Comﬁuter Architectures

Arithmetic + Processor

Richard Susta, Pavel Pisa

f

Czech Technical University in Prague, Faculty of Electrical Engineering

AEOB36APO Computer Architectures 2019 1

Floating point arithmetic operations overview

Conversion: to/from integer, double, float
- shift of mantissa according to exponent

Addition: A-z2,B-zP,b<a unify exponents

B.zb = (B-zP-®)-zb-(-a) by shift of mantissa
A-z3+ B-zP = [A+(B-zP?)]-z2 sum + normalization

Subtraction: unification of exponents, subtraction and
normalization

Multiplication: A-z3-B-z°=A-B.z3*°

A-B - normalize if required
A-B-za*b = A.B.z.za*b-1 by left shift
Division: A-z3/B-z° = A/B-z2P
A/B - normalize if required

A/B-zab=A/B-z-z3P*1 by right shift

Example: a + b = 1000*pi + /20

1. Float 6.5 digits |to int <8 388 608;16 777 216) = <2"23;2"24)
af | 1000*pi |~3141.593 *2MN12 | 12867964,928
bf | e/20 ~0,1359141 *2726 1 9121040,8525824
2. | Convert to binary but we should add
ax 12867965 | 1100 0100 0101 1001 0111 1101 | . after 12.bit <- * 2712
bx 9121041 | 1000 1011 0010 1101 0001 0001 | . after 26. bit <- * 2726
3. | Binary number exponent

a 1100 0100 0101.1001 0111 1101 | 2n0

b 00.00 1000 1011 0010 1101 0001 0001 | 20
4. | Normalized binary number exponent

1.100 0100 0101 1001 0111 1101 | *2nM11, 12+11=23
b 1.000 1011 0010 1101 0001 0001 | * 2~-3, 26-3 =23

AEOB36APO Computer Architectures

=

Checking Intermediate Results

1.100 0100 0101 1001 0111 1101 *2711

= (12867965 * 2"-23) * 211 - actually stored value
= 1,53398096561431884766 * 211

= 3141,59301757812500000768
(1000*pi=3141,59265358979323846264)

1.000 1011 0010 1101 0001 0001 * 2*-3
= (9121041 * 27-23) * 27-3

= 1.08731281757354736328 * 2°-3

= 0.13591410219669342041
(€/20=0,13591409142295226177)

Calculation performed by SpeedCrunch 0.12 - http://speedcrunch.org/

AEOB36APO Computer Architectures

http://speedcrunch.org/

Preparing for Addition

5. Normalizované binarni Cislo exp.
a|1.100 0100 0101 1001 0111 1101 * 271
+b|1.000 1011 0010 1101 0001 0001 * 27-3
6. Na stejné exponenty exp.
a|l1.100 0100 0101 1001 0111 1101 * 271
+h | 0.000 0000 0000 0010 0010 1100 10110100010001 |*2"11

For number b, the binary dot is shifted 14 points to the left, i.e., the difference of
the exponents 11- (-3). Red-marked bits run out of the range -> loss of accuracy.

7. Soucet expt

a/1.100 0100 0101 1001 0111 1101 *2M1
+h | 0.000 0000 0000 0010 0010 1100 1e1l1el1eLe1cee1 |*2"1
atb |1.100 0100 0101 1011 1010 1001 * 271

=

AEOB36APO Computer Architectures

Result and its double type check

a+b = 1.100 0100 0101 1011 1010 1001 * 2711
= (12868521 * 27-23) * 2711

= 1.53404724597930908203 * 2711

= 3141,72875976562499999744

Original numbers a and b added as double
=3141.593 + 0,1359141 = 3141,7289141

=1.10001000101101110101010 * 2M1 1its real value
= 3141,72900390625

Evaluation of 1000*pi+e/20 as double, the result is converted to float

1.100 0100 0101 1011 1010 1000* 2711 = 3141,728515625

Calculation performed by SpeedCrunch 0.12 - http://speedcrunch.orqg/

AEOB36APO Computer Architectures -

http://speedcrunch.org/

Effect of Loss of Precision

According to the

General . Missile
Accounting outside of
Office of the U.S. Validation range gate
Government, a action
loss of precision . ’\ galtlge
' ate
in converting 24- | Area
bit integers into Search action
. : locates missile
24-bit floating somewhere
point numbers within beam f
was responsible
for the failure of Patriot
a Patriot anti- Missile Radar
System

missile battery.

