bit is agreed upon and the individual bytes
have the start and end detectable by the other side, start of
byte/character and or whole frame is denoted by start bit or longer
synchronization mark

An example of asynchronous communication is serial port, USB,
SATA drives

Synchronous bus:
The easiest way is to reserve a separate signal to to connect clock
signal of transmitter to the receiver
The data bit or parallel word is synchronized by a clock, either by
rising edge or falling edge of clock signal (sometimes by both – DDR)
An example of synchronous communication is DDR memory, PCI, PCI
Express

? 22 / 54

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture07-io-en, slide 22 (Asynchronous and Synchronous Buses)&issue[description]=You can report the issue or sugestion there.

QtRvSim Peripherals

Asynchronous Serial Communication
Serial link (serial port) is one of the oldest methods of digital communication used even
today.

Asynchronous transfer without a dedicated clock signal.
Both sides are set to the same speed, which defines the length of a single bit sent

Transfer begins with a start bit sent (starts by transition from 1 → 0)
Sending and receiving a start bit synchronizes the local clock of all devices

Then the individual data bits of a single character/byte are sent
Data bits can then be followed by parity bit to check for transmission errors
Last stop (0) bit sent (folowed by 0 → 1 transition)

Sending a single byte therefore contains a 10-11 bit sent
Normal speeds, formerly 9600 Bd to 115200 Bd, now up to 921600 Bd (Bd –
Baud = bit per second)

Start D0 D1 D2 D3 D4 D5* D6* D7* D8* P* StopIdle Idle

Frame

*

Bit Time = 1 / Baud Rate

Stop

* optional

? 23 / 54

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture07-io-en, slide 23 (Asynchronous Serial Communication)&issue[description]=You can report the issue or sugestion there.

QtRvSim Peripherals

Serial Line
Basic RS 232 specification:

Designed to connect two devices only
Both devices are connected by a signal ground
0 represented by +3 – +15V, 1 represented by -3 – -15V
Full duplex, i.e. separate signals for each transmit direction (Rx and Tx
signals crossed between ends)
Optional handshake signals to stop transmitting when receive buffer of
one or other side is getting full

Basic RS 422 specification:
Differential signals, Rx+, Rx-, Tx+, Tx- – the logical value represnetd by
voltage difference (+/-) between two conductors, can be used up to
1200m distance
Full duplex, i.e. separate signals for each direction
Multiple listeners for one transmitter possible

Basic RS 485 specification:
Diferential signaling same as RS 422
It is half-duplex - i.e. only two conductors, it is necessary disable
transmitter output after sending the data and listen for othe node answer
Multiple devices can be interconnected, one initiator and others respond
according to the address or multi-master with bus access arbitration

? 24 / 54

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture07-io-en, slide 24 (Serial Line)&issue[description]=You can report the issue or sugestion there.

QtRvSim Peripherals

UART – Universal Asynchronous Receiver-Transmiter

UART – a device to receive and transmit characters/bytes over a serial line
RX_ST receiver status register

bit 0 ready – received data
available

RX_DATA received data register
Reading from RX_DATA removes
data from UART FIFO and clears
the ready flag if FIFO is empty

TX_ST transmiter status register
bit 0 ready – ready to accept data
to transmit

TX_DATA data to transmit
UART starts transmit imediatelly
after write to TX_DATA

Address Decoder

RAM
memory

CPU

UART

address
data-write

CLK

W
E
M

WE

CLK

R
d
S
e
l

M
e
m
W
r
i
t
e

RX_ST

RX_DATA

TX_ST

TX_DATA

RS 232
RX
TX

RX FIFO
TX FIFO

data-read

? 25 / 54

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture07-io-en, slide 25 (UART -- Universal Asynchronous Receiver-Transmiter)&issue[description]=You can report the issue or sugestion there.

