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Integer Numbers and Operations

Repetition and Fundamentals from Previous Lecture

The last lecture introduced:
The bit (logical value) representation by voltage level
Byte (logical values vector) representation using parallel bit
signals/wires/conductors
To represent arithmetic unsigned integer values, weights of power two
are assigned to the parallel signals
Positional (place-value) notation / numeral system is introduced
The representation has been used to implement operation of addition
of two non-negative numbers
Logical bit shift has been introduced (it is correspondent to multiply
and divide by power of two for binary number representation)
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Integer Numbers and Operations

The Current Lecture Topics

The ranges which can be represented by integer numbers and their
storage in memory
Multiplication and division of integer non-negative numbers
Signed numbers (range split for negative part) and respective
operation
Arithmetic and unsigned overflow
Real numbers representation and operations
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Integer Numbers and Operations

Quiz 1

How fast can the sum of two n-bit numbers be calculated, and how many
transistors do we need?
A in constant time (O(1)) with linear number of transistors (O(n))
B in constant time (O(1)) with exponential number of transistors

(O(2n))
C in logarithmic time (O(log n)) with linear number of transistors (O(n))
D in logarithmic time (O(log n)) with cubic number of transistors

(O(n3))
E in logarithmic time (O(log n)) with exponential number of transistors

(O(2n))

? 5 / 47

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture02-numbers-en, slide 5 (Quiz 1)&issue[description]=You can report the issue or sugestion there.


Integer Numbers and Operations

Non-negative Integer Numbers
Non-negative integer numbers representation
C-language standard (ISO/IEC 9899:TC3) defines:
type min max informative bytes
unsigned char 0 255 1
unsigned short 0 65 535 2
unsigned long 0 4 294 967 295 4
unsigned long long 0 18 446 744 073 709 551 615 8

The standard defines minimal ranges, unsigned int at least 216 − 1
(2 bytes), but usually 4 bytes today.
To find actual size in basic addressable units (C-char) use
sizeof(int), for range UINT_MAX
For exact size use uintX_t and intX_t (where X is 8, 16, 32, or 64),
i.e. uint8_t, int64_t
Some exact size types can be missing but guaranteed
[u]int_fastX_t and [u]int_leastX_t, i.e. uint_least8_t,
int_fast64_t
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Integer Numbers and Operations

Non-negative Integer Numbers in C-Language

The constant values (integer literal) in C-language source:
decimal number – has to start by digit ’1’ to ’9’ except for ’0’
octal number – starts by digit ’0’
hexadecimal – starts by ’0x’, continues by ’0’ – ’9’ and ’a’ to ’f’
binary – starts by ’0b’ (GNU compiler extension / C++14 / C23)

Example: 252 == 0xfc == 0374 == 0b11111100

Remark: The hexadecimal digits mapping to bytes is straightforward, each
digit (nibble) represets four bits and two digits expressed number fits into
single byte, i.e. 0x123456 fits into three bytes (24 bits rounded, exact
minimum 21 bits)
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Integer Numbers and Operations

Non-negative Integer Numbers in Memory

Computer memory works with addressable units/cells (usually bytes)
There are the two basic options for storing longer numbers in memory.

The number 0x12345678 for fixed sized integer types (unsigned int):
address Big-endian Little-endian
400 0x12 0x78
401 0x34 0x56
402 0x56 0x34
403 0x78 0x12
Motorola and IBM processors started with big-endian, Intel processors
are usually little-endian.
It’s important when you read/receive (Internet) serialized data by
bytes, for example, you have to agree on order between systems
RISC V - little-endian, MIPS - big-endian but later even little-endian
Bitcoin - DER signatures big-endian, transaction hash-endian
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Integer Numbers and Operations

Non-negative Integer Numbers – Quiz 2

#include <stdio.h>
int main() {

unsigned char p[] = {0,0,0,0};
*(int*)p=10;
printf("%02x,%02x,%02x,%02x\n", p[0],p[1],p[2],p[3]);

