
B35APO: Computer Architectures
Lecture 06. Branches and Speculative Execution

Pavel Píša Petr Štěpán
pisa@fel.cvut.cz stepan@fel.cvut.cz

License: CC-BY-SA

25. March, 2024

? 1 / 50

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture06-speculative-en, slide 1 ()&issue[description]=You can report the issue or sugestion there.

Superscalar Architecture

Outline

1 Superscalar Architecture

2 Out of Order Instruction Execution

3 Branch Predictors

4 Branch Target Prediction

5 Elimination of Hard to Predict Branches

? 2 / 50

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture06-speculative-en, slide 2 (Outline)&issue[description]=You can report the issue or sugestion there.

Superscalar Architecture

Today’s Lecture Objective

Familiarize with another possible processor speedup techniques that
builds on pipelining – the superscalar architecture
Branch prediction and speculative execution which are very important
concepts of superscalar processors
All of these techniques are used in RISC-V processors as well as in all
current high performance processors

? 3 / 50

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture06-speculative-en, slide 3 (Today's Lecture Objective)&issue[description]=You can report the issue or sugestion there.

Superscalar Architecture

Recap - Quiz

Which of following instruction sequences executed on classic five-stage
pipeline processor experience data hazards?

a)
addi t0, s1, 4
add t1, s1, s0
add s1, s2, x0

b)
addi t0, s1, 4
add t1, s2, s3
add t2, t0, t1

A in neither of sequences
B hazard is only in case a)
C hazard is only in case b)
D hazard is in case a) and b)

? 4 / 50

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture06-speculative-en, slide 4 (Recap - Quiz)&issue[description]=You can report the issue or sugestion there.

Superscalar Architecture

Recap - Quiz

How can be the following data hazard solved for the processor built during
the last lecture?
lw s2, 10(s0)
addi s1, s2, -1

A this hazard cannot be solved, it must be solved by the compiler or
programmer

B can be solved by data forwarding
C must only be resolved using stall
D can be solved by a combination of stall and data forwarding

? 5 / 50

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture06-speculative-en, slide 5 (Recap - Quiz)&issue[description]=You can report the issue or sugestion there.

Superscalar Architecture

Processor with Pipeline (from Lecture 5)
How does the Hazard Unit make a decision about data hazard and their
resolution?

Stall F Stall D

0
1

1
0

Data
Memory

A RD

WD

WE

0
1

Control
unit

Hazard unit

RegWriteD
MemToRegD
MemWriteD
ALUControlD
ALUSrcD
TypeRISBUJ
BranchD

RegWriteE
MemToRegE
MemWriteE
ALUControlE
ALUSrcE

RegWriteM
MemToRegM
MemWriteM

RegWriteW

MemTo
RegW

PCSrcM

6:0

19:15

24:20

Rs1D Rs1E

SrcAE

SrcBE

WriteDataE

WriteRegE 4:0

WriteDataM

ALUOutM

WriteRegM 4:0 WriteRegW 4:0

ALUOutW

ReadDataW

ResultW

InstrDPC´ PC

Op

Funct

Forward
AE

Forward
BE RegWriteM RegWrite

W

Reg.
File

A1 RD1

A2 RD2
A3
WD3

WE3 00

10
01

00
01
10

ALU

Zero

BranchE BranchM

Instruction
Memory

A RD

31:25, 14:12

Imm
decode

31:25, 24:20
11:7

SignImmD

WriteRegD 4:0

Rs2D Rs2E
19:15
24:20

11:7

SignImmE

PCD

PCBranchPCPlus4F
PCE

+

+
4

CLR

EN

EN

If RegWriteM==1,
MemToRegM==0,
WriteRegM!=0 and
WriteRegM==RsE1 or
RsE2 then set
ForwardAE to 2 or
ForwardBE to 2
If RegWriteW==1,
WriteRegM!=0 and
WriteRegW==RsE1 or
RsE2 then set
ForwardAE to 1 or
ForwardBE to 1

If MemToRegE==1, RegWriteE==1 WriteRegE!=0 and WriteRegE==Rs1D or
Rs2D then do not advance instruction from ID - STALL previous and flush (nop)
pass to execute stage.

? 6 / 50

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture06-speculative-en, slide 6 (Processor with Pipeline (from Lecture 5))&issue[description]=You can report the issue or sugestion there.