Slide source: UIUC

AEOB36APO Computer Architectures

Effect of Loss of Precision

= During the Gulf War in 1991, a U.S. Patriot missile failed to intercept an
Iraqi Scud missile, and 28 Americans were killed.

= A later study determined that the problem was caused by the inaccuracy
of the binary representation of 0.10.

— The Patriot incremented a counter once every 0.10 seconds.
— It multiplied the counter value by 0.10 to compute the actual time.

= However, the (24-bit) binary representation of 0.10 actually corresponds
t0 0.099999904632568359375, which is off by 0.000000095367431640625.

» This doesn’t seem like much, but after 100 hours the time ends up being
off by 0.34 seconds—enough time for a Scud to travel 500 meters!

—

= UIUC Emeritus Professor Skeel wrote a short article about this.
Roundoff Error and the Patriot Missile. SIAM News, 25(4):11, July 1992.

Slide source: UIUC

How to add ?

We want to calculate the sum:

N1
i
i—1 |

AEOB36APO Computer Architectures

More correct result is...

1010 ~
1 164493405381865
i—1 | added as type double...
1 1 s Why are the results
Z = ~1, 644934@6@82264 different? Select the

_/more correct one.

AEOB36APO Computer Architectures

Speed of real operations

Operation Peformed by

Negation of number negation of MSB (Main Scale Bit)
Comparison a) sign-> b) absolute value
Multiply or divide by 2" change of exponent

Conversion among int, float, double shift of mantissa according to exp.

Mantissas to the same exponents,

Addition, Subtraction, Increment, decrement : Lt
+/-, rounding, normalization

Multiply by hardware multiplier Add exponent, multiply mantissas,
Multiply by sequence multiplier rounding, normalization

Subtract exponents, divide
mantissas, rounding, normlization

Division

AEOB36APO Computer Architectures

lteration Divider Goldschmidt

e
N
o=N_ My 2 " My ey
B B
my 2
Normalized numbers:
my = 1.?2?2?2?2?27?7..7 amg=1.2?????2..7

1<my, mg<2 If we consider only mantissa, or
0,5 <m,, mg <1 if we take in account only fractional part

AEOB36APO Computer Architectures

12

Goldschmidt Division

* Let us compute the reciprocal of B (1/B)

* Then, we can use the standard floating point
multiplication algorithm

* [gnoring the exponent

* Let us compute (1/P,), where Pyis mantissa

* |f B is a normal floating point number
* 1<=P;<2
* P,=1+X where (X<1)

Source: IIT Delhi, McGrawHill

AEOB36APO Computer Architectures

Goldschmidt Division - |l

Lo (Pr=1+X,0<X<1)
P, 1+X "% !
— 1 X'=1-XX<1)
141 =X B ’
1
C2=-X
1 1
= — *
2 X’
1 -3
1 Y X 1—X 21/<1
= — X = — = —_— —
5 1_Y(5 ()/2, 2)

Source: IIT Delhi, McGrawHill
AEOB36APO Computer Architectures

Goldschmidt Division - |l

1 1+Y

1-Y 1-Y2
@+ @a+ Y?)

1 — v+

(1 +Y)(1+Y%) ... (1+Y19)

1 — Y32
~ (1+Y)(1+Y?%) .. 1+Y1®

* There is no point considering Y32
because it cannot be represented in our format!

Source: IIT Delhi, McGrawHill

AEOB36APO Computer Architectures

Generating the 1/(1-Y)

1+Y)(A+Y%) ... 1+Y19
* We can compute Y? using a FP multiplier.

* Again square it to obtain Y4, Y8, and Y1°

* Takes 4 multiplications, and 5 additions, to
generate all the terms

* Need 4 more multiplications to generate the final
result (1/1-Y)
* Compute 1/P, by a single right shift

Source: IIT Delhi, McGrawHill

*Program

for contemplation

Quiz: Deside if it Is true

ViE £2 S We suppose
float £ = ..; that fand d are not NaN
double d = ..;

* x == (int) (float) x

== (int) (double) x
== (float) (double) £
== (float) d

Hh Q. Hh X

== -(-f);
* 2/3 == 2/3.0

d< 0.0 = ((d*2) < 0.0)

d>f =-f>-d
d *xd > 0.0

+ (d+f)-d ==

Answers

ViE £2 S We suppose
float £ = ..; that f and d are not NaN
double d = ..;
: ¥ == (iRt) (Fisak) x No: 24 significant bits
: ¥ == (int) (doubie) x Yes: 53 significant bits
: £ == (fisat) (deuble) £ Yes : precession is increased
== (flsat) d No: precession is lost
== -(=f); Yes: change of sign only
: 3/3 == 2/3.86 No: 2/3==0
: d€8:8 = ((d43) < 8:8) Yes!
: 43 f =3:f3 =4 Yes!
t: d ¥d3=06.8 Yes!