QtRvSim Peripherals

QtRvSim Serial Port – Terminal

.equ SERIAL_PORT_BASE, 0xffffc000
#base address of QtRVSim serial port

.equ SERP_RX_ST_REG, 0xffffc000 #Receiver status register

.equ SERP_RX_ST_REG_o, 0x0000 #Offset of RX_ST_REG

.equ SERP_RX_ST_REG_READY_m, 0x1 #Data byte is ready to be read

.equ SERP_RX_ST_REG_IE_m, 0x2 #Enable Rx ready interrupt

.equ SERP_RX_DATA_REG, 0xffffc004 #Received data byte in 8 LSB bits

.equ SERP_RX_DATA_REG_o, 0x0004 #Offset of RX_DATA_REG

.equ SERP_TX_ST_REG, 0xffffc008 #Transmitter status register

.equ SERP_TX_ST_REG_o, 0x0008 #Offset of TX_ST_REG

.equ SERP_TX_ST_REG_READY_m, 0x1 #Transmitter can accept next byte

.equ SERP_TX_ST_REG_IE_m, 0x2 #Enable Tx ready interrupt

.equ SERP_TX_DATA_REG, 0xffffc00c #Write word to send 8 LSB bits

.equ SERP_TX_DATA_REG_o, 0x000c #Offset of TX_DATA_REG

? 26 / 54

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture07-io-en, slide 26 (QtRvSim Serial Port -- Terminal)&issue[description]=You can report the issue or sugestion there.

QtRvSim Peripherals

QtRvSim – Send Character/Text String Example
write:

li a0, SERIAL_PORT_BASE # a0 set to point o UART mapping base addr.
la a1, text_1 # setup a1 to point to text start address

next_char:
lb t1, 0(a1) # load chracter/byte from memory
beq t1, zero, end_char # is this null/zero terminating character
addi a1, a1, 1 # move pointer to next character

tx_busy:
lw t0, SERP_TX_ST_REG_o(a0) # read status of transmitter
andi t0, t0, SERP_TX_ST_REG_READY_m # mask other bits except READY
beq t0, zero, tx_busy # wait/repeat if no space in UART Tx buffer
sw t1, SERP_TX_DATA_REG_o(a0) # tranmitter is ready - write character
j next_char # process next character from the string

end_char:
ebreak # stop/finish the program

.data
text_1:

.asciz "Hello world.\n" # null-character terminated text string
? 27 / 54

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture07-io-en, slide 27 (QtRvSim -- Send Character/Text String Example)&issue[description]=You can report the issue or sugestion there.

QtRvSim Peripherals

QtRvSim – Character Receive Example
gets: li a0, SERIAL_PORT_BASE # a0 set to point o UART mapping base

la a1, text_1 # set a1 to point to start of receive buffer
addi t2, zero, 40 # caoacity of the receive buffer

next_char:
rx_not_ready:

lw t0, SERP_RX_ST_REG_o(a0) # load state of the receiver
andi t0, t0, SERP_RX_ST_REG_READY_m # mask other bits except READY
beq t0, zero, rx_not_ready # wait/repeat if no character is ready
lw t1, SERP_RX_DATA_REG_o(a0) # read char., it removes it from FIFO
sb t1, 0(a1) # store character into buffer at a1 address
addi t1, t1, -13 # is this new line character?
beq t1, zero, end_char # if yes, branch out of the loop
addi a1, a1, 1 # move pointer to next/free location
addi t2, t2, -1 # subtract one from available capacity
bne t2, zero, next_char # if there is space still repear receive

end_char:
ebreak # stop/finish the program
.data

text_1:
.skip 40

? 28 / 54

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture07-io-en, slide 28 (QtRvSim -- Character Receive Example)&issue[description]=You can report the issue or sugestion there.

QtRvSim Peripherals

QtRvSim Terminal – Serial Port

? 29 / 54

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture07-io-en, slide 29 (QtRvSim Terminal -- Serial Port)&issue[description]=You can report the issue or sugestion there.

QtRvSim Peripherals

QtRvSim Terminal – Serial Port

Pipelined processor – peripheral access takes place in MEM stage/phase

? 30 / 54

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture07-io-en, slide 30 (QtRvSim Terminal -- Serial Port)&issue[description]=You can report the issue or sugestion there.

QtRvSim Peripherals

Peripheral Access Summary

the above method of communication with busy waiting is called
polling

the program constantly asks if something has changed, a character has
been received/available or there is space in transmit queue
this is very inefficient, it wates CPU tie, which could be doing
something useful

in lecture 9 we will introduce interrupts as method to notify CPU by
peripherals

the program can do something else, the interrupt occurs if it is enabled
and the state of the peripheral changes
when an interrupt occurs another program/handler function starts to
execute, which checks peripheal state to find which event has
happened and processes it
information about what happened and corresponding data are passed
to the program using synchronization mechanism implemented by
operating system (will be discussed in detail in the OSY subject)

? 31 / 54

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture07-io-en, slide 31 (Peripheral Access Summary)&issue[description]=You can report the issue or sugestion there.