Superscalar Architecture

Instruction-level Parallelism

Instruction Level Parallelism (ILP)
Pipelining – different phases of different instructions are processed in
parallel
Superpipelining – superpipelining refers to pipelining with more than
10 steps. Slower pipelining phases are split into multiple parts,
allowing the processor to increase its frequency and thus its
performance.
Superscalar processor – the same stages of different instructions are
processed in parallel

multiple ALUs can execute in parallel EX phases of multiple different
instructions
the fetch phase can fetch multiple sucessive instructions in parallel, i.e.
instructions from PC, PC+4, PC+8 and PC+12 addresses
the instruction decode buffers allows fetching another instruction group
even if previous ones cannot be passed into decode stages

? 7 / 50

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture06-speculative-en, slide 7 (Instruction-level Parallelism)&issue[description]=You can report the issue or sugestion there.

Superscalar Architecture

Instruction-level Parallelism
Pipelined processor
IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

Superscalar processor
IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB
? 8 / 50

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture06-speculative-en, slide 8 (Instruction-level Parallelism)&issue[description]=You can report the issue or sugestion there.

Superscalar Architecture

Superscalar Processors
Superscalar processors have an IPC (Instruction Per Clock) greater
than 1.

Normal and pipelined processors have upper limit of IPC=1
The number of instructions which can be processed in parallel and
finished in the single clock cycle is called the instruction pipeline
width.
There are two basic variants:

Static superscalar architecture – only consecutive instructions in a
program can run in parallel.

If instructions depend on any other in the group, this leads to a
processor stall.

Dynamic superscalar architecture – any instructions that are ready to
execute can run in parallel up to number of available functional units
and their local pipelines limits.

Allows instructions to be executed out-of-order (in other than original
program sequence).
Leads to better use of the processor’s HW resources.

? 9 / 50

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture06-speculative-en, slide 9 (Superscalar Processors)&issue[description]=You can report the issue or sugestion there.

Superscalar Architecture

Superscalar Processors

Individual parallel pipelines can be unified – that is, all pipelines are
the same and can perform all types of operations

In practice, this would be an unnecessarily complex processor – it is not
used

The individual parallel pipelines are diversified (specialized) – each
pipeline can only process certain subset of instructions:

register-only instructions – calculations, comparisons
instructions to access the memory – loading/storing data from/to
memory
branch instructions – PC changing instructions

? 10 / 50

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture06-speculative-en, slide 10 (Superscalar Processors)&issue[description]=You can report the issue or sugestion there.

Out of Order Instruction Execution

Outline

1 Superscalar Architecture

2 Out of Order Instruction Execution

3 Branch Predictors

4 Branch Target Prediction

5 Elimination of Hard to Predict Branches

? 11 / 50

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture06-speculative-en, slide 11 (Outline)&issue[description]=You can report the issue or sugestion there.

Out of Order Instruction Execution

Superscalar Architecture
The basis of the architecture is usually the ReOrder Buffer (ROB),
which allows to achieve same final effect as when program is executed
sequentially. Register renaming allows to overcome limitations caused
by WAW (write-after-write) and WAR (write-after-read) hazards
which are results of out of order execution.

IF

ID

Reorder Buffer
(ROB)

Reservation
Station

ALU ALU FPU FPU Branch Store Load

Data
cacheCommon Data Bus - Write Back

Reservation Stations allows to
assign operations to functional
units even when some of input
operand values are not knows at
dispatch time.
Common Data Bus ensures that
calculated values are written to
the actual registers even for
renamed registers and
propagated to instructions
waiting for them.? 12 / 50

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture06-speculative-en, slide 12 (Superscalar Architecture)&issue[description]=You can report the issue or sugestion there.

Out of Order Instruction Execution

Data Hazards in Superscalar Architecture

For register-only instructions:
is clear that it is not possible to execute all instructions in parallel
is possible to increase parallelization by using a larger renamed
register file.

1: slli t1, s1, 4
2: add t0, t1, s2
3: addi s2, t0, 8
4: mult t1, s0, s0
5: addi t3, t1, 100

This program can be parallelized using renamed registers for intermediate
results:

1: slli RN0, s1, 4
2: add RN1, RN0, s2
3: addi RN2, RN1, 8

4: mult RN3, s0, s0
5: addi RN4, RN3, 100

? 13 / 50

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture06-speculative-en, slide 13 (Data Hazards in Superscalar Architecture)&issue[description]=You can report the issue or sugestion there.