}
What is the output of above program on Intel processors?
A nothing, the code cannot be translated
B random result, p (unsigned char *) cannot be casted to *int
C 0a,00,00,00
D 00,00,00,0a
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Integer Numbers and Operations

Non-negative Integer Number Multiplication

The same principle which you have learned at basic school for decimal
numeral system

153
*45

765 5
612 4

6885

10011001
*101101

10011001 1
00000000 0
10011001 1
10011001 1

00000000 0
10011001 1

1101011100101
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Integer Numbers and Operations

Sequential Integer Number Multiplication
The realization of the the algorithm form previous slide with shift register
and adder:
(inputs A,B 32-bit, result 64-bit)

AC                Bc

A

test
bit==1

32    bit 
add

add or
pass left

shift to right by one bit after addition

The result will be available after 32 cycles in AC and B
It is slow, even adder and addition required 32 times (64 times for
64-bit systems).
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Integer Numbers and Operations

Fast Multiplication – Wallace Tree Motivation

Potential for speedup – delayed carry (Carry Save Adder).
The optimization of the sum of four 32-bit integers:

 w31...w4w3w2w1w0
+x31...x4x3x2x1x0
+y31...y4y3y2y1y0
+z31...z4z3z2z1z0
 p31...p4p3p2p1p0
 c30...c3c2c1c0
 z31...z4z3z2z1z0
 q31...q4q3q2q1q0
 c30...c3c2c1c0
 s31...s4s3s2s1s0

c31

c31
s33s32

' ' ' ' ' ' 

c31' 

r=w+x and s=y+z can be computed in
parallel and then is computed r+s – time
equivalent to two full additions
The carry chain can be delayed (carry is not
propagated until the last step):

step 1 – use unchained full adders and
proceed wi + xi + yi = c′ipi
step 2 – use full adders again for bits
pi + c′i−1 + zi = ciqi
step 3 – regulat adder (i.e. CLA) for
32-bit numbers (s0 = q0, c′32 added to q)
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Integer Numbers and Operations

Fast Multiplication – Wallace Tree
Try to apply described principle to sum fast 32 or 64 values:

 x63...x4x3x2x1x0 * y63...y4y3y2y1y0

  0     0    0
  0     0    0
  0     0    0
        ...
  0     0   x63y61 
  0   x63y62 x62y62
x63y63 x62y63 x61y63

x63y0
x62y1
x61y2
...
x2y61
x1y62
x0y63

x2y0 x1y0 x0y0
x1y1 x0y1  0
x0y2  0    0
    ...
 0    0    0
 0    0    0
 0    0    0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

q127  q126   q125  q124     q63      q2   q1   q0 

Actual one bit
multiplication is trivial:
xi · yj = xi and yj

The most demanding is
to sum central column
with 64 single bit values
The adders will be run in
parallel on all bits which
map to their three inputs
and carry will be
processed in following
steps
The first phase requires
1323 adders
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Integer Numbers and Operations

Fast Multiplication – Wallace Tree
The longest, central column in more detail:

x63y0
x62y1
x61y2
x60y3
x59y4
x58y5
...
x2y61
x1y62
x0y63

64    43    29     19    13   9     6     3    2 

21CSA  14CSA  10CSA  6CSA  4CSA  3CSA  2CSA 1CSA    

s0
s1
...
s20
c0
c1
...
c20
x0y63

s0
s1
...
s13
c0
c1
...
c13
x0y63

s0
s1
...
s9
c0
c1
...
c8

s0
s1
...
s5
c0
c1
...
c5
c8

s0
s1
s2
s3
c0
c1
c2
c3
c8

s0
s1
s2
c0
c1
c2

s0
s1
c0

s0
c0

After 8 counting steps, i.e. 16 gate delays, the two bits are ready for final
adder
The column on the right of the central one are already partially summed
and 8 the last carry signals have been promoted
Two 120-bit numbers (sum and carry) remain to add, which can also be
done in 30 gate delays
Result - we multiply two numbers for the price of time corresponding to
two 64-bit additions
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Integer Numbers and Operations

