
B35APO: Computer Architectures
Lecture 01. Introduction

Pavel Píša Petr Štěpán
pisa@fel.cvut.cz stepan@fel.cvut.cz

28. February, 2024

? 1 / 52

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture01-intro-en, slide 1 ()&issue[description]=You can report the issue or sugestion there.

Introduction

Outline

1 Introduction

2 The Computer Structure

3 Boolean Algebra

4 Asthmatics Adders

? 2 / 52

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture01-intro-en, slide 2 (Outline)&issue[description]=You can report the issue or sugestion there.

Introduction

Motivation

What you can do to speed up your program:
Use a more powerful computer:

Increase CPU performance/throughput
CPU frequency
CPU efficiency - how many operations can it perform in 1 one clock
cycle

Change program:
Improve memory efficiency
Parallelize program:

Increase number of utilized CPU cores
Use instructions for parallel processing

? 3 / 52

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture01-intro-en, slide 3 (Motivation)&issue[description]=You can report the issue or sugestion there.

Introduction

Motivation

Does parallelization have some limitations:
You can never parallelize an entire program
Amdahl’s law

α fraction (percent) of the program cannot be parallelized
the rest (1− α) of the program can be accelerated to spent 1−α

p time
fraction when p processors are used
acceleration ratio for p processors S(p) = α+1−α

α+ 1−α
p

= p
1+α·(p−1)

The acceleration limit for infinite processors is
S(p → ∞) = limp→∞

p
1+α·(p−1) =

1
α

For example, for α = 0.3 limit is S(p → ∞) = 3.3, i.e. the program
cannot be accelerated more than 3.3 times.

In practice, the more processes you have, the more difficult it is to
prepare data for parallelization.

? 4 / 52

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture01-intro-en, slide 4 (Motivation)&issue[description]=You can report the issue or sugestion there.

Introduction

Motivation
Why to study computer architectures:

Learn how the computer works when executes your program and
where are the opportunities to make the program more efficient

find out what limits the a computer the computation speed (processor
speed, memory size, main memory latency, number of processor cores)
and test/choose another HW
find out if the program can be modified to use better available
resources

modify memory access pattern/order/data structures to optimize
memory throughput and cache
modify the program to use less branch and jump instructions (less stalls
and flushes of speculative work)
parallelize the computation, use specialized HW - GPU, accelerator
units e.g. Coral USB or Intel Neural Compute Stick 2.

Demand for graduates combining artificial intelligence and embedded
systems knowledge
If the computer is only BlackBox for the programmer, then the
resulting programs are almost certainly inefficient.

? 5 / 52

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture01-intro-en, slide 5 (Motivation)&issue[description]=You can report the issue or sugestion there.

Introduction

Content of the Course lectures

All the basic components of your computer will be presented:
CPU - Central Processing Unit (Processor)
memory hierarchy - cache/RAM/external storage (disk/SSD)
Input and Output (I/O) - keyboard, mouse, display, network card,
HW driver principles
Exceptions and Interrupts - efficient collaboration between user
program, operating system, CPU and HW

Motivation to attend lectures:
You’ll learn topics and it will be easier to prepare for the exam
If you answer the quiz question correctly at the end of the lecture,
you will get an activity point

Not every lecture, first scored quiz next week
Limit of total activity points for the course is 10

? 6 / 52

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture01-intro-en, slide 6 (Content of the Course lectures)&issue[description]=You can report the issue or sugestion there.

Introduction

Seminaries Plan and Assessment
4 homeworks (smaller tasks) - 36 points

2 C-language programs
2 form based quizzes
requirement to pass 3 from 4
homeworks at their specified minimal
level

Semester project - 24 points
Team project – pairs (or individual)
Educational hardware kits designed for
the course (MZ_APO)

Grading Points
A >=90
B 80 – 89.9
C 70 – 79.9
D 60 – 69.9
E 50 – 59.9
F <50

Optional tasks and or activity during exercises/lectures – up to 10
points

Exam:
written part 30 points, min 15 points
oral part ± 10 points

? 7 / 52

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture01-intro-en, slide 7 (Seminaries Plan and Assessment)&issue[description]=You can report the issue or sugestion there.

Introduction

Followup Courses

If you are interested in this subject, the following subjects are related to it:
BE4M35PAP – Advanced Computer Architectures
B3B38VSY – Embedded Systems
BE4M38AVS – Application of Embedded Systems
B4B35OSY – Operating Systems
BE5B35LSP – Logic Systems and Processors

? 8 / 52

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture01-intro-en, slide 8 (Followup Courses)&issue[description]=You can report the issue or sugestion there.

