Quantum Computing

Exercises: Quantum walks

1. At each time step, a quantum walk corresponds to a unitary map $U \in U(N)$ such that

$$
\begin{aligned}
U: \mathcal{H}_{G} & \rightarrow \mathcal{H}_{G} \\
\quad|x\rangle & \mapsto a|x-1\rangle+b|x\rangle+c|x+1\rangle
\end{aligned}
$$

Show that U is unitary if and only if one of the following three conditions is true:
(a) $|a|=1, b=c=0$,
(b) $|b|=1, a=c=0$,
(c) $|c|=1, a=b=0$.

Using the unitarity of the operator we know that:

$$
\begin{equation*}
\langle x| \underbrace{U^{\dagger} U}_{1}|y\rangle=\delta_{x y} \tag{1}
\end{equation*}
$$

So, for instance, for the following states, we have:
$\langle x-1| U^{\dagger} U|x+1\rangle=(a\langle x-2|+b\langle x-1|+c\langle x|)(a|x\rangle+b|x+1\rangle+c|x+2\rangle)=0$
The only term surviving being $c\langle x| a|x\rangle=a c=0$

$$
\langle x| U^{\dagger} U|x+1\rangle=(a\langle x-1|+b\langle x|+c\langle x+1|)(a|x\rangle+b|x+1\rangle+c|x+2\rangle)=0
$$

The non-vanishing terms now are

$$
\left\{\begin{array}{l}
b\langle x| a|x\rangle \Rightarrow a b \\
c\langle x+1| b|x+1\rangle \Rightarrow b c
\end{array} \Rightarrow a b+b c=0\right.
$$

$$
\langle x| U^{\dagger} U|x\rangle=(a\langle x-1|+b\langle x|+c\langle x+1|)(a|x-1\rangle+b|x\rangle+c|x+1\rangle)=0
$$

Lastly, the system to be solved is:

$$
\left\{\begin{array}{l}
a c=0 \tag{2}\\
a b+b c=0 \\
a^{2}+b^{2}+c^{2}=1
\end{array}\right.
$$

2. Demonstrate that the shift operator S, as defined in

$$
S=\left(|0\rangle\langle 0| \otimes \sum_{x=-\infty}^{\infty}|x+1\rangle\langle x|\right)+\left(|1\rangle\langle 1| \otimes \sum_{x=-\infty}^{\infty}|x-1\rangle\langle x|\right)
$$

is equivalent to

$$
S|i, x\rangle= \begin{cases}|0, x+1\rangle & \text { if } i=0 \\ |1, x-1\rangle & \text { if } i=1\end{cases}
$$

Applying directly the first definition of the operator to the state $|i, x\rangle$, we get the second one:

$$
\begin{gathered}
S|i, x\rangle=(|0\rangle \overbrace{\langle 0||i\rangle}^{\delta_{0 i}} \otimes \underbrace{\sum_{k=-\infty}^{\infty}|k+1\rangle \overbrace{\langle k||x\rangle}^{\delta_{k x x}}}_{|x+1\rangle})+(|1\rangle \overbrace{\langle 1||i\rangle}^{\delta_{1 i}} \otimes \underbrace{\sum_{k=-\infty}^{\infty}|k-1\rangle \overbrace{\langle k||x\rangle}^{\delta_{k x}}}_{|x-1\rangle}) \\
=\left\{\begin{array}{l}
|0\rangle \otimes|x+1\rangle \text { if } i=0, \quad=\left\{\begin{array}{l}
|0, x+1\rangle \text { if } i=0 \\
|1\rangle \otimes|x-1\rangle
\end{array}\right) \text { if } i=1 .
\end{array}\right)
\end{gathered}
$$

3. In the lecture notes, starting at the state $\left|\psi_{0}\right\rangle=|0\rangle|0\rangle$, we have seen how to obtain the succesive states up to $\left|\psi_{3}\right\rangle$ by using the unitary operator $U=S(H \otimes I)$. Derive $\left|\psi_{4}\right\rangle$ for the walker on the finite subset of \mathbb{Z}.
The previous states $\left|\psi_{1 . .3}\right\rangle$ can be found also in R. Portugal, Quantum walks and search algorithms (3.19).