(d+f)=d == No: Not associative

[4
[]

I\/Iicroprocessors
b _al%

DON’T PANIC

Processor is something a la Kitchen

ALU

Control Unit — @El
o m==
¥ ="

My choice

)

2 Timer Output
Interrupt

Processor

[Nelson: Computer Architecture and Design, Auburn 2008]

Simplified Processor

Dat a St orage, Regist er File,
Const ant - Immediat e value

A

Control
Unit

NS

ALU

Control unit controls datapath
Inherently sequential.

AEOB36APO Computer Architectures

22

II_I of Digital Computer

Program
Counter control commands
=-
m D ...
L = @ | Control
o .
Program L 2a Unit
- |.:::: h: o CD
INn memory O
instructions

Data
In memory

Datapath

=

RISC CPU Design Stategy

RISC - Reduced Instruction Set Computer
Its philosophy - keep it simple!
 fixed instruction length(s) (usually one word)
« |oad-store instruction sets (don’t do anything else)
« |imited addressing modes
* limited operations

Examples: MIPS, Sun SPARC, HP PA-RISC, IBM PowerPC, Intel
(Compaq), Alpha, NIOS...

Design goals:

speed, size, power consumption, reliability,
cost < design, fabrication, test, packaging,
space on chip — embedded systems

AEOB36APO Computer Architectures

CISC Design Strategy

CISC = Complex Instructions Set Computers

Examples of CISC Instruction

Machine |Instruction |Effect

Pentium MOVS Move string of bytes, words, or double words
PowerPC cntlzd Count the number of consecutive Os

IBM 360-370 | CS Compare and swap register if a condition is satisfied
Digital VAX POLYD Evaluation of polynomial using a coefficient table

AEOB36APO Computer Architectures

Computer based on von Neumann's concept

o Control unit |
- PFOCGSSOF/mICI’Opl‘OCGSSOF

- ALU - von Neumann architecture uses common

« Memory memory, whereas Harvard architecture uses
- Separate program and data memories

« INnput

. Output Input/output subsystem

The control unit is responsible for control of the operation
processing and sequencing. It consists of:

.registers — they hold intermediate and programmer visible state

.control logic circuits which represents core
of the control unit (CU)

AEOB36APO Computer Architectures 26

'
 Assembly operands are registers

* registers are special memory elements inside
CPU that allow fast access

Registers

 operations can only be performed on them!

* MIPS registers are 32 bit wide
« they are numbered from $0 to $31

* Each register can be referred to by its number
or defined name:

- number references: $0, $1, $2, ... $30, $31
- named references: zero, at, vO, ..., fp, ra

Compilation: C -> Assembler -> Machine Code

int pow = 1;
int x =0;

while(pow != 128)

{

POW = POW*2;

X=X+1;

}

N

addi s0, $0, 1 I/ pow =1
addi s1, $0, 0 /[x=0
addi t0, $0, 128 //t0 =128

while:
beq sO, tO, done // if pow==128, go to done
sll s0, sO, 1 /[pow = pow*2
addisl,sl. 1 [[x = x+1
. . 2001FFF4 Q0O 00 Q0O 00 HOP
J while BOO1FFF2 00 00 00 00 NOE
done_ 2001FFFC HOP
. BOOZ00 ADDI s1&, 300, Oxl
ADDI 517, 300, Ox0
ADDI S08, 300, O0xB0
BEQ 508, $1&, Oxd
> HOE
SLL £16, 16, 1
J O0x28003
ADDT 517, 317, Oxl
HOE
HOP
20020028 HNOE

AEOB36APO Computer Architectures

28

] _IPS: Common Register Usage

Reg | Name | Normal usage Reg | Name | Normal usage

$0 zZero 0x0000_0000 - read only! $16 | sO

$1 | at Assembler Temporary $17 | sl

$2 |[vO _ $18 | s2 0

$3 | v1 22 $19 | s3 G

$4 | a0 S23 $20 | s4 z

$5 | a1 5 % E $21 | s5 ﬁ

$6 | a2 ;25 oL $22 | s6 %

$7 | a3 $23 | s7

$8 |[t0 $24 |18

9 |11 0 $25 |19

$10 | t2 -§ $26 | kO Interrupt

$11 | t3 3 $27 | k1

$12 | t4 ﬁ $28 | gp Global Pointer

$14 | {5 % $29 | sp Stack Pointer E
$14 |t 5 $30 | fp Frame Pointer % N
$15 | t7 $31 | ra return Address o