Sequential Integer Number Division

Division in binary system can be done same way as manual decimal
division:

240:11=21
-22

20
-11

9

11110000:1011=10101
-1011

1000
10000
-1011

1010
10100
-1011

1001

The both evaluation of 240 by 11 result in 21 and remainder is 240%11=9.
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Integer Numbers and Operations

Sequential Integer Number Division
The A/B operation, A is 64-bit, B is 32-bit:

The input A is stored into two
registers AC,A

AC                A

B

32    bit 
sub

shift left by one bit after each iteration

>0

Result: A register integral ratio, AC
reminder – modulo
The A register is shifted only in the
last step, AC is not shifted – why?
There exists even faster algorithm –
High Radix Division (it is complex,
above focus of our subject)

It estimates more bits for and
precision is enhancing by iterations
1994 – Pentium FDIV bug –
incorrect implementation of
Sweeney, Robertson, and Tocher
(SRT) algorithm – two bits
estimated per single cycle
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Signed Numbers

Outline

1 Integer Numbers and Operations

2 Signed Numbers

3 Real Numbers

? 17 / 47

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture02-numbers-en, slide 17 (Outline)&issue[description]=You can report the issue or sugestion there.


Signed Numbers

Signed Numbers – Way to Include Negative Ones

The sign has to be encoded into numeral representation:
simple way - the most significant bit represents sign

The absolute value the rest but 0 and -0 even that represents same
value
The addition complicated and unsigned adder is hard to reuse

two’s complement (complement to module) – most frequent in use
the X arithmetic value representation by k-bit binary evaluates to X
mod 2k

if X ≥ 0, the representation is the same X
if X < 0, the value is represented by 2k − |X|

advantages: the exactly same adder can be used for signed and
unsigned types.
-1 represented by 8-bit two’s complement binary 11111111
5+(-1) is 101+11111111=100000100, the bit 8 (9-th) does not fit into
representation, so the results is 101+11111111=100, i.e. 4 in decimal
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Signed Numbers

Two’s Complement (Complement to Module)
the k bits can represent the range < −2k−1, 2k−1 − 1 >
let X is arithmetic value, A(X) is unsigned binary value in the two’s
complement:

A(X)

X

0-2k-1 2k-1

2k-1

2k

8-bit A(X) Arithmetic value
00000000 0(10)
00000001 1(10)

... ...
01111110 126(10)
01111111 127(10)
10000000 −128(10)
10000001 −127(10)
10000010 −126(10)

... ...
11111101 −3(10)
11111110 −2(10)
11111111 −1(10)
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Signed Numbers

Additive Inverse (Opposite Number)

The addition of the numbers represented by the two’s complement is
same as for non-negative ones and subtraction A-B can be realized as
addition where inverse of B is added, i.e. A+(-B)
The idea how to compute inverse (often neg instruction) -B from B
comes from

two’s complement negative values are encoded as X = 2k − |X|
if we negate (complement) each bit individually we get (2k−1 − 1)− X,
because 2k−1 − 1 is represented by k ones, no borrow from more
significant bits are required

Final algorithm is:
1 negate, complement all bits of the input X
2 add one to the result

Example:
53=0b00110101 bit complement gives -54=0b11001010 and result after
addition of one is -53=0b11001011
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Signed Numbers

Integer Subtraction

It can be solved:
by a special circuit similar to an
addition with all acceleration
possibilities as for addition
or from the two’s complement
and inverse number we can
convert it to addition and same
hardware

A     -      B

bit com-
plement

+1

add
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Signed Numbers

Single Unit for Addition and Subtraction

A    ±    B

bit com-
plement

0

add

1

C in

sub
/

add
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Signed Numbers

Multiplication and Division in Two’s Complement

rule for adjustment of the result of multiplication based on unsigned
M · N, (A(M) · A(N)) multiplication of two M, N two’s complement
k-bit numbers :