Interal Interconnection Buses

Outline

1 Input and Output

2 QtRvSim Peripherals

3 Interal Interconnection Buses

? 32 / 54

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture07-io-en, slide 32 (Outline)&issue[description]=You can report the issue or sugestion there.

Interal Interconnection Buses

A Brief History of Internal Buses in Personal Computers

ISA – an older type of passive bus, 8 or 16 bits wide, maximum
transfer rate of 8 MB/s
PCI – a newer type of “smart” bus, 32 or 64 bits wide, burst mode,
transfer rate of up to 530 MB/s, topological enumeration, Plug and
Play support and programmable mapping of devices into I/O and
memory address space
AGP – a dedicated bus designed to connect a graphics card via the
northbridge to the CPU, transfer rate of 260 MB/s – 2 GB/s
PCI-Express (PCIe) – a new serial implementation of the PCI bus

? 33 / 54

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture07-io-en, slide 33 (A Brief History of Internal Buses in Personal Computers)&issue[description]=You can report the issue or sugestion there.

Interal Interconnection Buses

Bus Topology
Shared bus (PCI for example) – data/address/control signals to multiple
card slots

Bridge

Peer-to-peer connection using a switches/hubs (e.g. PCIe, USB)

Switch Switch

? 34 / 54

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture07-io-en, slide 34 (Bus Topology)&issue[description]=You can report the issue or sugestion there.

Interal Interconnection Buses

Buses in an Older PC Computers

Old Pentium 4 architecture (1990s)

The northbridge is connected directly
to the CPU and the fastest
peripherals – memory and graphics
card

The southbridge communicates with
the northbridge and integrates or
connects network cards, HDD, PCI
slots.

The slowest peripherals like Floppy
Disk, or serial and parallel ports
(printers) are usually connected via
other bridges.

P4X333
North Bridge

DDR 333

Intel®

Pentium™4
CPU

Graphic
cardDDR 333

DDR 333

DDR 333

DDR 333

DDR 333

AGP 8x

FSB
533MHz

VT8235
South Bridge

PCI Slots

PCI
Bus

ATA
33-133

HDD
Disk

HDD
Disk

VLink
533MB/s

USB
USB
USB
USB
USB
USB

USB 2.0

Audio Codec

Modem

Keyboard

Mouse

AC Link LPC

Parallel

Floppy Disk

EEPROM

Serial/IR
LPC

Super
I/O

? 35 / 54

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture07-io-en, slide 35 (Buses in an Older PC Computers)&issue[description]=You can report the issue or sugestion there.

Interal Interconnection Buses

Buses in a Newer PC Computers

Modern with memory controllers on processor chip (package).

The northbridge has become
part of the processor.

The southbridge
communicates directly with
the processor.

Most peripherals are
connected via PCI-Express
and USB.

AMD Ryzen

Socket AM5

Ryzen 7000
processors

Graphic
card

DDR5 5200MHz PCIe 5.0 x16

AMD B650E
Chipset

SATA x4

HDD
SSD

HDD
SSD

PCIe 4.0 x4

USB
USB

1GbE LAN

1GbE LAN

MLAN

Mini DPASPEED
AST2600

BMC

DDR5 5200MHz

DDR5 5200MHz

DDR5 5200MHz

2 Channel

PCIe 4.0 x4

USB 3.2 Gen1

M.2 PCIe 4.0 x4 HDD
SSD

HDD
SSD

ASM1164
SATA x4

PCIe 3.0
x2

BIOS
SPI

USB
USB

USB 3.2 Gen1

BCM5720
PCIe 2.0 x1 PCIe 2.0 x1

? 36 / 54

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture07-io-en, slide 36 (Buses in a Newer PC Computers)&issue[description]=You can report the issue or sugestion there.

Interal Interconnection Buses

Peripheral Component Interconnect Standard Bus – PCI
The all state changes and signal strobes are controlled by clock edges.
For proper operation, it needs to be synchronized as precisely as possible
to the transmitted clock.
Signals marked with # are negated because the falling edge is faster.

Bus Clock

Data 0

Data 1

Data 31

0 0 0

00

0 0

1

1 1

1

1 1

1

1

Frame# 1 1 1 00

? 37 / 54

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture07-io-en, slide 37 (Peripheral Component Interconnect Standard Bus -- PCI)&issue[description]=You can report the issue or sugestion there.