Out of Order Instruction Execution

Tomasulo Algorithm

Robert Tomasulo from IBM invented an algorithm for out-of-order data
processing on FPUs in 1967. Today, a modification of it is the basis of the
architecture of all modern processors. The basic stages used today are:

Loading an instruction into the ROB and renaming the result register
of the operation - getting the register number from the renamed
register file.
Dispatch the instruction into the Reservation Station and wait for the
required results of previous instructions
Performing the calculation and writing the result to the renamed
register via the Common Data Bus
Completing the oldest instruction (circular queue – FIFO) from the
ROB and updating the architectural register.

Instructions may be computed out-of-order, but instruction completion is
in program order.

? 14 / 50

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture06-speculative-en, slide 14 (Tomasulo Algorithm)&issue[description]=You can report the issue or sugestion there.

Out of Order Instruction Execution

Superscalar Architecture
Reorder Buffer
(ROB)

Reservation Station

ALU ALU FPU

Common Data Bus - Write Back

Busy Issued Finished ARN RRN
 Data Valid Busy
Rename Register Set

RR1
RR2
RR3
RR4

...

RR32

CPU Register Set
RRN

RAX
RBX
RCX
RDX

Busy Operand1 V1 Operand2 V2 RRN Fnct Ready Busy Operand1 V1 Operand2 V2 RRN Fnct Ready

Reservation Station

RRNRRN RRN

Rename Register File:
A set of hardware registers, often many times more than architectural register file size.
The Busy flag indicates that the register is being used, the Valid flag indicates that the
value is calculated and is valid. When the instruction completes, the architectural register
is set to Rename Register Number (RRN) value.

ReOrder Buffer:
The cyclic queue contains instructions inserted in program order
The queue ensures that instructions are completed in program order
Binding between Reservation Station via Rename Register Number (RRN), which will
contain the result of the operation
Via the Common Data Bus is informed that the RRN register has been calculated and the
instruction gets the Finished flag
Complete instruction - instruction is removed from the ROB only when it and all preceding
instructions are finished.

? 15 / 50

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture06-speculative-en, slide 15 (Superscalar Architecture)&issue[description]=You can report the issue or sugestion there.

Out of Order Instruction Execution

Superscalar Architecture
Reorder Buffer
(ROB)

Reservation Station

ALU ALU FPU

Common Data Bus - Write Back

Busy Issued Finished ARN RRN
 Data Valid Busy
Rename Register Set

RR1
RR2
RR3
RR4

...

RR32

CPU Register Set
RRN

RAX
RBX
RCX
RDX

Busy Operand1 V1 Operand2 V2 RRN Fnct Ready Busy Operand1 V1 Operand2 V2 RRN Fnct Ready

Reservation Station

RRNRRN RRN

Reservation Station:
Contains two operands, if the V1 or V2 (valid) flag is set then the operand represent
value. If the V1 or V2 flag is not set, then the operand contains an RRN whose value is
being waited for to be received from the CDB
The RRN number indicates which register to write the result to.
If both operands are valid and the functional unit is free, the operation is entered and the
entry is removed from the Reservation Station. The RRN is passed with operation and
data through the functional unit which can send it with result to the Common Data Bus
and propagate results to waiting reservation stations.

? 16 / 50

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture06-speculative-en, slide 16 (Superscalar Architecture)&issue[description]=You can report the issue or sugestion there.

Out of Order Instruction Execution

Memory Read Data Hazards
If the lw and sw instructions use different addresses, they can be
reordered.
If lw follows sw to the same address, data forwarding can be
implemented.
In practice, however, one instruction may overtake the other, so that
it is not yet calculated where the data will be stored, i.e. whether a
match will occur.

Solution - speculative execution of the lw instruction, i.e. execution
even though it is not clear whether the data will be correct
When the sw instruction completes, all speculative executions of lw are
checked
When a conflict is found, speculative execution of the lw instruction is
cancelled

Execution is treated as if the order is preserved.
A big problem in multiprocessor systems – memory consistency when
parallel computations are performed on different processor cores.

? 17 / 50

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture06-speculative-en, slide 17 (Memory Read Data Hazards)&issue[description]=You can report the issue or sugestion there.