A(M · N) = A(M) · A(N)
−A(M) · 2k when M < 0
−A(N) · 2k when N < 0

because two’s complement representation of A(M) = 2k + M, then
result of multiplication for for two negative numbers is
(2k + M) · (2k + N) = 22·k + 2k · M + 2k · N + M · N
today’s fast multipliers and divisors compute usually with absolute
values and for the sign

it is stored in the most significant bit
inverse number computation is fast
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Signed Numbers

Signed Numbers in C-language

Integer numbers representation in C
Next types are defined by standard with minimal ranges:
type min max byte count
char -128 127 1
short -32 768 32 767 2
long -2 147 483 648 2 147 483 647 4
long long -9 223 372 036 9 223 372 036 8

854 775 808 854 775 807
The C standard defines required minimum by one higher than two’s
complement to not eliminate processor computing in one’s
complement – but that is not practically used today
To be sure about actual range of int use INT_MIN and INT_MAX
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Signed Numbers

Signed Numbers – Quiz 3
Consider next program:
#include <stdio.h>
int main() {

unsigned char a=150u, b=120u, c;
char sa=-100, sb=-80, sc;

c=a+b;
sc=sa+sb;
printf("c=%u sc=%d\n", c, sc);

}
What will be printed:
A c=270 sc=-180
B c=14 sc=-76
C c=14 sc=76
D c=-14 sc=-76
E Numeric error
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Signed Numbers

Overflow for Unsigned Numbers
Unsigned char is 8-bit represented number typically then next operation
overflows:
150 = 1001 0110
+120 = 0111 1000

14 = 0000 1110
270 =1 0000 1110

The result does not fit in 8-bit represnetation, the most significant bit is
lost and result is 14 only.
If we want to signal overflow in addition we can use:

C23 bool ckd_add(type1 *result, type2 a, type3 b) – addition of two
numbers with overflow signalling
GNU GCC 5+, Clang 3.8+ __builtin_add_overflow(a, b, result) –
both versions even for sub and mul
Can be detected on conventional C by check if result is smaller than
both inputs
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Signed Numbers

Arithmetic Overflow for Signed Numbers
The overflow in operations with signed numbers is more complex.
Examples what results in overflow:
-112 = 10010000
+ 45 = 00101101

-67 = 10111101

CORRECT

-12 = 11110100
+ -20 = 11101100

-32 =111100000

CORRECT

-90 = 10100110
+ -42 = 11010110

124 =101111100

OVERFLOW
The arithmetic overflow for operation with signed numbers is present
if auxiliary carry to the most significant result bit differs from the
carry out from this bit:

overflow = cn xor cn−1; cn carry from most significant result bit, cn−1
is carry into the most significant bit

The second option i to check that addition result of the two positive
numbers is positive and for two negative numbers stay negative:

overflow = (an and bn and (not sn)) or ((not an) and (not bn) and sn);
an, bn are the most significant bits of addends; sn is MSB of result

? 27 / 47

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture02-numbers-en, slide 27 (Arithmetic Overflow for Signed Numbers)&issue[description]=You can report the issue or sugestion there.


Signed Numbers

Arithmetic Overflow – Quiz 4
an-1
 +
bn-1

sn-1

O

When two numbers with oposite signs are added:
A can only overflow in two’s complement representation
B can only overflow in representation other two’s complement

representation
C cannot only occur in representation in two’s complement

representation
D cannot occur in any representation of signed numbers
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Signed Numbers

Other Representations of Signed Numbers

Excess-K (offset binary):

for k-bit representation, offset K
is usually K = 2k−1 or
K = 2k−1 − 1
representation/code for number
X is A(X) = X + K
arithmetic value is obtained
from D(A) = A − K
range of the represented
arithmetic values is
< −K, 2k − K − 1 >

for k=8 and K=127
A(X) Value

00000000 −127(10)
00000001 −126(10)