Introduction

Literature and Resources
PATTERSON, David A. a John L. HENNESSY. Computer
organization and design RISC-V edition: the hardware/software
interface. Second Edition. Cambridge: Elsevier, [2021]. ISBN
978-0-12-820331-6. (12 kusů v ústřední knihovně ČVUT)
web:

https://cw.fel.cvut.cz/wiki/courses/b35apo/
https://dcenet.felk.cvut.cz/apo/
https://comparch.edu.cvut.cz/

Courses at other universities:
MIT 6.004/6.191 – Computation Structures (public resources
https://computationstructures.org/)
Computation Structures | Electrical Engineering and Computer Science
| MIT OpenCourseWare (2015)
Computer System Architecture | Electrical Engineering and Computer
Science | MIT OpenCourseWare (2005)

Other courses at CTU:
FIT: BIE-APS.21 Architectures of Computer Systems

? 9 / 52

https://cw.fel.cvut.cz/wiki/courses/b35apo/
https://dcenet.felk.cvut.cz/apo/
https://comparch.edu.cvut.cz/
https://computationstructures.org/
https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture01-intro-en, slide 9 (Literature and Resources)&issue[description]=You can report the issue or sugestion there.

The Computer Structure

Outline

1 Introduction

2 The Computer Structure

3 Boolean Algebra

4 Asthmatics Adders

? 10 / 52

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture01-intro-en, slide 10 (Outline)&issue[description]=You can report the issue or sugestion there.

The Computer Structure

What is Inside Computer
Mainboard (of the Computer):

? 11 / 52

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture01-intro-en, slide 11 (What is Inside Computer)&issue[description]=You can report the issue or sugestion there.

The Computer Structure

What is Inside Computer
Disassembled mobile phone:

? 12 / 52

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture01-intro-en, slide 12 (What is Inside Computer)&issue[description]=You can report the issue or sugestion there.

The Computer Structure

von Neumann

The general computer concept presented by Johnem von Neumannem
(1903-1957), Hungarian-American mathematician, physicist:

Processor - Central Processing Unit - CPU
Memory, Random-access Memory
Input/Output

Processor

Input Output

Memory

ctrl
ALU

? 13 / 52

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture01-intro-en, slide 13 (von Neumann)&issue[description]=You can report the issue or sugestion there.

The Computer Structure

CPU – Central Processing Unit

general purpose (user/integer)
registers (GPRs) – usually 8, 16,
32 or 64-bits wide according to
CPU architecture
CPU fetches instructions from
the memory (basically in order)
and executes each fetched and
decoded instruction

Memory
RAM

Processor
CPU

Data/
Address/
Control
Bus

IP

IR

MAR
MBR

AX
BX

SP
BP

.....
ALU

 General
Purpose
Registry

Arithmetic and
logic operations

PC (program counter) or IP (instruction pointer) – special register
holding address of the instruction to be executed
ALU (arithmetic-logic unit) – CPU component which proceed add,
subtract, multiply, divide and other arithmetic and logical operations

? 14 / 52

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture01-intro-en, slide 14 (CPU -- Central Processing Unit)&issue[description]=You can report the issue or sugestion there.

The Computer Structure

Main Memory

Memory holds data values - bytes, words.
If you already know some programming language then you can consider
memory as array of same sized elements, i.e. for C-language:
unsigned char RAM[16 * 1024 * 1024 *1024]; // 16GiB RAM

The memory allows to read from specified location (address):
register R10 = RAM[address];
and write to specified address (source/target is usually one of GPRs):
RAM[address] = R10;

Address is numeric index into array which is usually encoded/transferred in
binary repreznetation on the signals connecting CPU to the memory

? 15 / 52

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture01-intro-en, slide 15 (Main Memory)&issue[description]=You can report the issue or sugestion there.

The Computer Structure

Processor Instructions

The instructions encode all (limited set of operations) that the
processor can perform
The basic instructions are:

store a constant in the register
load data from memory into the register
perform a mathematical operation on the registers and store the result
in the register
store data from the register in memory
compare two numbers
perform other instructions according to the result of the comparison
(change the PC to a value other than the following instruction =
perform a jump or branch in the program)

all programs, whether created in C language, Python, even programs
performing very complex calculations are realized (compiled into)
these simple processor instructions or interpreted by program written
in these instructions

? 16 / 52

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture01-intro-en, slide 16 (Processor Instructions)&issue[description]=You can report the issue or sugestion there.

