Quantum Computing

Exercises 2: Quantum Physics

1 (Susskind \& Friedman Ex. 5.2). For any observables A and B, and state $|\psi\rangle$, derive Heisenberg's uncertainty relation: $\left.\Delta \mathbf{A} \cdot \Delta \mathbf{B} \geq \frac{1}{2}|\langle\psi|[A, B]| \psi\right\rangle \mid$, where $(\Delta \mathbf{A})^{2}=\sum_{a}(a-\langle\mathbf{A}\rangle)^{2} P(a)$, is the standard deviation of the operator A.
2. Show that two matrices, \mathbf{A} and \mathbf{B}, are simultaneously diagonalizable (diagonalizable in the same basis) if and only if they commute, that is, $[A, B]=0$.
3. Derive the evolution operator: $U(t)=e^{-\frac{i}{\hbar} H t}$, by solving the Schrödinger equation: $i \hbar \frac{d|\psi(t)\rangle}{d t}=H|\psi(t)\rangle$.