... ...
01111110 −1(10)
01111111 0(10)
10000000 1(10)
10000001 2(10)

... ...
11111110 127(10)
11111111 128(10)
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Signed Numbers

Excess-K – Arithmetic Operations

the addition and substraction operations processed directly
representation:
A(X+Y) = (X+Y)+K = (X+K)+ (Y+K)−K = A(X)+A(Y)−K
A(X−Y) = (X−Y)+K = (X+K)− (Y+K)+K = A(X)−A(Y)+K
multiplication is even more complex:
A(X·Y) = (X·Y)+K = (X+K)·(Y+K)−(X+K+Y+K)·K+K2+K =
A(X) · A(Y)− (A(x) + A(y)) · K + K2 + K

Overflow:
for addition, same sign inputs and oposite sign on output
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Signed Numbers

Other Representations of Signed Numbers
One’s complement:

negative number is represented by bit complement of its absolute
value. For k-bit representation:

for X ≥ 0, representation is A(X) = X
for X < 0, representation is A(X) = 2k − 1− |X|

disadvantages: two representations of value zero (-0, +0), more
complicate addition (hot one correction)

Binary coded decimal (BCD) representation
another representation of integer numbers, each decimal digit maps
to nibble

the number 1234 representation printed in hexadecimal form gives
0x1234

advantages: simple conversion to and from decimal input/output
disadvantages: ineffective storage – space waste, complex
computation
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Real Numbers
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Real Numbers

Real Numbers

Integer number X in k-bit binary representation divided sum of bits
where each bi is multiplied by corresponding power of two weight,
that is X =

∑k−1
i=0 bi2i

Real number X is again similar sum of k + j bits bi which are
multiplied by powers of two (2), but we add negative powers of two:
X =

∑k
i=−j bi2i

remember grammar school math lessons 2−j = 1
2j

bi bi-1 bi-2 ... b2 b1 b0.b-1 b-2 ... b-j+1 b-j

2i 2i-1 2i-2 ... 22 21 20 2-1 2-2 ... 2-j+1 2-j

4   2  1   
1   1 
2   4= = = = =
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Real Numbers

Fixed Point Real Numbers
Fixed point numbers:

similar as signed excess-K representation
real number is represented by k-bit signed integer number, the fixed
number of fractional bits is chosen, where 0 ≤ s ≤ k
representation for arithmetic value X is A(X) = ⌈X · 2s⌉
decoding of the representation to arithmetic value D(A) = A

2s

the range of represented numbers < −2k−1
2s , 2k−1−1

2s >

absolute precision of the representation is ± 1
2s .

Special case for fractional numbers:
if numbers from range < 0, 1) should be represented (usually control
systems)
ten s = k and we can directly use unsigned integer numbers
representation
the better precision can be achieved than for same bit size float, or
double representation
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Real Numbers

Fixed Point Real Numbers – Operations

addition and subtraction is equivalent to the same operation on the
number representation
multiplication requires fix-up (normalization) step:

A(X · Y) = (X · Y) · 2s = (X·2s)·(Y·2s)
2s = A(X)·A(Y)

2s

division is similar:
A(X

Y ) = (X
Y ) · 2s = (X·2s)·2s

(Y·2s) = A(X)·2s

A(Y)

It is not so significant complication because multiplication by 2s is
shift by s bits to the left and division by 2s is (arithmetic) shift by s to
the right.