Out of Order Instruction Execution

AMD Zen2 - Microarchitecture

7 nm process (from 12 nm), I/O die utilizes 12 nm

Core (8 cores on CPU chiplet), 6/8/4 µOPs in parallel
Frontend, µOP cache (4096 entries)
FPU, 256-bit Eus (256-bit FMAs) and LSU
(2x256-bit L/S), 3 cycles DP vector mult latency
Integer, 180 registers, 3x AGU, scheduler (4x16
ALU + 1x28 AGU)
Reorder Buffer 224 entries

Memory subsystem
L1 i-cache and d-cache, 32 KiB each, 8-way
associative
L2 512 KiB per core, 8-way,
L2 DTLB 2048-entry
48 entry store queue

Autor: QuietRub
Source: https:
//en.wikichip.org/wiki/amd/microarchitectures/zen_2

? 18 / 50

https://en.wikichip.org/wiki/amd/microarchitectures/zen_2
https://en.wikichip.org/wiki/amd/microarchitectures/zen_2
https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture06-speculative-en, slide 18 (AMD Zen2 - Microarchitecture)&issue[description]=You can report the issue or sugestion there.

Out of Order Instruction Execution

Recap - Quiz

What is a control hazard?

A hazard that must be addressed by data forwarding
B hazard that must be handled by stall
C a situation in which the currently processed instruction must be

discarded
D the problem of unstable results of logical operations

? 19 / 50

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture06-speculative-en, slide 19 (Recap - Quiz)&issue[description]=You can report the issue or sugestion there.

Branch Predictors

Outline

1 Superscalar Architecture

2 Out of Order Instruction Execution

3 Branch Predictors

4 Branch Target Prediction

5 Elimination of Hard to Predict Branches

? 20 / 50

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture06-speculative-en, slide 20 (Outline)&issue[description]=You can report the issue or sugestion there.

Branch Predictors

Control Hazards in Superscalar Architecture
With conditional branches, it is not clear which instructions will be
executed.
Calculating the condition for a branch can take a long time, there are
many instructions in progress.

Solution - speculative fetching of additional instructions
After all the calculations necessary for the branch decision are
completed, it is checked whether branch should be really taken or not.
If the prediction is wrong, speculatively executed instructions must be
discarded/flushed.

Even unconditional branches/jumps have trouble to know branch
target. The branch targed may depend on the computation of
previous instructions for jump to register, and therefore cannot be
easily determined when fetching instructions.

Solution - speculatively guess branch target address, based on the
history of past branches.
After all calculations are done, check if the correct address has been
predicted.
Especially important for returning from a function.

? 21 / 50

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture06-speculative-en, slide 21 (Control Hazards in Superscalar Architecture)&issue[description]=You can report the issue or sugestion there.

Branch Predictors

Superscalar Architecture Control hazards

A branch is statistically every 4 to 7 instructions in the program
20% of branches are unconditional – they always taken, no need to
decide
80% of branches are conditional

about 66% are branches to a higher address, or forward
these branches correspond to branching type if
of these, statistically about 60% are – we will denote NT (Not Taken)

the rest about 34% are branches to a lower address, or backwards
these branches correspond to branches of the type for, while and do
... while
of these, statistically 99% (almost all) will be taken – we will denote T
(Taken)

? 22 / 50

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture06-speculative-en, slide 22 (Superscalar Architecture Control hazards)&issue[description]=You can report the issue or sugestion there.

Branch Predictors

Static Predictors

Static predictors always have the same result for a given branch
instruction:

A predictor that would always estimate that it always taken
According to the statistics on the previous page, it would have a
success rate of ptaken = (0.66 ∗ 0.4 + 0.34 ∗ 0.99) = 0.60
Statistically, it turns out that ptaken is in the range of 60 – 70% for
most programs.

BTFNT predictor – Backwards Taken / Forwards Not Taken
According to the sign of the relative branches - backward branch is
predicted taken, forward branches is predicted
According to the stats on the previous page, it would have a success
rate of ptaken = (0.66 ∗ 0.6 + 0.34 ∗ 0.99) = 0.73

? 23 / 50

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture06-speculative-en, slide 23 (Static Predictors)&issue[description]=You can report the issue or sugestion there.

Branch Predictors

Static Predictor BTFNT

Example of translating a for cycle:

for (i=0; i<N; i++) {

...

}

addi t0, x0, 0
addi t1, x0, N
j final_cond
...
addi t0, t0, 1
slt t2, t0, t1
bne t2, x0, body

body:

final_cond: conditional
branch

unconditional
jump

For a conditional branch, N − 1 times taken and 1 is not taken.
It branch backwards and the probability of a correct prediction is N−1

N

? 24 / 50

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture06-speculative-en, slide 24 (Static Predictor BTFNT)&issue[description]=You can report the issue or sugestion there.