The Computer Structure

Processor Instructions – Instruction Set Architecture

Instruction Set Architecture (ISA)
is a complete instruction set specification for given chip/architecture,
defines address modes, data widths, operations, encoding
i.e. x86 (IA-32), x86-64 (AMD64, EM64T, IA-32e), ARM32,
AArch64 (ARM64), AVR, MIPS, RISC-V
given ISA specifies:

the list of known processor machine instruction set
supported data types, their widths and encoding (integers, signed
integers, real/floating point numbers, vector types)
the set of user visible general purpose register, optionally floating point
ones and special status and control ones
addressing modes (how the address to memory location can be formed)
memory organization (if byte accessible, word, halfword, etc.)

? 17 / 52

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture01-intro-en, slide 17 (Processor Instructions -- Instruction Set Architecture)&issue[description]=You can report the issue or sugestion there.

The Computer Structure

Two Basic Concepts How to Architect ISA

RISC
Reduced Instruction Set Computer

Usually a smaller number of
instructions
All instructions have the same
same width and encoding rules
(sometimes half length aliases
for more dense encoding)
Less number and simpler
addressing modes
Mathematical operations ALU
only within registers (i.e.
load-store architecture)

CISC
Complex Instruction Set Computer

Usually a larger number of
instructions
The length of instructions even
from 1 byte to e.g. 14 bytes, the
most common instructions are
the shortest
Usually many complex
addressing modes
Data processing operations
(ALU) even with values
read/written to memory

? 18 / 52

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture01-intro-en, slide 18 (Two Basic Concepts How to Architect ISA)&issue[description]=You can report the issue or sugestion there.

The Computer Structure

Higher Level Program to Machine Level Compilation
How come you have not heard about machine instructions yet?

int x = 157;
int y=-1;

while (x!=0) {
 x = x/2;
 y++;
}

09d00513 addi x10, x0, 157
fff00313 addi x6, x0, -1
00050863 beq x10, x0, 0x218
00155513 srli x10, x10, 0x1
00130313 addi x6, x6, 1
fe051ce3 bne x10, x0, 0x20c
00030513 addi x10, x6, 0

gcc log.c

a.out

objdump -d a.out

Programming in assembler (assembly language) is often inefficient,
hard, takes long time and application is fixed to one ISA.
Compiler translates higher programming language directly into
machine instructions of the target processor
Cross-compilation – program translation for a different processor ISA
than is used on machine to compile program

? 19 / 52

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture01-intro-en, slide 19 (Higher Level Program to Machine Level Compilation)&issue[description]=You can report the issue or sugestion there.

The Computer Structure

Processor – Hardware Implementation

What does a processor consist of (physically)?
You may have heard that a processor contains, say, 16 billion
transistors
In 1965, Intel co-founder Gordon Moor formulated a law:

The number of transistors that can be placed on an integrated circuit
doubles every 18 months or so, at the same price.

More or less holds true until today, even though we are getting to the
limits of physical possibilities.

Why do we need transistors in a processor (CPU)?
To implement the Boolean algebra and registers (combinational and
sequential logic).

We often can focus on block building system at given level of hierarchy,
i.e. ISA, register transfer level RTL, logic functions, gates, transistors,
semiconductor/silicon structures, atomic-gratings

? 20 / 52

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture01-intro-en, slide 20 (Processor -- Hardware Implementation)&issue[description]=You can report the issue or sugestion there.

Boolean Algebra

Outline

1 Introduction

2 The Computer Structure

3 Boolean Algebra

4 Asthmatics Adders

? 21 / 52

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture01-intro-en, slide 21 (Outline)&issue[description]=You can report the issue or sugestion there.

Boolean Algebra

Boolean Algebra – Values and Operations

Boolean algebra is mathematical structure (see group theory):
Only two values (states) for variables are allowed (0 and 1)

0/1, or False/True, or indicator/LED is on or off, or voltage
representation 0V/5V

Addition operation (or, ||, ∨)
0+0=0 0+1=1
1+0=1 1+1=1

Multiplication operation (and, &&, ∧)
0*0=0 0*1=0
1*0=0 1*1=1

Inversion, complementary element (negace, !, not, ¬)
-0 = 1
-1 = 0

? 22 / 52

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture01-intro-en, slide 22 (Boolean Algebra -- Values and Operations)&issue[description]=You can report the issue or sugestion there.

