Quantum Computing

Exercises 3: Qubits

1. Let us consider the set $\{|0\rangle,|1\rangle\}$, that forms a basis in \mathbb{C}^{2} (the computational basis). Calculate the vectors in \mathbb{C}^{4} :

$$
|0\rangle \otimes|0\rangle,|0\rangle \otimes|1\rangle,|1\rangle \otimes|0\rangle,|1\rangle \otimes|1\rangle
$$

and interpret the result.
b) Consider the Pauli matrices σ_{x} and σ_{z}. Find $\sigma_{x} \otimes \sigma_{z}$ and $\sigma_{z} \otimes \sigma_{x}$ and discuss. Both σ_{x} and σ_{z} are hermitian. Are $\sigma_{x} \otimes \sigma_{z}$ and $\sigma_{z} \otimes \sigma_{x}$ hermitian? Both σ_{x} and σ_{z} are unitary. Is $\sigma_{x} \otimes \sigma_{z}$ and $\sigma_{z} \otimes \sigma_{x}$ unitary?
2. Consider again the computational basis for, $\{|0\rangle,|1\rangle\}$. The Walsh-Hadamard transform is a 1-qubit operation, denoted by H, and performs the linear transform

$$
|0\rangle \rightarrow \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle),|1\rangle \rightarrow \frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)
$$

a) Find the unitary operator U_{H} which implements H with respect to the basis $\{|0\rangle,|1\rangle\}$.
b) Find the inverse of this operator.
c) Find its matrix representation in the computational (standard) basis:

$$
|0\rangle=\binom{1}{0},|1\rangle=\binom{0}{1}
$$

and in the Hadamard basis:

$$
|0\rangle=\frac{1}{\sqrt{2}}\binom{1}{1},|1\rangle=\frac{1}{\sqrt{2}}\binom{1}{-1}
$$

3. [Nielsen 8 Chuang Ex. 4.1] Find the points on the Bloch sphere which correspond to the normalized eigenvectors of the different Pauli matrices.
4. Consider the qubit, which Hamiltonian is represented in the basis $B=\{|0\rangle,|1\rangle\}$ by the matrix:

$$
H=\left(\begin{array}{cc}
E_{0} & v \\
v & E_{0}
\end{array}\right)
$$

a) Can E_{0} and v be complex numbers?
b) Obtain the spectrum of H and its eigenvalues
5. Consider a physical system whose state space con be subtended by the three vectors of the basis $B=\left\{\left|u_{1}\right\rangle,\left|u_{2}\right\rangle,\left|u_{3}\right\rangle\right\}$. In this space, the operators L and S are defined by:

$$
\begin{aligned}
& L\left|u_{1}\right\rangle=\left|u_{1}\right\rangle, L\left|u_{2}\right\rangle=0, L\left|u_{3}\right\rangle=-\left|u_{3}\right\rangle \\
& S\left|u_{1}\right\rangle=\left|u_{3}\right\rangle, S\left|u_{2}\right\rangle=\left|u_{2}\right\rangle, S\left|u_{3}\right\rangle=\left|u_{1}\right\rangle
\end{aligned}
$$

a) Write down the matrices that represent the four operators L, L^{2}, S, S^{2} in the basis B.
b) Which pairs commute?
6. A three-level system or qutrit is described by its Hamiltonian

$$
H=E_{0}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)-\frac{\epsilon}{\sqrt{2}}\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

in the basis $B=\{|0\rangle,|1\rangle,|2\rangle\}$
a) Calculate the eigenvalues and eigenvectors of H.
b) Check that the Hamiltonian commutes with th operator Π, which matrix in the basis B is

$$
\Pi=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)
$$

What does this mean?