Branch Predictors

Static Predictor BTFNT
Example of translating the if else construct:

if (a<b) {

...

} else {

...

}

slt t2, a, b
beq t2, x0, else

 ...
j end_if

 ...
else:

end_if:

conditional
branch

unconditional
branch

The unconditional branch depends on the values of a, b, so nothing can be
said about it in general, except that it always jumps forward.
The statistical behavior depends on the type of program, but for a mixture
of different programs it turns out that the probability of a taken branch is
0.4.

? 25 / 50

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture06-speculative-en, slide 25 (Static Predictor BTFNT)&issue[description]=You can report the issue or sugestion there.

Branch Predictors

Dynamic Branch Predictors
Dynamic predictors try to estimate whether a branch will occur based on the past
behavior of a given branch instruction:

It would be ideal if each branch instruction had its own predictor
But this is not possible, a branch instruction can be at any location in
4GiB memory

Solution: we will have 2k predictors and
select a predictor according to the k
lowest bits of the branch instruction
address

Some branch instructions at
different addresses but with the
same lowest k bits of the address
will interfere – interfere.
Interference can very adversely
affect prediction success.

PC - branch address
0...01011011111010100

k=7 2k predictors
0000000
0000001
0000010
0000011
0000100
0000101
0000110

1110101

1111111

k least
significant
bits of the branch
address

? 26 / 50

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture06-speculative-en, slide 26 (Dynamic Branch Predictors)&issue[description]=You can report the issue or sugestion there.

Branch Predictors

1-bit Smith Predictor

The simplest predictor is the 1-bit Smith predictor
Has only two states, switches according to past behavior
Predicts that it will turn out the same way it did last time.

very simple to implement, evaluate and adjust to reality

taken

prediction
branch is

Taken
1

not taken

prediction
branch is
Not Taken

0

not taken

taken

? 27 / 50

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture06-speculative-en, slide 27 (1-bit Smith Predictor)&issue[description]=You can report the issue or sugestion there.

Branch Predictors

1-bit Smith Predictor
Prediction of the for loop:

for (i=0; i<5; i++) {
...

}

addi t0, x0, 0
addi t1, x0, 5
j cond

body: ...
addi t0, t0, 1

cond: slt t2, t0, t1
bne t2, x0, body

If the predictor does not interfere with other branches, then it starts in
state 0 – NT (Not Taken).

Real behaviour T T T T T NT
Prediction NT T T T T T

You can see that the predictor is not successful at the beginning of the for
loop and at the end.
The success rate of the 1-bit Smith predictor for a loop with r iterations is
r−2

r .
? 28 / 50

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture06-speculative-en, slide 28 (1-bit Smith Predictor)&issue[description]=You can report the issue or sugestion there.

Branch Predictors

2-bit Smith Predictor

The 2-bit Smith predictor is still one of the simplest used ones
It already has 4 states, represented by 2 bits.
2 states predict a taken, 2 states predict a non-taken
Prediction depends on past behaviour, but tolerates one deviation
from regularity
Very simple to implement, evaluate and adjust to reality

prediction
branch is
Weakly
Taken
10

prediction
branch is
Weakly

Not Taken
01

not taken

taken

taken

prediction
branch is
Strongly
Taken
11

not taken

taken

not taken

prediction
branch is
Strongly
Not Taken

00

not taken

taken

? 29 / 50

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture06-speculative-en, slide 29 (2-bit Smith Predictor)&issue[description]=You can report the issue or sugestion there.

Branch Predictors

2-bit Smith predictor
Prediction for for loop:

for (i=0; i<5; i++) {
...

}

addi t0, x0, 0
addi t1, x0, 5
j cond

body: ...
addi t0, t0, 1

cond: slt t2, t0, t1
bne t2, x0, body

If the predictor does not interfere with other branches, then it starts in state 10 –
WT (Weakly taken).

Real behaviour T T T T T NT
State WT ST ST ST ST ST WT
Prediction T T T T T T

You can see that the predictor is not successful only at the end of the for loop.
The success rate of the 2-bit Smith predictor for a loop with r iterations is r−1

r .
? 30 / 50

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture06-speculative-en, slide 30 (2-bit Smith predictor)&issue[description]=You can report the issue or sugestion there.