Boolean Algebra

Boolean Algebra – States Representation

Boolean algebra can be implemented well with voltages and transistors

The voltage of a single
conductor/signal to the ground
defines a boolean value.

0
0.8

2

5
V

time
logic 0

logic 1

undefined

Example: A boolean not
operation, one X input conductor,
one Y output conductor.

X

Vcc

Y
Y

X

symbol neg

? 23 / 52

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture01-intro-en, slide 23 (Boolean Algebra -- States Representation)&issue[description]=You can report the issue or sugestion there.

Boolean Algebra

Boolean Algebra – NAND, NOR, XOR

Extended set of binary operations nand, nor, xor which can be
decomposed to basic operations (this holds for circuit of arbitrary
complexity) (and, or, not):
X nand Y = not(X and Y)
X nor Y = not(X or Y)
X xor Y = (X or Y) and (not(X and Y))

= (X or Y) and (X nand Y)

? 24 / 52

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture01-intro-en, slide 24 (Boolean Algebra -- NAND, NOR, XOR)&issue[description]=You can report the issue or sugestion there.

Boolean Algebra

Boolean Algebra – Logic Gates and Symbols
List of the logic gates and their symbols for binary operations

X and Y X or Y X xor Y Z=X
X
Y

X
Y

X
Y

X
Y

X
Y

X
Y

X nand Y X nor Y X xnor Y

X

X

Z=not X

Z

Z

Summary table of basic logic gates:
X Y X and Y X or Y X xor Y X nand Y X nor Y X xnor Y
0 0 0 0 0 1 1 1
0 1 0 1 1 1 0 0
1 0 0 1 1 1 0 0
1 1 1 1 0 0 0 1

? 25 / 52

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture01-intro-en, slide 25 (Boolean Algebra -- Logic Gates and Symbols)&issue[description]=You can report the issue or sugestion there.

Boolean Algebra

Boolean Algebra – Quiz 1

Signals/wires can also branch. What does the following circuit do?

X Y

A) it can’t be connected like this B) the result is X and Y
C) the result is X and not Y D) the result is not X

? 26 / 52

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture01-intro-en, slide 26 (Boolean Algebra -- Quiz 1)&issue[description]=You can report the issue or sugestion there.

Boolean Algebra

Logic/Combinational Circuits – Quiz 2
Some functions can be converted to gates even more efficiently than via
the basic logic functions and, or, not.
The nand gate is the basic gate and all other gates can be built from it.

X

Y

Quiz: What is the result function equivalent to:
A X and Y
B X or Y
C X xor Y
D X nor Y

? 27 / 52

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture01-intro-en, slide 27 (Logic/Combinational Circuits -- Quiz 2)&issue[description]=You can report the issue or sugestion there.

Boolean Algebra

Logic/Combinational Circuits – Quiz 3
More complex circuits can be made up
of basic logical elements - gates. The
signals can branch, they are combined
together by some logical operation. The
result is always only the logical values 0
or 1.

Quiz: What is the circuit function:
A Nothing reasonable, it is just a

tangle of wires
B It is a multiplexor, the value Z is

one of the signals X according to
the encoded value at Y

C It is a divider, the value Z is X/Y
D The value Z is 1 if X > Y

X0

X1

X2

X3

Y0

Y1

Z

? 28 / 52

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture01-intro-en, slide 28 (Logic/Combinational Circuits -- Quiz 3)&issue[description]=You can report the issue or sugestion there.

Boolean Algebra

Binary Encoding/Representation/Numeral System – Quiz 4

Quiz: One wire represents one value, either 0 or 1. How to represent more
values/symbols, like all integers from 0 to 255 (i.e. one byte)?
A One wire has 8 different voltage levels
B One wire represents 8 different 0/1 values consecutively over time
C Eight wires, each representing one of the 0/1 values at one time
D 256 wires, only one has a value of 1 others

? 29 / 52

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture01-intro-en, slide 29 (Binary Encoding/Representation/Numeral System -- Quiz 4)&issue[description]=You can report the issue or sugestion there.