Interal Interconnection Buses

PCI (Original Parallel) Bus Architecture
The card slot specific
IDSEL signal is only for
initialization, to find out
what device is connected
in which slot.
AD is the 32 (64 for
PCI-x) signals used for
multiplexed address and
data
C/BE signals provide 4
command (transfer type)
and byte enable signals
CTRL are signals for bus
transaction control (i.e.
FRAME)

PCI
cont-
roller
arbit-

er

AD[0..31]

CLK

CTRL

C/BE[0..3]

SLOT

1

ID
SE

L
RE

Q
#

GN
T#

SLOT

2

ID
SE

L
RE

Q
#

GN
T#

SLOT

3

ID
SE

L
RE

Q
#

G
N

T#

SLOT

4

ID
SE

L
RE

Q
#

GN
T#

Bus Access Arbiter

Interrupt subsystem
IRQ

? 38 / 54

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture07-io-en, slide 38 (PCI (Original Parallel) Bus Architecture)&issue[description]=You can report the issue or sugestion there.

Interal Interconnection Buses

PCI Data Transfers – Write Transaction
The initiator begins the transfer by request for bus control to arbiter

If multiple devices request the bus at the same time, the arbiter must
queue their requests and allow only one transfer at a time

The initiator begins the transmission by setting the address of the
target peripheral register on the AD bus and asserting (active low) the
FRAME signal; the first clock rising edge address is strobed, next is
data, the last data transfer is denoted by the deassertion of FRAME

Bus Clock

AD 0..31

Frame#

adresa

C/BE# cmd byte enable

DevSel#

1

data1 data2

? 39 / 54

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture07-io-en, slide 39 (PCI Data Transfers -- Write Transaction)&issue[description]=You can report the issue or sugestion there.

Interal Interconnection Buses

PCI Data Transfers – Write Transaction – Data
A peripheral that recognizes its address asserts DevSel
If the target peripheral (Target) is ready to receive data, it asserts
TRDY.
If the initiator is ready to send data, it asserts IRDY.

Bus Clock

AD 0..31

Frame#

adresa

C/BE# cmd byte enable

DevSel#

IRDY#

TRDY#

data strobe/transfer

data1 data2

? 40 / 54

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture07-io-en, slide 40 (PCI Data Transfers -- Write Transaction -- Data)&issue[description]=You can report the issue or sugestion there.

Interal Interconnection Buses

PCI Data Transfers – Write Transaction – Wait
If the target peripheral is not ready, it deasserts TRDY
If the initiator is not ready to put data on the bus, it deasserts IRDY
If TRDY or IRDY is not asserted, then the data transfer is suspended
– wait for state at next clock edge

Bus Clock

AD 0..31

Frame#

C/BE# cmd byte enable

DevSel#

IRDY#

TRDY#

no trasfer/wait

0

adresa data1 data2

? 41 / 54

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture07-io-en, slide 41 (PCI Data Transfers -- Write Transaction -- Wait)&issue[description]=You can report the issue or sugestion there.

Interal Interconnection Buses

PCI Data Transfers – Write Transaction – the Last Data

Deasserts the FRAME signal to inform that the last data will be sent
In the shown case, the data transfer was suspended, so the transfer of
the last data is postponed to the next clock cycle.

Bus Clock

AD 0..31

Frame#

C/BE# cmd byte enable

DevSel#

IRDY#

TRDY#

the last data

the last data tranfered

adresa data1 data2

? 42 / 54

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture07-io-en, slide 42 (PCI Data Transfers -- Write Transaction -- the Last Data)&issue[description]=You can report the issue or sugestion there.

Interal Interconnection Buses

PCI Data Transfers – Write Transaction – Release Bus

After the transfer is completed (the last data sent and accepted), the
IRDY, TRDY and DEVSEL signals are deasserted and the bus is
released for the next transfer.

Bus Clock

AD 0..31

Frame#

C/BE# cmd byte enable

DevSel#

IRDY#

TRDY#

the last data

the last data tranfered

adresa data1 data2

? 43 / 54

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture07-io-en, slide 43 (PCI Data Transfers -- Write Transaction -- Release Bus)&issue[description]=You can report the issue or sugestion there.

Interal Interconnection Buses

PCI Data Transfers – Read Transaction

The initiator requests data from the target peripheral.
Data transfer is similar, but cannot start on the next clock cycle
because the initiator must disconnect from the AD bus and the target
device must connect its output buffer to the bus.

