First homework assignment announced 15. 3. 2024, due 5. 4. 2024 (as a zip file in Brute)

Q1: Consider the 2-qubit state $\left|\psi^{+}\right\rangle:=\frac{1}{\sqrt{2}}(|01\rangle+|10\rangle)$. Calculate the expectation values in this state for the operators
a) $H \otimes H$, and (1.5p)
b) $H \otimes \sigma_{z} \cdot(1.5 p)$

Here H is the Hadamard operator, $H:=\frac{1}{\sqrt{2}}\left(\sigma_{x}+\sigma_{z}\right)$, and σ_{x}, σ_{z} the ordinary Pauli operators.

Q2: Consider the Hamiltonian operator of a 2-dimensional quantum harmonic oscillator

$$
H=\frac{1}{2 m}\left(p_{x}^{2}+p_{y}^{2}\right)+\frac{1}{2} m \omega^{2}\left(x^{2}+y^{2}\right)
$$

This can be written as the sum of the Hamiltonian of two one-dimensional oscillators

$$
H=H_{x}+H_{y}, \quad H_{j}=\frac{1}{2 m} p_{j}^{2}+\frac{1}{2} m \omega^{2} j^{2}
$$

for $j=x, y$. The momentum and position operators satisfy the commutation relations: $\left[x, p_{x}\right]=\left[y, p_{y}\right]=i \hbar$, while the rest are zero, i.e. $[x, y]=\left[x, p_{y}\right]=$ $\left[y, p_{x}\right]=\left[p_{x}, p_{y}\right]=0$.
a) Does H_{x} and H_{y} commute? (1.5p)
b) Can you construct a non-trivial (i.e. not zero or identity) operator, using only multiples of x, y, p_{x} and p_{y}, that commutes with the full Hamiltonian H ? If possible, what does this tell you about this quantity? (1.5p)

Q3: Alice and Bob are studying a 3-dimensional quantum system $|\psi\rangle \in \mathbb{C}^{3}$. Alice measures an observable that can take values red, green and blue (or r, g and b) while Bob measures an observable that gives values sweet, tangy or umami (or s, t and u). If Alice find the result r, then Bob finds that he finds the corresponding states s, t or u with probabilities $0, p$ and $1-p$, respectively. If on the other hand, Alice finds g, Bob's probabilities becomes $q, 0$ and $1-q$, for the values s, t, and u, respectively.
a) Which combinations of values are allowed for p and q ? (2p)
b) What are Bob's probabilities if Alice finds the result b ? ($\mathbf{2 p}$)