Boolean Algebra

Binary/Base-2 Numeral System

Numbers represented by more digits or bits – numeral system
Especially in the case of binary encoding

multiple single-bit parallel conductors/wires/signals
usually 8, 16, 32, 64 (powers of 2)
sometimes only parts of word is enough, like 5-bit (32 values)

order of conductors is important
each conductor represents value at given power of 2
conductor ai, total value s =

∑63
i=0 ai ∗ 2i

? 30 / 52

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture01-intro-en, slide 30 (Binary/Base-2 Numeral System)&issue[description]=You can report the issue or sugestion there.

Asthmatics Adders

Outline

1 Introduction

2 The Computer Structure

3 Boolean Algebra

4 Asthmatics Adders

? 31 / 52

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture01-intro-en, slide 31 (Outline)&issue[description]=You can report the issue or sugestion there.

Asthmatics Adders

Addition – Two Single Bit Values

Addition of two single bit numbers:

X Y X+Y
0 0 00
0 1 01
1 0 01
1 1 10

The result of the arithmetic sum fits into
two bits, C – carry, S – sum.

S = X xor Y
C = X and Y

This logic circuit is called a Half Adder.
X
Y

C

S

Half adder

? 32 / 52

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture01-intro-en, slide 32 (Addition -- Two Single Bit Values)&issue[description]=You can report the issue or sugestion there.

Asthmatics Adders

Addition – Full Adder
If we add multi-bit numbers we need to add three bit inputs later.

The result of the sum is again a two-bit
number: Cout - carry, S - sum.

C X Y C+X+Y
0 0 0 00
0 0 1 01
0 1 0 01
0 1 1 10
1 0 0 01
1 0 1 10
1 1 0 10
1 1 1 11

S1 = (X xor Y)
S = (S1 xor C)
C1 = (X and Y)
C2 = (S1 and C)
Cout = C1 or C2

This logic circuit is
called a full adder.
(Full adder)

X
Y

Cout

S
C

C1

C2

S1

Full adder

X
Y

Cout

S
C

C2

Full adder

Half
adder

Half
adder

S1

C1

? 33 / 52

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture01-intro-en, slide 33 (Addition -- Full Adder)&issue[description]=You can report the issue or sugestion there.

Asthmatics Adders

Addition – Ripple Carry Adder
The simplest multi-bit asthmatics adder is build by connection of one half
adder and multiple full adders.
This type of adder is called Ripple Carry Adder (chained full-adders).

Half
adder

Full
adder

Full
adder

Full
adder

Full
adder

Full
adder

a0 b0a1 b1a2 b2a3 b3a4 b4a5 b5

s0s1s2s3s4s5s6

c1

c2

c3

c4

c5

c6

a5a4a3a2a1a0 + b5b4b3b2b1b0 = s6s5s4s3s2s1s0 where s6 = c6
? 34 / 52

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture01-intro-en, slide 34 (Addition -- Ripple Carry Adder)&issue[description]=You can report the issue or sugestion there.

Asthmatics Adders

Addition – Ripple Carry Adder

What is the speed of Ripple Carry Adder?
If the signal propagation delay of one gate is N then the delay of
Ripple Carry Adder for two 64-bit values is 63*2*N+N
Is this important?

Yes, consider CPU clock 4GHz, one clock cycle takes 250 ps
(picosecond)
The limit is even speed of the signal propagation (< light speed)
0.3mm/ps, it is maximal speed of information propagation
When about 10 ps gate propagation time is considered then Ripple
Carray Adder adds 2 64-bit values in 1270 ps (that is more than 5 clock
cycles – today ALU instruction latency is usually one cycle).

Is the faster implementation possible?
Yes, Carry Lookahead Adder (CLA)

? 35 / 52

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture01-intro-en, slide 35 (Addition -- Ripple Carry Adder)&issue[description]=You can report the issue or sugestion there.

Asthmatics Adders

Addition – Carry Lookahead Adder

Is it possible to determine C1, C2, ... , directly form the addends?
Yes, but for longer inputsit it is expensive, requires large gates count.
The following example consider 4-bit inputs
We can define two basic functions:

Carry generate – case Ai = 1 and Bi = 1 implicates Ci+1 = 1 – carry is
generated Gi = Ai ∧ Bi
carry propagate – case Ai = 1 or Bi = 1 implicates Ci+1 = Ci – carry
will be propagated, of there is carry in the lower bit; Pi = Ai xor Bi

For 4-bit input:
C1 = G0
C2 = G1 ∨ (C1 ∧ P1) = G1 ∨ (G0 ∧ P1)
C3 = G2 ∨ (C2 ∧ P2) = G2 ∨ (G1 ∧ P2) ∨ (G0 ∧ P1 ∧ P2)
C4 = G3∨(C3∧P3) = G3∨(G2∧P3)∨(G1∧P2∧P3)∨(G0∧P1∧P2∧P3)
it is easy to extend expression for higher order bit, but it span longer
and longer

? 36 / 52

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture01-intro-en, slide 36 (Addition -- Carry Lookahead Adder)&issue[description]=You can report the issue or sugestion there.