Branch Predictors

2-bit Smith Predictor with Hysteresis

Analogue of the 2-bit Smith predictor
When two changes occur in succession, it goes straight to the
Strongly state and two more opposite behaviors must occur in
succession for the predictor to flip to the new state.

prediction
branch is
Weakly
Taken
10

prediction
branch is
Weakly

Not Taken
01

not taken

taken

taken

prediction
branch is
Strongly
Taken
11

not taken

taken

not taken

prediction
branch is
Strongly
Not Taken

00

not taken

taken

? 31 / 50

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture06-speculative-en, slide 31 (2-bit Smith Predictor with Hysteresis)&issue[description]=You can report the issue or sugestion there.

Branch Predictors

Predictor Evaluation

It’s impossible to decide in general which of predictors is better. It is
always possible to find counterexamples where each of the predictors
behaves counterproductive
The only possibility is a statistical analysis of different programs:

Static predictor - always taken 59.25
1-bit Smith predictor 68.75
2-bit Smith predictor with hysteresis 81.75

Source: https://ieeexplore.ieee.org/document/6918861
H. Arora, S. Kotecha and R. Samyal, ”Dynamic Branch Prediction
Modeller for RISC Architecture,” 2013 International Conference on
Machine Intelligence and Research Advancement, Katra, 2013, pp.
397-401.

? 32 / 50

https://ieeexplore.ieee.org/document/6918861
https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture06-speculative-en, slide 32 (Predictor Evaluation)&issue[description]=You can report the issue or sugestion there.

Branch Predictors

Prediction Interdependence/Correlation
In practice, it turns out that the prediction depends on the previous
behavior of the program.
if (x==2) { // jump s1
}
if (y==2) { // jump s2
}
if (x!=y) { // jump s3
}
If the variables x, y do not change in the bodies of the conditions s1 and
s2, then we have a strong dependency of the branches s3:

s1 s2 =⇒ s3 explanation
not taken taken not taken x==2 and y!=2 therefore x!=y
taken not taken not taken x!=2 and y==2 therefore x!=y
not taken not taken taken x==2 and y==2, → x!=y is wrong
taken taken don’t know x!=2 and y!=2, don’t know if x!=y

? 33 / 50

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture06-speculative-en, slide 33 (Prediction Interdependence/Correlation)&issue[description]=You can report the issue or sugestion there.

Branch Predictors

Branch History – Correlated Predictors
The Branch Histrory Register (BHR) contains information about whether
the last m braches has been taken or not:

If taken then contains 1, if not taken then contains 0
The new information is inserted at the lowest bit, the oldest
information is discarded from the highest position, the other
information is shifted.

To find the predictor index, the k − m
lowest bits of the branch instruction
address are used and this information is
concatenated with the bits from the
BHR

Advantage – a different predictor is
selected based on the previous
branch outcome.
Disadvantage – some combinations
do not occur in the BHR and
therefore these predictors are not
used.

PC - branch address
0...01011011111010100

k=7 2k predictors
0000000
0000001
0000010
0000011
0000100
0000101
0000110

0110101

1111111
BHR

Branch History
Register

0110

0110101

? 34 / 50

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture06-speculative-en, slide 34 (Branch History -- Correlated Predictors)&issue[description]=You can report the issue or sugestion there.

Branch Predictors

GShare Predictors

The GShare approach is similar to the previous one:
It also uses the BHR register, which in this implementation has
directly k bits

To find the predictor index, the k lowest
bits of the branch instruction address are
taken and xor is performed with the bits
from the BHR.
Benefits:

better statistically distributes to all
predictors.
allows to use a longer BHR register.

PC - branch address
0...01011011111010100

k=7 2k predictors
0000000
0000001
0000010
0000011
0000100
0000101
0000110

0010011

1111111
BHR

Branch History
Register

1100110

1110101

1100110
xor = 0010011

? 35 / 50

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture06-speculative-en, slide 35 (GShare Predictors)&issue[description]=You can report the issue or sugestion there.

Branch Predictors

Tournament Predictors

The basis of a tournament predictor is a competition between two other,
simpler predictors. To choose which predictor is better, and therefore
which predictor will be output, a 1-bit or 2-bit predictor can be used.

How the 1-bit tournament predictor works
Calculate the prediction with predictors P1 and P2.
If the results are the same, the prediction is used.
If the predictions is incorrect:

The resulting prediction is whichever predictor has been successful in
the past. This information is stored in a 1-bit state machine.
Select predictor P1 or P2 for the next prediction, depending on the
outcome.

? 36 / 50

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture06-speculative-en, slide 36 (Tournament Predictors)&issue[description]=You can report the issue or sugestion there.