Bus Clock

AD 0..31

Frame#

adresa

C/BE# cmd byte enable

DevSel#

IRDY#

TRDY#

data1 data2 data3 data4

? 44 / 54

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture07-io-en, slide 44 (PCI Data Transfers -- Read Transaction)&issue[description]=You can report the issue or sugestion there.

Interal Interconnection Buses

Classical Parallel PCI Bus – Summary
Disadvantages of the PCI bus:

Half-duplex data cannot be sent in both directions at the same time,
data transferred in only one direction at time
Multiple devices on the shared bus – slow peripherals slow down fast
peripherals, increases the latency of all other peripherals
PCI bus only allows clocks with 33 MHz, or 66 MHz

This corresponds to 132 MB/s or 264 MB/s for the 32-bit variant
This corresponds to 264 MB/s or 528 MB/s for the 64-bit variant

PCI eXtended (PCI-X) bus allows clocks up to 133 MHz and later a
maximum of 533 MHz

This corresponds to transfer speeds of 532MB/s to a maximum of
4266 MB/s for the 64-bit variant variant, very hard to route on PCB
PCI-X version 2.0 with speeds above 133MHz were not very widespread

The connector for the 32-bit version has 62 pins – i.e. 124 signals, for
the 64-bit version it is even 188 signals

? 45 / 54

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture07-io-en, slide 45 (Classical Parallel PCI Bus -- Summary)&issue[description]=You can report the issue or sugestion there.

Interal Interconnection Buses

PCI Expres – PCIe
The main disadvantage of parallel busses is the required precise mutual
matching of the signals delays and routing:

Even small inaccuracies in the length of the conductors and the
quality of the connections lead to different propagation speed/delay
of the electrical signal
No problem for low frequencies but even small mutual and or clocks
timing shift prevents consistent data strobing over multiple wires for
high ones.
It is demostrated in animation at
https://cw.fel.cvut.cz/wiki/courses/b35apo/en/lectures/07/start

frequency f

transfer without
problems

frequency 2 · f

transfer at reliability
limit

frequency 4 · f

no instant to strobe
parallel data by receiver? 46 / 54

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture07-io-en, slide 46 (PCI Expres -- PCIe)&issue[description]=You can report the issue or sugestion there.

Interal Interconnection Buses

PCI-Express (PCIe) – Upgrades to Parallel PCI

PCIe is peer-to-peer – signals are only routed between two devices.
PCIe is full-duplex – data can be transferred in both directions at the
same time.
For one-way transmission, a serial method with differential signal pair
(per lane) is used, rejects common mode voltage shifts and noises

This method of transmission is less susceptible to interference than a
single ended wire to ground.

PCIe can contain multiple links, but the transmission between the
links is not synchronized at the bit level.
In the simplest version, PCIe connectors have only 18 pins, 36 signals,
of which 18 are ground and power.

? 47 / 54

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture07-io-en, slide 47 (PCI-Express (PCIe) -- Upgrades to Parallel PCI)&issue[description]=You can report the issue or sugestion there.

Interal Interconnection Buses

PCIe Serial Transmission

PCIe can use different speeds for transmission
It is necessary that the receiving side can detect the transmission
speed.
The problem is that if a byte contains only 0s or only 1s, the signal
does not change.
The solution is to encode a byte (8 bits) into 10 bits so that the total
number of 0s and 1s transmitted is the same.

Quiz: How many different 10-bit numbers are there that have five 0s and
five 1s?

A 25 · 25 = 64
B 5! · 5! = 14400
C

(10
5
)
= 252

D 5! + 5! = 240
? 48 / 54

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture07-io-en, slide 48 (PCIe Serial Transmission)&issue[description]=You can report the issue or sugestion there.

Interal Interconnection Buses

PCIe 8b/10b Encoding
8 bits, or 256 different values, are encoded into a 10-bit number that
has at least four 0s and at least four 1s

This extends to
(10

5
)
+ 2 ·

(10
6
)
= 672 of such 10-bit numbers

We choose those codes where are more 1 → 0 and 0 → 1 transitions.
For codes where count of 0s and 1s differs (by one only), there is
freedom whether code with more 1s or matching complement with
more 0s is chosen

table to code 3b by 4b

Input RD = −1 RD = +1
Code HGF f g h j
D.x.0 000 1011 0100
D.x.1 001 1001
D.x.2 010 0101

D.x.A3 011 1100
D.x.B3 0011
D.x.4 100 1101 0010
D.x.5 101 1010
D.x.6 110 0110

D.x.P7 111 1110 0001
D.x.A7 0111 1000

? 49 / 54

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture07-io-en, slide 49 (PCIe 8b/10b Encoding)&issue[description]=You can report the issue or sugestion there.