Asthmatics Adders

Addition – Carry Lookahead Adder
The adder sums two 4-bit inputs in the time equivalent to propagation
delay on four (4) serial connected gates.

a0 b0

s0

a1 b1a2 b2

g1

g0p1

c2 p1
c3 p2

g1 p2 p2p1g0

g2

a3 b3

c4

p3

p3p2g1 p3p2p1g0

g3

g2 p3

c1

s1s2s3s4

But for two 64-bit inputs, the adder would require 1020 gates to be built.
? 37 / 52

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture01-intro-en, slide 37 (Addition -- Carry Lookahead Adder)&issue[description]=You can report the issue or sugestion there.

Asthmatics Adders

Addition – Carry Lookahead Adder

How to resolve reasonably fast function for larger numbers, i.e., 64-bit?

The 4-bit adder is extended
to allow C input from lower
order bits

WARNING some gates
has to be added

We can chain these adder
blocks.

4bit CLA

a0-3 b0-3

s0-3s4-7s12-15

4bit CLA

a4-7 b4-7

4bit CLA

a8-11 b8-11

4bit CLA

a12-15 b12-15

s8-11C16

C12

C8

C4

The latency/delay of 16-bit adder (at figure) is 16 gate delays
The latency/delay of 64-bit adder is 64 gate delays, much better than
127 gate delays for simple Ripple Carry Adder.

? 38 / 52

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture01-intro-en, slide 38 (Addition -- Carry Lookahead Adder)&issue[description]=You can report the issue or sugestion there.

Asthmatics Adders

Addition – Carry Select Adder
It is sure that Carry is 0 or 1
4-bit CLA can be doubled and result is computed for both Carry
inputs 0 and 1 in parallel
Only the multiplexer control is chained which chooses result
accordingly if to Carry is 0 or 1

4bit CLA

a0-3 b0-3

s0-3s4-7

a4-7 b4-7

s8-11

C4

4bit CLA4bit CLA 01

a8-11 b8-11

4bit CLA4bit CLA 01

C8

C12

The adder is faster, instead of delay 4 gates will chain only delay 2
gates for multiplexer
The speed of the 16-bit adder from the figure will be 10 gate delays
The speed of the 64-bit adder will be 34 gate delays, which is slightly
better than the 64 delay for CLA chaining.

? 39 / 52

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture01-intro-en, slide 39 (Addition -- Carry Select Adder)&issue[description]=You can report the issue or sugestion there.

Asthmatics Adders

Addition – Carry Lookahead Adder, Block Version

Yet another attempt to speed up adder
The carry generate and propagate operation can be defined for larger
groups of bits:

If orders from i to j generate carry, then Gi,j = 1
If orders from i to j propagate carry, then Pi,j = 1

Following rules are defined, how to compute Gi,k and Pi,k based on
Gi,j, Gj+1,k,Pi,j, Pj+1,k

Gi,k = Gj+1,k ∨ (Gi,j ∧ Pj+1,k)
Pi,k = Pi,j ∧ Pj+1,k

The initial values are old known Gi and Pi.
That is Gi,i = Gi = ai ∧ bi and Pi,i = Pi = ai xor bi.

? 40 / 52

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture01-intro-en, slide 40 (Addition -- Carry Lookahead Adder, Block Version)&issue[description]=You can report the issue or sugestion there.

Asthmatics Adders

Addition – Carry Lookahead Adder, Block Gen. and Prop.

The computation of the previously defined rules can be realized as:

a0 b0a1 b1a2 b2

g1 g0 p0p1p2g2

a3 b3

p3g3

g0,1 p0,1g2,3 p2,3

g0,3 p0,3

p0,1 and p2,3g2,3 or (g0,1 and p2,3)

g3 or
 (g2 and p3)

g1 or
 (g0 and p1)

p2 and p3 p0 and p1

The time co compute pair Gi,k
and Pi,k:

Delay for 4-bit addends –
5 gate delays
Delay for 8-bit addends –
7 gate delays
Delay for 16-bit addends –
9 gate delays
Delay for 32-bit addends –
11 gate delays
Delay for 64-bit addends –
13 gate delays

? 41 / 52

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture01-intro-en, slide 41 (Addition -- Carry Lookahead Adder, Block Gen. and Prop.)&issue[description]=You can report the issue or sugestion there.