Branch Predictors

Tournament Predictors

Size of predictors in KiB

? 37 / 50

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture06-speculative-en, slide 37 (Tournament Predictors)&issue[description]=You can report the issue or sugestion there.

Branch Predictors

Recap - Quiz

Which predictor can best predict the following fact of jumps if it starts in
Taken or Weakly Taken state:

T T T NT NT NT T T T

A 1-bit Smith predictor
B 2-bit Smith predictor
C 2-bit Smith predictor with hysteresis
D all make the same number of wrong predictions

? 38 / 50

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture06-speculative-en, slide 38 (Recap - Quiz)&issue[description]=You can report the issue or sugestion there.

Branch Predictors

Perceptron

1

x1

x2

xn-1

xn

...inputs

weightsconstant

w0

w1

w2

wn-1

wn

Σ

weighted
sum

thresholding

output
0 or 1

The formula ξ =
∑n

i=0 xi · wi is used to calculate the value. The final
evaluation is by means of a transfer function, in our case threshold

function, which has the form: f(ξ) =
{

1 for ξ ≥ 0
0 for ξ < 0

? 39 / 50

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture06-speculative-en, slide 39 (Perceptron)&issue[description]=You can report the issue or sugestion there.

Branch Predictors

AMD Zen2 Branch Predictor

PC - branch address
0...01011011111010100

k=7 2k perceptrons
0000000
0000001
0000010
0000011
0000100
0000101
0000110

1110101

1111111

k least
significant
bits of brench
address

w0, w1, ... , wn

BHR
x1,...xn

Σ >0

According to the branch address, one perceptron is selected from the table.
The perceptron is defined by the weights wi.
The prediction result is the sign of the weighted sum ξ =

∑n
i=0 xi · wi,

where xi are bits from the BHR branch history register.
Advantage – better results than gshare, can be used for long BHR history
registers, disadvantage – complex calculation, cannot get the result in one
CPU clock.

? 40 / 50

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture06-speculative-en, slide 40 (AMD Zen2 Branch Predictor)&issue[description]=You can report the issue or sugestion there.

Branch Predictors

AMD Zen2 Branch Predictor

Calculating the perceptron output is relatively slow, normal
perceptrons use real floating point numbers. It is possible to speed up
with 16-bit real numbers, or by using a fixed decimal point.
The actual implementation of branch predictors has three levels

level 1 – 16 very fast predictors, deciding in the same clock cycle which
next instructions to fetch
level 2 – 512 predictors, which will refine the prediction in the next
clock cycle, either discarding the loaded instructions or confirming them
level 3 – 7168 predictors, in 4 clock cycles refine the prediction. Again,
the existing fetched instructions are either kept or discarded.

The average time delay for a bad final prediction is approximately 18
clock cycles.
At 4GHz and if every tenth instruction is a jump, a 1% misprediction
results in a performance degradation of almost 2%.

? 41 / 50

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture06-speculative-en, slide 41 (AMD Zen2 Branch Predictor)&issue[description]=You can report the issue or sugestion there.

Branch Predictors

AMD Zen2 Predictor

Source: Analyzing Zen 2’s Cinebench R15 Lead By clamchowder from
https://chipsandcheese.com

? 42 / 50

https://chipsandcheese.com
https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture06-speculative-en, slide 42 (AMD Zen2 Predictor)&issue[description]=You can report the issue or sugestion there.

Branch Target Prediction

Outline

1 Superscalar Architecture

2 Out of Order Instruction Execution

3 Branch Predictors

4 Branch Target Prediction

5 Elimination of Hard to Predict Branches

? 43 / 50

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture06-speculative-en, slide 43 (Outline)&issue[description]=You can report the issue or sugestion there.

Branch Target Prediction

Branch Target Prediction
Branches have different branch target address formats in both RISC-V and
other processors:

branch/jump to a fixed address – the branch target is the address
directly specified in the branch instruction (not in RISC-V because it
has a fixed instruction length and a 32-bit address does not fit in the
instruction code)
branch relative to the address of the jump instruction – the branch
target is calculated as the sum of the PC at the time the branch
instruction is fetched and the specific value specified in the instruction.
branch to the position specified in the register or in memory – RISC-V
has the jalr instruction, i.e. jump to the address specified in the
register, x86 contains the ret instruction – return from the subroutine
according to the address specified in memory on the stack and the
jump indirect instruction, where the address points to the memory
where the jump target address is specified. The indirect jump
instruction can be used when branching according to a table, which
can be used when compiling a switch construct, or when calling
dynamic library functions or virtual methods of the object.