Interal Interconnection Buses

PCIe Versions 1.x and 2.x
Ver 1.x

The transfer rate is 2.5 GT/s (transfers per second, number of
symbols per second on one lane)
10 transfers are required for one byte of 8 bits
The maximum bandwidth (transfer capacity) is therefore 250 MB/s =
(2500 · 8

10) Mb/s = (2500 · 1
10)MB/s, practical with headers

200 MB/s per lane
PCIe allows up to 16 independent links (lanes) for one peripheral
connection, data bytes transferred independently in parallel

The maximum bandwidth is (16 · 250)MB/s = 4 GB/s
Ver 2.x

The transfer rate is 5 GT/s (transfers per second)
10 transfers are required for one byte of 8 bits
The maximum bandwidth of one line (x1) is 500 MB/s
The maximum bandwidth for 16 links (x16) is (16 · 500) MB/s = 8
GB/s

? 50 / 54

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture07-io-en, slide 50 (PCIe Versions 1.x and 2.x)&issue[description]=You can report the issue or sugestion there.

Interal Interconnection Buses

PCIe Vresion. 3.x, 4.x and 5.x
8b/10b encoding is unnecessarily inefficient, 128b/130b encoding with
similar parameters was chosen.

Ver 3.x
The transfer rate is 8 GT/s (transfers per second)
The maximum transfer capacity is therefore almost 985 MB/s =
(8000 · 128

130)Mb/s = (8000 · 16
130)MB/s

The maximum bandwidth for x16 is (16 · 985)MB/s = 15.75 GB/s
Ver 4.x

The transfer rate is 16 GT/s (transfers per second)
The maximum bandwidth is therefore almost 1.97 GB/s =
(16000 · 16

130) MB/s
The maximum bandwidth for x16 is (16 · 1.97)GB/s = 31.5 GB/s

Ver 5.x
The transfer rate is 32 GT/s (transfers per second)
The maximum bandwidth is therefore almost 3.94 GB/s =
(32000 · 16

130)MB/s
The maximum bandwidth for x16 is (16 · 3.94)GB/s = 63 GB/s

? 51 / 54

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture07-io-en, slide 51 (PCIe Vresion. 3.x, 4.x and 5.x)&issue[description]=You can report the issue or sugestion there.

Interal Interconnection Buses

PCIe Topology

Communication over the PCIe bus is similar to communication over a
swiched network (i.e. Ethernet).

Communication takes place in packets
ATTENTION – packet overhead is not included in the maximum
transmission capacity.
Each packet has a synchronization header, address, data, crc – similar
to the Ethernet protocol.

The use of switches is similar to that in a network
Switches allow direct communication only between two devices
Switches can prioritize packets – advantageous for reducing latency
(using packets, on the other hand, increases latency)
Switches can be used to ensure automatic detection and configuration
of connected devices on a similar principle to that of the PCI bus

? 52 / 54

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture07-io-en, slide 52 (PCIe Topology)&issue[description]=You can report the issue or sugestion there.

Interal Interconnection Buses

The Reality of Serial Bus Signals

High-speed communication presents many different problems.
Signal Appearance over Distance

? 53 / 54

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture07-io-en, slide 53 (The Reality of Serial Bus Signals)&issue[description]=You can report the issue or sugestion there.

Interal Interconnection Buses

Hard Drives and SSD Storage

A similar development to the change from PCI to PCIe can be
observed in drives.
PATA or Parallel ATA is a parallel drive connection since 1984 for the
first IBM PC/AT

The name ATA actually stands for AT Attachment, AT is an
abbreviation for Advance Technology.
Also referred to as IDE, later Extended IDE (EIDE) Utra ATA (UATA)
PATA is a 16-bit parallel data transfer between the CPU and the drive
In its fastest version, it could transfer up to 133 MB/s

SATA is a serial version of disk communication.
In the minimum version, it only needs 7 wires, A+, A-, B+, B- and 3x
ground.

SATA 1.0: 150MB/s (PATA:130MB/s)
SATA 2.0: 300 MB/s
SATA 3.0: 600 MB/s
SATA 3.2: about 2 GB/s

? 54 / 54

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture07-io-en, slide 54 (Hard Drives and SSD Storage)&issue[description]=You can report the issue or sugestion there.

	Input and Output
	QtRvSim Peripherals
	Interal Interconnection Buses