Asthmatics Adders

Addition – Carry Lookahead Adder, Example
Evaluation of carry generate and propagate block with use of:

gh, ph – generate and propagate carry in higher (more significant)
subblock
gl, pl – generate and propagate carry in lower (less significant)
subblock

a 0 0 1 0 1 0 0 1
b 1 0 1 1 0 1 1 1

g = ai and bi 0 0 1 0 0 0 0 1
p = ai xor bi 1 0 0 1 1 1 1 0

g = gh or (gl and ph) 0 1 0 1
p = ph and pl 0 0 1 0

g = gh or (gl and ph) 0 1
p = ph and pl 0 0

g = gh or (gl and ph) 0
p = ph and pl 0

? 42 / 52

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture01-intro-en, slide 42 (Addition -- Carry Lookahead Adder, Example)&issue[description]=You can report the issue or sugestion there.

Asthmatics Adders

Addition – Carry Lookahead Adder, Hierarchy

It is necessary to compute all Carry Ci, in the case of hypothetical chaining
we know C0, if not then:

We use tree hierarchy again but in the reversed order of computation
Pi,j and Gi,j:

If we know Ci, Gi,j and Pi,j
then Cj+1 = Gi,j ∨ (Ci ∧ Pi,j)

The evaluation for 4-bit adder will be processed in the next specified
order:

C4 = G0,3 ∨ (C0 ∧ P0,3), C2 = G0,1 ∨ (C0 ∧ P0,1)
C3 = G2,2 ∨ (C2 ∧ P2,2), C1 = G0,0 ∨ (C0 ∧ P0,0)

The delay for 2× wider inputs (addends) increases by 2 gates delays
For 64-bit addends, the time required to compute all Ci is 12 gates
delays.
The complete addition for 64-bit inputs takes 26 gates delays.

? 43 / 52

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture01-intro-en, slide 43 (Addition -- Carry Lookahead Adder, Hierarchy)&issue[description]=You can report the issue or sugestion there.

Asthmatics Adders

Addition - Carry Lookahead Adder, Final Sum

The evaluation of Ci then can be seen from:
C0

C2

P0,1P0,3

C4

G0,3 G0,1

G2,2 G0,0

P2,2

C3 C1

P0,0

C2C4
P3,3 P1,1

S3 S2 S1 S0

The time to evaluate Gi,k pairs Pi,k:
Delay for 4-bit addends is 5 gate
delays
Delay for 8-bit addends is 7 gate
delays
Delay for 64-bit addends is 13
gate delays

? 44 / 52

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture01-intro-en, slide 44 (Addition - Carry Lookahead Adder, Final Sum)&issue[description]=You can report the issue or sugestion there.

Asthmatics Adders

Addition – Carry Lookahead Adder, Example
The carry is evaluated from less significant blocks and g, p expressions:

Ci = g or (p and Ci−k) – carry prop. or gen. from lower orders
a 0 0 1 0 1 0 0 1
b 1 0 1 1 0 1 1 1
g 0 0 1 0 0 0 0 1
p 1 0 0 1 1 1 1 0
C
g 0 1 0 1
p 0 0 1 0
C
g 0 1
p 0 0
C C4 = 1 or (0 and C0) = 1
g 0
p 0
C C8 = 0 or (0 and C0) = 0

? 45 / 52

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture01-intro-en, slide 45 (Addition -- Carry Lookahead Adder, Example)&issue[description]=You can report the issue or sugestion there.

Asthmatics Adders

Addition – Carry Lookahead Adder, Example
The carry is evaluated from less significant blocks and g, p expressions:

Ci = g or (p and Ci−k) – carry prop. or gen. from lower orders
a 0 0 1 0 1 0 0 1
b 1 0 1 1 0 1 1 1
g 0 0 1 0 0 0 0 1
p 1 0 0 1 1 1 1 0
C
g 0 1 0 1
p 0 0 1 0
C C6 = 1 or (0 and C4) = 1 C2 = 1 or (0 and C0) = 1
g 0 1
p 0 0
C C4 = 1 or (0 and C0) = 1
g 0
p 0
C C8 = 0 or (0 and C0) = 0

? 46 / 52

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture01-intro-en, slide 46 (Addition -- Carry Lookahead Adder, Example)&issue[description]=You can report the issue or sugestion there.