Some SIMD instructions set extensions provide implementation of
operations for computation in fixed point numbers representation.
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Real Numbers

Floating Point Real Numbers

It is equivalent to scientific notation format for decimal real numbers
writting: −123000000000000.0 = −1.23 · 1014 = −1.23E14
0.000000000000123 = −1.23 · 10−13 = −1.23E− 13
Significand (mantissa) ∈ ⟨1; 10) for normalized form

Binary representation only changes base for exponent to 2:
110110000000000.02 = 1.10112 · 214 = 1.10112E14 = 2969610
−0.000000000000000111012 = −1.11012 · 2−16 = −1.11012E− 16 ≈

≈ 0.0000276510
Significand (mantissa) ∈ ⟨1; 102) that is ∈ ⟨1; 210) for normalized form

As in scientific notation the number has to start by single non-zero digit
before decimal point, the binary representation has to start by single one
(exception is zero) before binary point
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IEEE-754 Floating Point Standard

Standard IEEE-754 defines how to encode real numbers into 32 (C float),
64 bits (C double)
32-bit representation of the real number composes of:

1 bit sign (the both +0 and -0 are defined)
8 bits two based exponet in excess-k representation (K=127)
23 bits to represent significand fractions (plus implicit MSB one)

64-bit representation of the real number composes of:
1 bit sign (the both +0 and -0 are defined)
11 bits two based exponet in excess-k representation (K=127)
52 bits to represent significand fractions (plus implicit MSB one)

? 37 / 47

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture02-numbers-en, slide 37 (IEEE-754 Floating Point Standard)&issue[description]=You can report the issue or sugestion there.


Real Numbers

IEEE-754
Example: Real number 0.828125(10) = 0.5+ 0.25+ 0.0625+ 0.015625 =

2−1 + 2−2 + 2−4 + 2−6 = 0.110101(2).
The number is converted into scientific like binary format:
0.110101 = 1.10101E− 1.
Exponent is e = −1, its excess-k representation (K = 127) is
A(−1) = −1+ 127 = 126.
The space for leading MSB of significand (hidden one) is not reserved
because is is guaranteed by format definition (except zero and some corner
cases)a:

0 01111110 1010100...000
1.1010100...000

hidden one in significand 

e=-1 significand=1.10101 
A(e)=126 

+

You can experiment with
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IEEE-754 – Normalized Range
Normalized number is each number which can be written as 1.XXXXX E
exp and power exponet fits in range -126 till 127 for 32-bit representation.
That is exponent in excess-k format is in range 1 to 254.

Demoralized numbers are used to cover range near zero and can be written
as 0.XXXXX E -126, for example even 0.0, the interval is defined for
32-bit representation as (−1.17549E− 38, 1.17549E− 38), that is
(−2−126, 2−126).

When exponet is encoded as all ones 1, that is 255, i.e. exponent
arithmetic value is 128, then special value is represented

if all significand bits are 0, then infinite (value to big to represent) is
stored, it can be -inf, or inf according to sign.
if significand is non-zero, then nothing about arithmetic value can be
considered NaN – Not a Number, some error in the computation, for
example square root of then negative real number.
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IEEE-754 – Overview
Encoding table:
Exponent Significand Value
00000000 0 0.0 – zero
00000000 non-zero denormalized numbers around 0
00000001 0 the smallest normalized number (with hidden one)
1 to 254 any value normalized numbers (with hidden one in significand)
11111111 0 infinity
11111111 non-zero NaN – error value

The smallest normalized number not equal to zero is:
exponent = 0 (-126), significand=000...0001, value = 2−23+(−126) ≈ 1.4E− 45

Normalized number with the smallest absolute value:
exponent = 1 (-126), significand=000...0000, value = 2−126 ≈ 1.17E− 38

Normalized number with the biggest absolute value:
exponent = 255 (127), significand=111...1111, value = (2− 2−23)2127 ≈ 3.4E38
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IEEE-754 2008 Revision

The 2008 revision defines 16-bit real numbers encoding (half precision)
and 128-bit encoding (quad precision).
16-bit real number IEEE-754 representation:

1 bit sign (the both +0 and -0 are defined)
5 bits two based exponet in excess-k representation (K=15)
10 bits significand fractions (plus implicit MSB one)

128-bit real number IEEE-754 representation:
1 bit sign (the both +0 and -0 are defined)
15 bits two based exponet in excess-k representation (K=16383)
112 bits significand fractions (plus implicit MSB one)
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IEEE-754 - Comparison

Comparison of the real numbers (equal, greater than):
A positive number is greater then negative one, check sign the first if
different positive is greater than negative except for zero, where +0
and -0 are equal
When signs are removed then absolute numbers values can be
compared in the representation format (as they are in memory) same
as unsigned numbers of the same size and endianness

This is possible thanks to exponent excess-K (offset binary)
representation
Greater exponent then the represented number is greater, when
exponets are equal greater significand value represents greater number.

