Quantum Computing

Exercises 2: Qubits

1. a) Let us consider the set $\{|0\rangle,|1\rangle\}$, that forms a basis in \mathbb{C}^{2} (the computational basis). Calculate the vectors in \mathbb{C}^{4} :

$$
|0\rangle \otimes|0\rangle,|0\rangle \otimes|1\rangle,|1\rangle \otimes|0\rangle,|1\rangle \otimes|1\rangle
$$

and interpret the result.
b) Consider the Pauli matrices σ_{x} and σ_{z}. Find $\sigma_{x} \otimes \sigma_{z}$ and $\sigma_{z} \otimes \sigma_{x}$ and discuss. Both σ_{x} and σ_{z} are hermitian. Are $\sigma_{x} \otimes \sigma_{z}$ and $\sigma_{z} \otimes \sigma_{x}$ hermitian? Both σ_{x} and σ_{z} are unitary. Is $\sigma_{x} \otimes \sigma_{z}$ and $\sigma_{z} \otimes \sigma_{x}$ unitary?
2. Consider again the computational basis for, $\{|0\rangle,|1\rangle\}$. The Walsh-Hadamard transform is a 1-qubit operation, denoted by H, and performs the linear transform

$$
|0\rangle \rightarrow \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle),|1\rangle \rightarrow \frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)
$$

a) Find the unitary operator U_{H} which implements H with respect to the basis $\{|0\rangle,|1\rangle\}$.
b) Find the inverse of this operator.
c) Find its matrix representation in the computational (standard) basis:

$$
|0\rangle=\binom{1}{0},|1\rangle=\binom{0}{1}
$$

and in the Hadamard basis:

$$
|0\rangle=\frac{1}{\sqrt{2}}\binom{1}{1},|1\rangle=\frac{1}{\sqrt{2}}\binom{1}{-1}
$$

3. [Nielsen \& Chuang Ex. 4.1] Find the points on the Bloch sphere which correspond to the normalized eigenvectors of the different Pauli matrices.