Asthmatics Adders

Addition – Carry Lookahead Adder, Example
The carry is evaluated from less significant blocks and g, p expressions:

Ci = g or (p and Ci−k) – carry prop. or gen. from lower orders
a 0 0 1 0 1 0 0 1
b 1 0 1 1 0 1 1 1
g 0 0 1 0 0 0 0 1
p 1 0 0 1 1 1 1 0
C C7 = 0 or (0

and C6) = 0
C5 = 0 or (1
and C4) = 1

C3 = 0 or (1
and C2) = 1

C1 = 1 or (0
and C0) = 1

g 0 1 0 1
p 0 0 1 0
C C6 = 1 or (0 and C4) = 1 C2 = 1 or (0 and C0) = 1
g 0 1
p 0 0
C C4 = 1 or (0 and C0) = 1
g 0
p 0
C C8 = 0 or (0 and C0) = 0

? 47 / 52

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture01-intro-en, slide 47 (Addition -- Carry Lookahead Adder, Example)&issue[description]=You can report the issue or sugestion there.

Asthmatics Adders

Multiplexor

Similar approach (divide and conquer - create a tree structure) can be
used in the multiplexor implementation:

a0
a1
a2
a3
a4
a5
a6
a7

x0 x1 x2

Y

According to the three-bit
number x the corresponding
input ax is selected for the
output Y
It is not the fastest
implementation, but it is clear
We can also use 4 input
multiplex and reduce the
number of tree levels.

? 48 / 52

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture01-intro-en, slide 48 (Multiplexor)&issue[description]=You can report the issue or sugestion there.

Asthmatics Adders

Bit Shift Operation
it is denoted in C-language by >> and << operators

The operations can be used for multiple by power of two 2 – operation <<;
and for division by power of 2 – operation >>

How to implement shift by k-bits?
k-times rotate/shift by 1 bit
It can be compared to exponentiation
algorithm:

shift by 1, 2, 4, 8, 16 bits
Compare with fast exponentiation:

double Exp(double a, int k) {
if (k == 0) return 1;
return a * Exp(a, k - 1);

}

double FastExp(double a, int k) {
if (k == 0) return 1;
if (k % 2 == 0) {

double i = FastExp(a, k / 2);
return i * i;

} else {
return a * FastExp(a, k - 1);

}
}

? 49 / 52

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture01-intro-en, slide 49 (Bit Shift Operation)&issue[description]=You can report the issue or sugestion there.

Asthmatics Adders

Barrel Shifter
Shift by 0-7 bits can be composed from shift by 1, 2, 4:

a0a1a2a3a4a5a6a7 0

0

0

x0

x1

x2

Multiplexor in each row select ientity operation (do nothing) or shift
by fixed number of bits
Single bit input signals x2, x1, x0 are quivalent to binary repreznetation
of number of bits to shift
Příklad:

shift by 5 bits is realized by serial combination of shift by 1 bit and
shift by 4 bits (x2 = 1, x1 = 0, x0 = 1)
shift by 3 bits is realized by serial combination of shift by 1 bit and
shift by 2 bits (x2 = 0, x1 = 1, x0 = 1)? 50 / 52

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture01-intro-en, slide 50 (Barrel Shifter)&issue[description]=You can report the issue or sugestion there.

Asthmatics Adders

Quiz

How many layers (row) Barrel shifter must have for 64 bit number, i.e. for
rotations from 0 to 63? (For rotations from 0 to 7 it was 3 layers)
A 4
B 6
C 16
D 64

? 51 / 52

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture01-intro-en, slide 51 (Quiz)&issue[description]=You can report the issue or sugestion there.

Asthmatics Adders

Feedback Quiz

How much did you understand today?
A All without a problem.
B Almost everything.
C Almost nothing.
D Absolutely nothing.

? 52 / 52

https://gitlab.fel.cvut.cz/b35apo/apo-slides/-/issues/new?issue[title]=Lecture apo-lecture01-intro-en, slide 52 (Feedback Quiz)&issue[description]=You can report the issue or sugestion there.

	Introduction
	The Computer Structure
	Boolean Algebra
	Asthmatics Adders

