
Fourth homework assignment announced 24. 5. 2024, due 14. 6. 2024 (prior to
the exam as a zip file in Brute)

In this homework assignment, you are expected to collect 20 points, but can actually
collect up to 60 points, by working on exercises of your own choice out of the list provided
below.

Quantum Fourier Transform

We have learned about quantum Fourier transform. There are many beautiful illustra-
tions of the workings of Fourier transforms:

• https://www.youtube.com/watch?v=jsuvaibdKg4

developed using https://github.com/MathAnimation1198/ManimTutorial,

• https://www.youtube.com/watch?v=h7apO7q16V0,

but very few for the discrete Fourier transform of quantum Fourier transform.

1. Watching the two tutorials linked above and produce an animated introduction to
the quantum Fourier transform for some low N . The demonstration needs to be
correct, but the “artistic impression” is more of a bonus level. (10 points)

2. Produce a YouTube video based on the animation. The points will be given for the
depth of understanding into the connection, as well as the usability of the illustra-
tions in some future version of the lecture notes. Please ping Jakub, Johannes, or
Georgios before you release the video publicly, to check for correctness. (10 points)

Discrete Quantum Walks

3. Demonstrate that the directional bias of a Hadamard walker, as in Figure 6.1,
depends on the initial coin state. (3 points)

4. Verify that Fig. 6.3 is indeed correct (make your own plot). Explain what would
we expect to see if we measured after each iteration of U . (3 points)

Quantum Walk on a Complete Graph

5. The trap, as defined in Fig. 6.5 makes no sense for a quantum walk (although this
is not quite the case for a Szegedy walk). Explain why. (2 points)

6. Analyze the convergence properties of iterated applications of the unitary opera-
tor Un |x〉 that implements a quantum walk. Under what conditions does Un|x〉
converge, and how does the unitary property of preserving distances in the Hilbert
space play a role in this convergence? (4 points)
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7. Derive the probability of success at step 3 and step 4 for the quantum walk on K4.
(4 points)

8. Simulate the quantum walk on K4 for a large number of steps and for N ∼ 1000.
Show that the analogue of Fig. 6.6 shows an oscillatory behavior. (4 points)

Szegedy Walks

9. Simulate a Szegedy walk on your favorite graph. Compare the validity of your
results against QuantumWalk.jl. (6 points)

Continuous-time Quantum Walks

10. Prove that Eq. (6.25) holds. Hint: Use a characteristic property about the columns
of L. (4 points)

Quantum Walk on the Hypercube

11. Below Eq. (6.33) we read: “Note that U(π/2) flips every bit of the state ... the
opposite vertex of the hypercube.” Pick your favorite n > 2 and demonstrate this.
(3 points)

Quantum Amplitude Estimation and Monte Carlo Sampling

12. Derive the intermediate steps between Eqs. (6.57) and (6.58). (4 points)

Quantum Adiabatic Computation

13. Consider Hclock init and assume that the initial clock state is other than |0〉⊗L :=
|0L〉c. Show that for L = 4 and for initial clock state |0010〉 we get a penalty in the
energy. (4 points)

14. Prove that the state |γ0〉 is an eigenstate of Hinit with zero eigenvalue. (4 points)

Variational Quantum Algorithms

15. Showcase a small instance (e.g., n ≥ 3, L = 1, 2), where QAOA produces the global
optimum. (4 points)

16. Showcase a small instance (e.g., n ≥ 3, L = 1, 2), where QAOA produces a partic-
ularly bad optimum. (4 points)

17. Summarize the performance guarantees of Brownian rounding for MAXCUT, based
on https://arxiv.org/abs/1812.07769. (4 points)

18. Explain how the performance guarantees of Brownian rounding for MAXCUT can
be extended to performance guarantees of warm-started QAOA of Egger et al.
(https://arxiv.org/abs/2009.10095). (4 points)
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19. The variational quantum factoring (https://arxiv.org/abs/1808.08927) sug-
gests the use of QUBO therein, and explains the QUBO. Showcase an example
thereof for factoring 15, incl. the optimizer (i.e., values of all of the variables in-
cluding the carry bits that attain the best possible objective-function-value). (4
points)

20. The Schnorr factoring paper (https://arxiv.org/pdf/2212.12372.pdf) suggests
the use of QUBO therein, but does not explain the QUBO instance used. Formu-
late the QUBO solved in Schnorr factoring (https://arxiv.org/pdf/2212.12372.
pdf). (6 points)

Security and Quantum Error Correction

We have seen that the security applications of quantum computers crucially rely on quan-
tum error correction. Here, we provide some exercises based on the Qiskit Quantum Er-
ror Correction, cf. https://github.com/qiskit-community/qiskit-qec/blob/main/

docs/tutorials/QEC_Framework_IEEE_2022.ipynb.

21. Showcase the stabilizer corresponding to the gauge group from the tutorial linked
above:

# Create a Gauge Group

from qiskit_qec.structures.gauge import GaugeGroup

matrix = np.array(

[

[1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0],

[0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0],

]

)

generators = PauliList(matrix)

gauge_group = GaugeGroup(generators)

print(f"G = {gauge_group.generators}")

(5 points)

22. Let us consider the following example from the tutorial. Again, compute the stabi-
lizer and explain how the subsystem surface code displayed by code.draw works in
your own words.

from qiskit_qec.codes.stabsubsystemcodes import StabSubSystemCode

from qiskit_qec.linear.symplectic import make_isotropic_hyperbolic_form

G = GaugeGroup(PauliList(["X1Y3", "X2X3Y4", "Z1Z5"]))

code = StabSubSystemCode(G)
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cen, x, z = make_isotropic_hyperbolic_form(G.generators.matrix)

print(f"G={PauliList(cen) + PauliList(x) + PauliList(z)}")

import qiskit_qec.codes.codebuilders.subsystem_surface_code_builder as cb

from cb import SubsystemSurfaceCodeBuilder

code = SubsystemSurfaceCodeBuilder(d=5).build()

code.draw(xcolor="lightcoral", zcolor="skyblue")

(5 points)
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