29

Assembly File

Assembly File

file

text

C
C
(.data
C
C

NN NN N

m Divided into different sections

m Each section contains some data, or assembly instructions

AEOB36APO Computer Architectures

lower address

.ent _start

Other programs

Layout of a Program in Memory

entry point,
initial value of PC

'higher address

Text Segment

< text

Static Initialized Data

Static Uninitialized Data

Dynamic Area, heap
(cz: halda)

v
N\

Stack Segment
(cz:zasobnik)

S .data

~ Data Segment

Heap grows
to higher address

Stack grows
to lower address

AEOB36APO Computer Architectures

Assembly code - preview

[* template for own QtMips program development */
.globl _start // .globl makes the symbol visible to linker
.set noat /I disables warning when $at register is used by user.
.set noreorder // prevents the assembler from reordering machine-language instructions
Il See later lectures
.ent _start
dext
_start:
lw $2, 0x2000($0) // load the word from absolute address
sw $2, 0x2004($0) // store the word to absolute address

loop:
break // stop execution wait for debugger/user
beq $0, $0, loop // endless loop
/[it ensures that continuation does interpret random data
nop
.data
src_val:
.word 0x12345678
dst val:
.end _start

Assembly code
“ Three types of statements in assembly language:

< Typically, one statement should appear on a line

1. Executable Instructions
< Generate machine code for the processor to execute at runtime
< Instructions tell the processor what to do

2. Pseudo-Instructions and Macros
< Translated by the assembler into real instructions
< Simplify the programmer task

3. Assembler Directives
< Provide information to the assembler while translating a program
< Used to define segments, allocate memory variables, etc.
<> Non-executable: directives are not part of the instruction set

.data directive - Definition Directives

Sets aside storage in memory for a variable and optionally
assigns a name (label) to the data

Syntax:

[naﬂe:] dir(ictive initkiljzer [, initializer] . ..

varl: .word 10
myarray: .word 5, 3, 4, 1, 15

All initializers become binary data in the initialized memory,
we will discuss this topic more in the next lecture. The location of the text and data
sections can be specified by compiler parameters, e.g.

mips-elf-gcc -WI,-Ttext,0x1000 -WI,-Tdata,0x2000 -nostdlib -nodefaultlibs -

nostartfiles -o simile-lw-sw simile-lw-sw.S

] _ Structure of Instructions

Instruction code
or Instruction code operand 1
or Instruction code operand1 |, operand 2
or Instruction code operand1 | operand2 | operand 3

B instruction textual identifier of a machine instruction

m operands

register
memory location

constant (also known as an immediate)

Instruction Formats

All instructions are 32-bit wide.

Register (R-Type)
Register-to-register instructions, Rx are numbers of registers
Op: operation code specifies the format of the instruction,
funct- sub-function, control codes
sa - used with the shift and rotate instructions,

Op® Rs® Rt° Rd® sa® funct®

Immediate (I-Type)
16-bit immediate constant is a part of the instruction

Op® Rs® Rt° immediate!®

Jump (J-Type)
Used by jump instructions only

Op® immediate?®

Upper indexes specify bit widths of fields in an instruction.

ALU Instructions

operation R-format |-format
add | add addu |addi addiu
subtract | sub _
multiply |mult / multu
divide |div / divu |
AND | and andi
OR or ori
XOR | xor xori
NOR | nor -

addi, addiu

rB <« rA+ se (number),

addu, addiu - no overflow trap

Logic instructions AND, OR, XOR, NOR do not use se = sign-extension

37

L _ Unsigned/Signed Extension

xXu'

The Constant Zero

* MIPS register $0 (zero) is the constant O
« Cannot be overwritten!