? 44 / 50

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture06-speculative-en, slide 44 (Branch Target Prediction)&issue[description]=You can report the issue or sugestion there.

Branch Target Prediction

Branch Target Prediction

The branch target needs to be determined at the instruction fetch
stage.
It is possible to have special dedicated adders for jump target
addresses, but even there the summation takes some time.
Therefore it is important to estimate the branch target:

BTB (Branch Target Buffer) is either a fully associative memory or a
partially associative with a given degree of associativity.
Lines are pairs:

key – BIA (Branch Instruction Address) – i.e. the PC value at the time
of the branch
BTA (Branch Target Address) – the target address of the branch

If the PC matches the value of the BIA in the BTB and the predictor
simultaneously predicts a branch, the PC is speculatively changed to
the value of the corresponding BTA

? 45 / 50

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture06-speculative-en, slide 45 (Branch Target Prediction)&issue[description]=You can report the issue or sugestion there.

Branch Target Prediction

Function Return Prediction

The most common branch accoring address in register or memory is a
return from function:

For fast prediction of the return address of a function, modern CPUs
contain a – Return Address Stack (RAS)

This is a fast stack memory – remembering a limited number (up to
32) of return addresses
The value is stored in the RAS when the function is called, then when
the ret instruction is fetched, the top of the RAS serves as a predictor
of the branch target

Works reliably for function nesting levels depending on RAS size

? 46 / 50

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture06-speculative-en, slide 46 (Function Return Prediction)&issue[description]=You can report the issue or sugestion there.

Elimination of Hard to Predict Branches

Outline

1 Superscalar Architecture

2 Out of Order Instruction Execution

3 Branch Predictors

4 Branch Target Prediction

5 Elimination of Hard to Predict Branches

? 47 / 50

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture06-speculative-en, slide 47 (Outline)&issue[description]=You can report the issue or sugestion there.

Elimination of Hard to Predict Branches

Example of how to remove a jump in a program
You can find many tricks on the Internet to remove condition and
therefore conditional jumps in your programs.
Here we will demonstrate removing the if from the calculation of the
absolute value of an integer:
program in C
if (x<0) {

x = -x;
}

program in RISC-V
slt t0, s0, x0
beq t0, x0, skip
sub s0, x0, s0

skip:

comment compares whether x<0
will jump or not according to the
result. calculate -x

To remove the conditional jump, which would be very hard to estimate,
the following construction can be used, using the highest sign bit:
program in C
int tmp = x>>31;
x^= tmp;
x -= tmp;

program in RISC-V
srai t0, s0, 31
xor s0, s0, t0
sub s0, s0, t0

comment
tmp will be either 0 or
0xFFFFFFFFFF
does nothing, or bitwise inversion for
tmp==0 it does nothing, otherwise
it subtracts -1, so it adds 1? 48 / 50

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture06-speculative-en, slide 48 (Example of how to remove a jump in a program)&issue[description]=You can report the issue or sugestion there.

Elimination of Hard to Predict Branches

Example of How to Remove a Branch in a Program

If the value of b is 0 or 1, then the following C program can be executed:
a = ((b!=0) ? c : d);
change to program:
static const int lookup_table[] = {d,c};
a = lookup_table[b];

Multiple branches can also be eliminated at once, as long as again b1, b2,
b3 only take values 0 or 1:
a = (b1 ? c : (b2 ? d : (b3 ? e : f)));
can be changed to a program:
static const int lookup_table[] = { f, e, d, d, c, c, c, c };
a = lookup_table[b1 * 4 + b2 * 2 + b3];

? 49 / 50

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture06-speculative-en, slide 49 (Example of How to Remove a Branch in a Program)&issue[description]=You can report the issue or sugestion there.

Elimination of Hard to Predict Branches

Example of how to remove a branch in a program

Similarly, converting a number from 0 to 15 to a hex character can either
if (a<10) {
ch = '0'+a;

} else {
ch = 'A'+(a-10);

}
can be changed to a program:
static const int hex_c[] = {'0','1','2','3','4','5','6','7',

'8','9','A','B','C','D','E','F'};
ch = hex_c[a];

? 50 / 50

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture06-speculative-en, slide 50 (Example of how to remove a branch in a program)&issue[description]=You can report the issue or sugestion there.

	Superscalar Architecture
	Out of Order Instruction Execution
	Branch Predictors
	Branch Target Prediction
	Elimination of Hard to Predict Branches