$$
\begin{gathered}
\left|\psi_{4}\right\rangle=U\left|\psi_{3}\right\rangle=\frac{1}{2 \sqrt{2}}[2 U|01\rangle+U|11\rangle+\ldots] \\
U|01\rangle=S(H \otimes I)|01\rangle=S\left|\frac{|0\rangle+|1\rangle}{\sqrt{2}} 1\right\rangle=\frac{1}{\sqrt{2}}[S|01\rangle+S|11\rangle]=\frac{1}{\sqrt{2}}[|02\rangle+|10\rangle] \\
U|11\rangle=S(H \otimes I)|11\rangle=S\left|\frac{|0\rangle-|1\rangle}{\sqrt{2}} 1\right\rangle=\frac{1}{\sqrt{2}}[S|01\rangle-S|11\rangle]=\frac{1}{\sqrt{2}}[|02\rangle-|10\rangle] \\
U|03\rangle=\frac{1}{\sqrt{2}}[|02\rangle-|10\rangle] \\
U|1-3\rangle=\frac{1}{\sqrt{2}}[|0-2\rangle-|1-4\rangle] \\
U|0-1\rangle=\frac{1}{\sqrt{2}}[|00\rangle-|0-2\rangle] \\
\qquad\left|\psi_{4}\right\rangle=\frac{1}{4}[|10\rangle+3|02\rangle+|12\rangle-|00\rangle-|1-4\rangle+|04\rangle]
\end{gathered}
$$

4. Show that the formula from the lecture notes, $H|k\rangle=2 \cos (k)|k\rangle$ holds, by performing the discrete Fourier transform in the computational basis states.
For the walker on the line, every state $|x\rangle$ is only connected to its adjacent states $|x \pm 1\rangle$, that is, its adjacency matrix, A, is defined by:

$$
\begin{align*}
& \left\{\begin{array}{l}
\langle x| A|x \pm 1\rangle=1 \\
\langle x| A|y\rangle=0, y \neq x \pm 1
\end{array}\right. \tag{3}\\
& A=\left(\begin{array}{ccccccc}
0 & 1 & 0 & 0 & 0 & \ldots & 0 \\
1 & 0 & 1 & 0 & 0 & \ldots & 0 \\
0 & 1 & 0 & 1 & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0
\end{array}\right)
\end{align*}
$$

Changing from the computational basis to the Fourier basis, we have:

$$
|k\rangle=\frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} e^{i k x}|x\rangle,\langle k|=\frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} e^{-i k x}\langle x|, \text { where } k=\frac{2 \pi \kappa}{N}
$$

Now, taking the matrix element of the adjacency matrix and identifying it with the hamiltonian:

$$
\begin{aligned}
& \langle k| \underbrace{A}_{=H}\left|k^{\prime}\right\rangle=\frac{1}{N} \sum_{x=0}^{N-1} e^{-i k x}\langle x| H \sum_{x=0}^{N-1} e^{i k^{\prime} x}|x\rangle=\frac{1}{N} \sum_{x=0}^{N-1} e^{-i k x} e^{i k^{\prime}(x+1)}+e^{-i k x} e^{i k^{\prime}(x-1)}= \\
& \quad=\frac{1}{N} \sum_{x=0}^{N-1} e^{-i x\left(k-k^{\prime}\right)} e^{i k^{\prime}}+e^{-i x\left(k-k^{\prime}\right)} e^{-i k^{\prime}}=\underbrace{\left(e^{i k^{\prime}}+e^{-i k^{\prime}}\right)}_{2 \cos k} \underbrace{\frac{1}{N} \sum_{x=0}^{N-1} e^{-i x\left(k-k^{\prime}\right)}}_{\delta_{k k^{\prime}}}
\end{aligned}
$$

Where in the last equation, we have made use of the partial sum, s_{n}, of a geometric series:

$$
\begin{align*}
& s_{n}=a r^{0}+a r^{1}+\cdots+a r^{n-1} \tag{4}\\
&=\sum_{k=0}^{n-1} a r^{k}=\sum_{k=1}^{n} a r^{k-1} \tag{5}\\
&=\left\{\begin{array}{l}
a\left(\frac{1-r^{n}}{1-r}\right), \text { for } r \neq 1 \\
a n, \text { for } r=1
\end{array}\right. \tag{6}\\
& \frac{1}{N} \sum_{x=0}^{N-1} e^{-i x\left(k-k^{\prime}\right)}=\frac{1}{N} \sum_{x=0}^{N-1}\left(e^{-i\left(k-k^{\prime}\right)}\right)^{x}=\left\{\begin{array}{l}
\frac{1-e \frac{2 \pi j}{N}\left(k-\kappa^{\prime}\right) x}{1-e^{\frac{2 \pi \varepsilon^{\prime}}{N}\left(k-k^{\prime}\right)}}=0 \\
\frac{N}{N}=1
\end{array}=\delta_{\kappa \kappa^{\prime}}\right.
\end{align*}
$$