» Useful for common operations
* E.g., move between registers
add $8, $%$9, $zero
$8 « $9

How to load a value int register ?

ori $1, $0, 1000 $1< 1000
addi $2, $0, 1000 $2 <« 1000
lui $3, 0x1234 $3 « 0x12345678

ori $3, 0x5678
la $3, 0x12345678 la - pseudo-instrukce

Instr. Syntax Operace

Load upper immediate: The immediate value C is shifted left 16 bits and stored in the
register. The lower 16 bits of the register are zeroes.

lui lui $t,C $t=C<< 16

Load Address: The 32-bit label is stored into the $r register. This is a pseudoinstruction
- it is translated by other instructions.

la la $r, LabelAddr lui $r, LabelAddr[31:16];
ori $r,%r, LabelAddr[15:0]

AOB36APO Architektura pocitacu

Some shift operations

Instr. Syntax Operace Vyznam

sll sll $d,$s,C $d = $s << C Shift Logical Left: Shifts register $s left by C
bits and places the result in $d. Zeroes are
shifted in. (equivalent to multiplying by 2)

srl srl $d,$s,C $d = $s >> C Shift Logical Right:Shifts register $s right by C

unsigned bits and places the result in $d. Zeroes are

shifted in. (equivalent to dividing by 2)

sra sra$d,$s,C $d=%$s>>C Shift Arithmetic Right: Shifts register $s right

signed by C bits and places the result in $d. The sign
bit is shifted in. (equivalent to dividing by 27)
nop nop sll $0,$0,0 pseudoinstruction - no operation

NOP binary code

000000 00000 00000 00000 00000 000000 -- fields of the instruction
opcode $0 $0 0 funct -- meaning of the fields

sli source dest shft sli

AOB36APO Architektura pocitacii

MIPS Addressing Modes

(a) Register direct addressing op| X or $1, $2, $3

Register contains the operand (
R2 Operand

(b) Immediate addressing op 20
Instruction contains the
operand addi $1, $2, -20
I

=

Memory Addressing

(c) Displacement (or offset) addressing, it is also called base

addressing

Address of operand = register + constant
Memory address in load and store instructions is specified by

a base register and offset

sw R1l, byte offset(R2)

sw $1, 100($2) :$1 — Memory[$2+100]

Op

R1

}00

R2

\,#

Memory M

Address

Memory

Operand

[CEte_1 ralivord

Vord

Some of MIPS Memory Instruction

Instr. Syntax Operation Performed as

lw lw $t,C($s) $t = Memory[$s + C] Load word: Aword is loaded into
a register $t from the specified
address.

S\ sw $t,C($s) Memory[$s + C] = $t Store word: The contents of $t is

stored at the specified address.

We will discuss this topic more in the next lecture.

AOB36APO Architektura pocitact 44

=

PC-Relative Addressing

MIPS Jumps

Opé | Rs® | RD5 16-bit Offset

PC30

g]

Branch Target Address
PC = PC + 4 x (1 + Offset)
= PC+4+4*offset

Pseudo-direct Addressing

?D-» Word = Target Instruction

Used by branch (beq, bne, ...)

PC30 + Offset1® + 1 00

Op® 26-bit address

PC

00

Jump Target Address

AOB36APO Architektura pocitacii

Used by jump instruction

Word = Target Instruction

pC*

26-bit address 00

Source: Dr. M. Mudawar, COE 301, KFUPM

MIPS Jump Instruction

Instrukce Syntax Operace

Branch on not equal: Branches (jumps) if registers $s and $t are not equal

bne bne $s, $t, offset if $s 1= $t goto PC+4+4*offset;
else goto PC+4

Branch on equal: : Branches (jumps) if registers $s and $t are not equal

beq beq $s, $t, offset if $s == $t goto PC+4+4*offset;
else goto PC+4

Jump: Jumps always to label C

jump jC

AOB36APO Architektura pocitacii 46

=

MIPS Jump Instruction

Instrukce Syntax Operace

Set on less than: If $s is less than $t, $d is set to 1. It gets zero otherwise. $s<imm as signed
sit, slti slt $d,$s,$t $d = ($s < $t)

slti $d, $s, imm $d = ($s < imm)
Set on less than: If $s is less than $t, $d is set to 1. It gets zero otherwise. $s<imm as unsigned

sltu, sltiu sltu $d,$s,$t $d = ($s < $t)
sltu $d, $s, imm $d = ($s < imm)

AOB36APO Architektura pocitacii 47

=

Our assembler code - again

[* template for own QtMips program development */
.globl _start // .globl makes the symbol visible to linker
.set noat /I disables warning when $at register is used by user.
.set noreorder // prevents the assembler from reordering machine-language instructions
Il See later lectures
.ent _start
dext
_start:
lw $2, 0x2000($0) // load the word from absolute address
sw $2, 0x2004($0) // store the word to absolute address

loop:
break // stop execution wait for debugger/user
beq $0, $0, loop // endless loop
/[it ensures that continuation does interpret random data
nop
.data
src_val:
.word 0x12345678
dst val:
.end _start