Remark: the offset in exponent ke-bits representation is chosen as
2(ke−1)/2 − 1 which ensures that reciprocal value to the smallest
normalized number fits into representation (does not overflow to Inf, ∞)
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IEEE-754 – Addition / Subtraction
1 The number with bigger exponent value is selected, significands

extracted and for normalized numbers extended by implicit MSB one
2 Significand of the number with smaller exponent is shifted right by

exponent difference – the significands are then expressed at same scale
3 The signs are analyzed and significands are added (same sign) or

subtracted (smaller number from bigger)
4 The resulting significand is shifted right (max by one) if addition

overflows or shifted left after subtraction until all leading zeros are
eliminated (result can be even zero, then encode zero directly)

5 The resulting exponent is adjusted according to the shift (increment
exponent by one for each right shift by bit, decrement exponent by
one for each left shift by bit)

6 Result is normalized after these steps and sign is copied from larger
source

7 The special cases and processing when inputs are not normalized
numbers or result does not fit into normalized representation
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IEEE-754 – Addition Example
Example: add two real numbers 31.5+0.75 in their binary floating point
representations
31.5(10) = 11111.1(2) = 1.11111E4 0.75(10) = 0.11(2) = 1.1E− 1

Both numbers has to be converted to same binary exponet 4 and then
significands are added:

1.11111
0.000011

10.000001

The result has to be normalized (significand ∈ ⟨1; 2)) by incrementing
exponent to 5 which corresponds to binary fraction point by one position
left (rounding can be required to fit in defined bits for significand):
10.000001E4 = 1.0000001E5

The binary floating point number represents 32.25 decimal.
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IEEE-754 – Multiplication

1 Exponents are added and signs xor-ed
2 Significands are multiplied
3 Result can require normalization, max 1 bit right shift and ncrement

exponent by one for normalized input numbers
4 The result is rounded
5 Special care has to be taken for normalized inputs and or result in out

of normalized range
Hardware for multiplier is of the same or even lower complexity as the
adder hardware – only adder part is replaced by unsigned multiplier
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IEEE-754 – Multiplication Example
Example: multiply two real numbers 0.375 · 1.5 in their binary
representations
0.375(10) = 0.011(2) = 1.1E− 2 1.5(10) = 1.1(2) = 1.1E0
The significands multiplication:

11 ≡ 1.1
*11 ≡ 1.1

11
11

1001
result with two binary fractional
digits 10.01

375 ≡ 0.375
*15 ≡ 1.5

1875
375

5625
result with four decimal
fractional digits 0.5625

Exponents addition −2+ 0 = −2, but result of significands multiplication
requires normalization, that is exponent is incremented to −1.
The correct result is obtained 10.01E− 2 = 1.001E− 1 ≡ 0.5625(10)
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IEEE-754 – Summary
Real numbers:

the floating point real numbers allows to represent values in large
dynamic range with allmost constant relative precision when exponent
allows normalized form:

float – absolute represented value from 1.175494351E− 38 to
3.402823466E+ 38
double – absolute represented value from 2.2250738585072014E− 308
to 1.7976931348623158E+ 308

the relative precision by number of valid decimal digits:
float – 6-7 valid decimal digits (increment 2⟨−23;−24) : 1)
double – 15-16 valid decimal digits (increment 2⟨−52;−53) : 1)

WARNING: next while loop is infinite, never ends:
float a=1.0, step=5e-8;
while (a*a<1.01) {
a+=step;

}
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